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Abstract

During the torpor phase of mammalian hibernation when core body temperature is near 4°C, the
autonomic system continues to maintain respiration, blood pressure and heartbeat despite drastic
reductions in brain activity. Additionally, the hibernator’s neuronal tissues enter into a protected
state in which the potential for ischemia-reperfusion injury is markedly minimized. Evolutionary
adaptations for continued function and neuroprotection throughout cycles of torpor and euthermia
in winter are predicted to manifest themselves partly in changes in the brainstem proteome. Here
we compare the soluble brainstem protein complement from six summer active ground squirrels
and six in the early torpor phase of hibernation. Thirteen percent of the ~1500 quantifiable 2D gel
spots alter significantly from summer to early torpor; the proteins identified in these differing
spots are known to play roles in energy homeostasis via the tricarboxylic acid cycle (eight
proteins), cytoarchitecture and cell motility (14 proteins), anabolic protein processes (13 proteins),
redox control (11 proteins) and numerous other categories including protein catabolism, oxidative
phosphorylation, signal transduction, glycolysis, intracellular protein trafficking and antiapoptotic
function. These protein changes represent, at least in part, the molecular bases for restructuring of
cells in the brainstem, a shift away from glucose as the primary fuel source for brain in the winter,
and the generation of a streamlined mechanism capable of efficient and rapid energy production
and utilization during the torpor and arousal cycles of hibernation.
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Introduction

The yearly thermoregulatory cycle of a ground squirrel includes two phases. The summer
active phase is similar to that of any non-hibernating homeothermic mammal in that the core
body temperature (Ty) is maintained at ~35-37°C. In contrast, the winter phase is
characterized by dramatic heterothermy in which Ty, drops to ~ —3°C to 5°C (torpor) with
the exception of spontaneous arousals to euthermy for ~12-15 hr every 3-16 days (Fig. 1).
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In addition to low body temperature, the torpid animal demonstrates a tremendously reduced
rate of metabolism, respiration and cardiac rhythm (reviewed in Andrews 2007; Carey et al.
2003; reviewed in Lyman et al. 1982).

Life-sustaining brainstem activity, including regulation of heartbeat, respiration and blood
pressure, must meet demands throughout the varied and dynamic phases of hibernation, and
indeed distinct patterns of brainstem activity are found in torpor and arousal cycles (Bitting
et al. 1994; Bratincsak et al. 2007; Kilduff et al. 1990; Kilduff et al. 1982; Milsom et al.
1999). Additionally, brain tissue assumes a state of protection in hibernation. Hippocampal
slices tolerate hypoxia and aglycemia (Frerichs and Hallenbeck 1998), the inflammatory
response to traumatic brain injury is minimal (Zhou et al. 2001), neuronal damage does not
accrue after cerebral ischemia by cardiac arrest (Dave et al. 2006), and as metabolic rate and
Tp increase during arousal from torpor, brain tissues undergo a period of mild hypoxia but
remain resistant to stress and damage (Ma and Wu 2008; Ma et al. 2005; Tgien et al. 2001).
Shifts in brain activity, cytoarchitecture (Arendt et al. 2003; Ruediger et al. 2007; von der
Ohe et al. 2007), energy demand and protection from damage are likely to result from
seasonal alterations in gene expression.

Broad-spectrum unbiased screens for changes in gene expression in hibernating sciurids
across the annual cycle have been performed at the mRNA level in a variety of tissues
including liver, heart, brain (reviewed in Andrews 2007; reviewed in Carey et al. 2003), and
five tissues of the arctic ground squirrel (Yan et al. 2008). At the protein level, differences
have been detected in hibernators using liver, heart, muscle and intestinal tissues (Eddy et al.
2005; Epperson et al. 2004; Lee et al. 2008; Martin et al. 2008; Russeth et al. 2006). Current
data support a two-switch model (Serkova et al. 2007) in which a reprogramming of gene
expression is the primary facilitator of the first switch from summer to winter, and the less
time- and energy-consuming regulation of small biomolecules controlling protein activity
drives the second switch of arousal and torpor.

To better understand the molecular events that underlie the hibernator’s ability to maintain
neuronal function and resist damage from the extreme changes associated with winter
heterothermy, we used a quantitative 2D gel approach to compare the proteins present in
summer active (SA) ground squirrel brainstem to those in early torpor (ET). Many of the
changes found are consistent with the known dramatic restructuring of cellular architecture.
In addition, the ET animals demonstrated steady-state upregulation of proteins in the
pyruvate dehydrogenase complex, tricarboxylic acid cycle, and oxidative phosphorylation
pathways and downregulation of proteins involved in glucose metabolism. Based on these
protein alterations, a model is proposed to explain the remarkable ability of hibernators to
meet brain ATP requirements during arousal.

Animals and acquisition of tissue

Thirteen-lined ground squirrels (Ictidomys tridecemlineatus, recently revised from genus
Spermophilus (Helgen et al. 2009)) were trapped in the summer in the vicinity of Madison,
Wisconsin, and were housed, abdominally implanted with telemeters, and euthanized as
described previously, (Fleck and Carey 2005). SA animals were anesthetized with isoflurane
and decapitated in late June-August when Tpx37°C, ET animals after at least 4 torpor-
arousal cycles and within 24h of having cooled to a T, of 5-7°C. Brainstems (pons and
medulla only) were removed and snap frozen in liquid nitrogen. The University of
Wisconsin Institutional Animal Care and Use Committee approved all animal procedures.
The tissues were shipped on dry ice to the University of Colorado and stored at —80°C until
use.
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Sample preparation

Frozen brainstem was pulverized in liquid nitrogen. Approx. 100mg of frozen powdered
tissue was taken from the total, placed in homogenization buffer and processed as previously
described for liver in a Polytron (Brinkmann) (Epperson et al. 2004). The homogenate was
transferred to a microfuge tube and nuclei were pelleted at 500Xg, 4°C for ten min. The
post-nuclear supernatant was gently transferred to another tube and divided into 15ul
aliquots. These were snap frozen in liquid nitrogen and stored at -80°C. Each aliquot was
used only once to avoid freeze-thaw cycles. One aliquot from each animal was used for
protein quantitation by BCA protein assay (Pierce). To prepare the reference standard, 230
ug of each sample (12 total: six SA, six ET) were combined into a single tube and mixed
thoroughly. This pooled sample was divided into five aliquots, snap frozen and placed at
—80°C until use.

90ug of each sample were denatured overnight at room temperature in denaturing buffer:
8M urea, 2M thiourea, 4% CHAPS, 25mM Tris pH 8.8, and subsequently labeled with Cy2,
Cy3 or Cy5 (GE Healthcare). Cy2 was always used to label the reference standard and Cy3
and Cy5 were alternated between SA and ET samples to control for dye bias (“dye swap”).
Labeling was done according to the manufacturer’s protocol except that 80nmol rather than
400nmol was used to label 50ug of protein. For each gel, the Cy3 and Cy5-labeled samples
were combined with the reference standard (Cy2) and this combined sample was methanol/
chloroform precipitated as described (Epperson et al. 2004). The pellet was resuspended in
150ul iso and 150ul 3; iso: 9M urea, 4% CHAPS, 65mM DTT, 35mM Tris base, 0.0025%
bromophenol blue. 3: 7M urea, 4% CHAPS, 100mM DTT, 0.0025% bromophenol blue, 2M
thiourea, 0.8% 3.5-10 ampholytes (“Resolyte”, Gallard-Schlesinger, Plainview, NY),
pipetted 10X with a gel loading tip and shaken at 900rpm, 25°C in a Thermomixer
(Eppendorf) for at least two hr to solubilize.

Two-dimensional gel electrophoresis

The solubilized proteins were used to swell Immobiline DryStrips pH 3-10 NL, 18cm (GE
Healthcare) for 21-24h at RT, after which isoelectric focusing (IEF) and 2D separation were
conducted as previously detailed (Bernard et al. 2004) with 20mg/ml fresh DTT in water
added to the basic end filter paper. The IEF program was as follows with 2mA and 5W for
all steps: 1) ramp to 500V, 30 min, 2) ramp to 3500V, 4hr, 3) hold at 3500V, 14-17hr total.
After focusing, the strips were incubated 15 min each in reducing (50mM Tris pH 6.8, 2%
SDS, 15% glycerol, 6M urea, 1% DTT) and alkylating (50mM Tris pH 6.8, 2% SDS, 15%
glycerol, 6M urea, 1.25% iodoacetamide, 0.05% bromophenol blue) buffers to covalently
modify sulfhydryl groups and prevent subsequent disulfide bridge formation. For the second
dimension, proteins were separated by SDS-PAGE on a 9-16% acrylamide gradient, and
gels were scanned in the glass plates within four hours of completion of electrophoresis.

Three channels were used on a Typhoon 9400 (GE Healthcare) to collect the Cy2, Cy3, and
Cy5 images. For each gel image, a prescan was performed and the photomultiplier voltage
adjusted until the spot of maximum volume on each image was reduced to approximately
one-third of saturation. Images used for analysis were collected at a pixel size of 100um.
Two of these six gels were “pick” gels that were affixed to glass plates previously marked
with reference markers (GE Healthcare, product #18-1143-34) and treated with bind-silane
(PlusOne, GE Healthcare) for the purpose of accurate robotic picking and digestion of the
protein spots. These two gels were fixed and stained with Sypro Ruby (BioRad) according to
Epperson, et al. after scanning for Cy2, 3 and 5 (Epperson et al. 2004).

All 20 images (six gels with three Cy images each: Cy2, Cy3 and Cy5, and two of these
same gels poststained with Sypro Ruby to make pick gel images) were imported into
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DeCyder 2D 6.5 software (GE) for spot matching. T-tests were run using the Cy images in
which the Cy3 and Cy5 spot values (pixel volumes) were normalized to their corresponding
Cy2 spot value. The BVA module also includes a statistical post hoc algorithm “False
Discovery Rate” (FDR) (Benjamini and Hochberg 1995) which is a stringent modifier of p-
values and greatly reduces false positives in a large set of comparisons with a relatively
small sample size, the resulting probability is called a “q value”. Only spots whose t-tests
retained q<0.05 that were found to be reproducible and robust by individual inspection on
all Cy2 images were excised for identification.

Spot picking and mass spectral analysis

Picks and digests were done in the UCDHSC Proteomics Shared Facility (hsc-
proteomics.uchsc.edu/mscore) using an Ettan spot picker and an Ettan spot digester (GE
Healthcare). Tryptic fragments were separated in a 3-45% hydrophobicity gradient of buffer
B (90% ACN, 0.1% formic acid) over 45 min, followed by a 5 min wash in 90% ACN for
analysis of full and tandem mass spectra by LC-MS/MS in an ESI ion trap (LC/MSD XCT
Plus, Agilent Technologies) in positive ion mode in the Ultra Scan setting. A full MS scan
was followed by tandem mass spectral (MS/MS) scans of the two highest peaks with a
dynamic exclusion of 1 min. Raw mass spectra were analyzed using Spectrum Mill MS
Proteomics Workbench Rev A.03.02.060a ETD-65. The range of mass limits for the
precursor ions was 600-4000 Da, parent and fragment masses were both set to
monoisotopic, precursor peptide mass tolerance was 2.5 Da, fragment ion tolerance was 0.7,
the enzyme specified was trypsin, maximum number of internal missed cleavage sites was
two, and cysteines were given a fixed modification of +57 for carbamidomethylation. The
database used was an in-house compilation of all mammal sequences in the NCBI nr
database in August 2008 and contained 704,905 entries. Spectral data from the same spot on
the two pick gels were combined to increase confidence in the identification.

Protein identifications and functional assignments

Protein IDs were acquired for each spot. A program called ExtracTags was written in-house
to collate necessary information from Spectrum Mill results about the peptides on which
protein IDs were based. For each peptide, the NCBI Gl#, species of the organism to which
that peptide was matched, predicted peptide sequence, Spectrum Mill score, SPI (scored
peak intensity), parent mass and charge, and delta mass were all recorded. For each protein
ID obtained, a combined score from all peptides and the total amino acid coverage by those
peptides were also calculated. In all tables, protein IDs relying on a single peptide match
were eliminated along with any IDs that were > +15% of their predicted molecular weight
based on the second dimension size. Additionally, for spots with multiple credible
identifications where one protein’s peptides demonstrated an average spectral intensity that
exceeded those of another protein in the same spot by four fold or more, the protein with
lower average spectral intensity was discarded (Martin et al. 2008). If the difference in both
score and coverage was four-fold or greater, the lower quality identification was discarded.
Trypsin and keratin were eliminated from the lists. Identifications that passed these criteria
were considered valid, and spots with single valid protein IDs after these eliminations were
considered unique IDs. In cases where a protein was “hypothetical” or “unnamed protein
product”, the name of the human homolog as found using the NCBI BLink blast tool was
used. Potential biological function was determined using NCBI’s Entrez Gene and links
therein.

Western blot analysis

20ug of total brainstem protein were separated by SDS-PAGE. One of the SA samples had
been depleted and was therefore omitted from the western blot analysis. The gel was cut at
the 43kDa marker. The lower portion was stained using Sypro Ruby (Bio-Rad) and scanned
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on a Typhoon 9400 (GE) to assess gel loading consistency among lanes. Proteins in the
upper gel portion were transferred to Immobilon-FL transfer membrane (Millipore), which
was blocked with 3% milk, 1% BSA in TBST and incubated with OGDH goat polyclonal
antibody (1:100, SC-49589, Santa Cruz Biotech) at 4°C overnight followed by anti-goat
Cy5-conjugated secondary antibody (1:400, Jackson ImmunoResearch). The image was
captured using a Typhoon 9400 and analyzed with ImageQuant software.

Protective and functional alterations in the brain are likely to manifest themselves in large
part at the protein level in a manner that is dependent on hibernation season (Epperson and
Martin 2002; Martin and Epperson 2008; von der Ohe et al. 2007; Zhao et al. 2006).
Evidence from previous two-dimensional gel electrophoresis (2DE) studies suggests a loss
of protein quality during torpor that is corrected during interbout arousal (Epperson et al.
2004; Martin et al. 2004). Therefore, animals in ET were used in the present study to
represent the brainstem proteome of the winter season. Soluble brainstem proteins from six
SA and six ET animals were resolved first by isoelectric point and then by size using CyDye
labels and 2DE to assess changes in the brainstem proteome associated with the summer to
winter alterations in hibernation biochemistry (Fig. 2). Biological replicates were labeled
and subjected to 2DE separately rather than pooled to increase statistical power (Karp et al.
2005). The DIGE approach includes a pooled reference labeled with Cy2 which acts as a
common denominator, improving quantitation and gel matching (reviewed in Marouga et al.
2005). The most populated gel, the “master” was determined to have 2314 Cy2 spots; these
spots were matched to the other Cy2 images allowing for quantitative analysis of their
respective Cy3 and Cy5 spots by analysis of their ratios to Cy2, i.e. Cy5/Cy2 compared to
Cy3/Cy2 for a single spot. T-tests were run on 2196 spots according to the algorithm present
in the DeCyder software. A post hoc multiple test correction algorithm (False Discovery
Rate, FDR) was applied to reduce the occurrence of false positives, and only spots that
passed this stringent filter were considered further. 633 of the 2196 t-tests demonstrated a p-
value of less than 0.05; 286 of these remained significant after FDR (g< 0.05).

Of the 286 significantly changing spots, 206 were found to match well on the pick gels and
to be reproducible on all gels. These 206 were picked, digested, and their tryptic peptides
analyzed by LC-MS/MS mass spectrometry. Protein identifications were obtained for all but
seven of the 206 spots analyzed. Information about each uniquely identified protein gene
product was found using NCBI’s “Gene” link, and possible functional roles are listed in
Tables 1 and 2. 102 (51%) of the 199 identified spots were up in ET relative to SA, 58 of
which gave a unique protein ID. 97 (49%) of the 199 identified spots were down in ET, 61
of which gave a unique protein ID. Eighty spots contained multiple valid 1Ds. Because
protein identification by this method depends on the availability of sequence information,
the lack of a sequence database for this or a closely related organism lowers the recovery of
exact matches. However, high quality spectral information and use of the largest mammalian
database available enable positive identification of almost all protein spots with current
methods (Epperson et al. 2004; Russeth et al. 2006). One hundred nineteen spots contained a
single protein and these unique IDs are reported in Tables 1 and 2. Further information
regarding these spots and their corresponding peptides is listed in the Supplementary Table.
The fold changes for those spots that were elevated in ET were on average 17% higher than
those spots found to be higher in SA (p<3X1079, Student’s t-test; average fold change for
ET, 1.55X; for SA, 1.33X). Eighty spots revealed the presence of multiple robust protein
identifications, consistent with the high complexity of the starting sample. Proteins
identified as changing in steady-state level encompassed many functions including roles in
the citric acid cycle, cellular architecture, intracellular transport, protein metabolism and
ATP synthesis.
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In all cases except two, when more than one spot contained the same protein, those spots
were either elevated or reduced coordinately from SA to ET. Only guanine nucleotide
binding protein (GNAO1) and aconitase 2 (ACO2), showed a disparate expression: for
GNAOL1, spots 1167, 1174, and 1176 were elevated in ET (Table 1), and spot 1127 was
reduced in ET (Table 2); in the case of ACO2, spot 396 was elevated in ET (Table 1), and
spots 318 and 332 were reduced in ET (Table 2). These isoforms likely represent alternative
post-translational modifications or a variation earlier in the gene expression process such as
alternative splicing.

OGDH, uniquely identified in seven 2D gel spots (Table 1), was selected for verification of
the DIGE results by western blotting. Two bands of ~114 kDa were detected with a
combined increase in ET of 1.4 fold (Fig. 3). While the results of western blotting are
consistent with the DIGE results, the 2D gel method is able to discriminate and
independently quantify the significant fold changes for seven different isoforms of the same
protein in contrast to the western blot which merges all of these variants of distinct charge
(Fig. 2) into two poorly-resolved bands.

The proteins that altered significantly between ET and SA demonstrated consistently small
fold changes, with the majority less than two-fold. The largest fold change was spot 1189 at
2.31 fold. Small but significant fold changes might arise in two ways: either they reflect
uniform small fold changes, or there are nonuniform large fold changes in a subset of cells
due to the high functional heterogeneity of cells within the brainstem. To address the
question of region-specific expression of the gene products revealed by our screen, we
compared our list of ground squirrel proteins to mMRNAs that show regional expression in
mouse brain. The Allen Mouse Brain Reference Atlas comprises data from in situ
hybridization experiments localizing the expression of ~20,000 mRNAs in mouse brain
(Lein et al. 2007). This online resource (www.brain-map.org) was searched for mRNAs that
correspond to the proteins listed in Tables 1 and 2 to determine whether expression was
ubiquitous or cell type-specific. Of the 85 distinct proteins examined, 76 of the gene product
names matched exactly to an entry in the Allen atlas. Serial coronal sections were available
for 33 of these 76; 25 demonstrated regional enrichment of expression and the other eight
were ubiquitous (Table 3). These results suggest that for many proteins identified in this
proteomics screen, small fold changes found in the homogenized brainstem sample are
actually “diluted” representations of larger, localized fold changes. Table 4 illustrates how
this heterogeneity would affect protein quantification in brainstem homogenates.

Accurate automated evaluation of large sets of biochemical data is still in its infancy. A new
tool that enables statistically robust pathway searching is KEGG Spider
(http://mips.gsf.de/proj/keggspider/); this was used to examine the uniquely identified
proteins found to be elevated either in ET or in SA ground squirrels. By this method, using
the feature to generate 200 random networks, two KEGG metabolic pathways in ET and two
in SA were significantly elevated (p<0.05). Alanine/aspartate metabolism and the TCA
cycle were elevated in ET, and pyruvate metabolism and glycolysis/gluconeogenesis were
elevated in SA.

Other functional groups implicated in the present dataset include an upregulation in ET of
the electron transport chain and oxidative phosphorylation, ATP synthesis machinery and
components required for intracellular protein trafficking. Functional groups that contained
both ET- and SA-elevated spots include protein anabolic and catabolic pathways,
cytoskeleton and cell matility, redox balance and signal transduction. Changes in protein
levels in all of these functional groups reveal a winter proteome that differs considerably
from summer, and one which enables dynamic shifts during the torpor and arousal cycles in
fuel consumption, cell survival, vesicular trafficking and cytoarchitecture (Table 5).
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Discussion

Hibernators display extraordinary physiological plasticity during the winter months. They
sustain core temperature as well as cardiac, respiratory and metabolic rates at one to five
percent of SA levels for more than ten days at a time, then spontaneously revert to euthermic
conditions that resemble summer physiology before entering another bout of torpor
(reviewed in Andrews 2007; Carey et al. 2003). While ischemia and reperfusion (I/R) leads
to damage, stress response and cell death in homeotherms, the brains of hibernating ground
squirrels are markedly resistant to oxidative damage in spite of measurable hypoxia (Ma et
al. 2005). Cells in the brain exemplify the hibernators’ plasticity and resilience as they
undergo transitions in activity (Kilduff et al. 1990; Krilowicz et al. 1988) and synaptic
structure (Arendt et al. 2003; Ruediger et al. 2007; von der Ohe et al. 2007) during the
torpor and arousal cycles of winter. As predicted, this physiological plasticity was reflected
in a seasonal alteration in protein composition as measured by the changes in protein spots
observed between summer and winter brainstem, a brain region containing neurons of the
autonomic nervous system whose critical functions must be maintained in order to assure
survival during hibernation.

This unbiased quantitative comparison of more than 2000 protein spots from 13-lined
ground squirrel brainstem demonstrates that most of the proteomic complement remains
unaltered between SA and ET, consistent with the maintenance of normal cellular function
required throughout the year. Compared to proteomic studies in other tissues, the brainstem
data revealed smaller fold changes in a larger percentage of the proteins surveyed. Thirteen
percent of spots underwent a significant seasonal shift in brainstem, whereas other tissues
demonstrated seasonal changes as follows: whole intestine, three percent (Martin et al.
2008); liver, 11%; lung, less than one percent; and plasma, three percent (unpublished
results). Experiments using other 2DE methods also found seasonal changes in protein
levels, e.g. liver, nine percent (Epperson et al. 2004), but most studies did not quantify the
changes as a portion of the total. One protein in heart (Russeth et al. 2006), one protein in
bat liver (Eddy et al. 2005) and six proteins in bat muscle (Lee et al. 2008) were reported to
alter with hibernation state. In contrast to these other studies, almost all proteins here
changed by less than two fold, likely a consequence of the extreme regional heterogeneity in
the brainstem (Tables 3 and 4). Consistent with this explanation, the relative cell type
homogeneity in liver may contribute to its greater fold changes (two to five fold) for a
greater percentage of the proteins found there in a comparison of SA animals to hibernators
(Epperson et al. 2004).

An advantage of 2D gel analysis over traditional SDS-PAGE is the possibility for separating
and identifying multiple protein isoforms derived from the same gene (Fig. 3). In most
cases, various isoforms of the same protein are elevated in the same season. For example,
among significantly different spots in this study, all three spots identified as synuclein were
elevated in SA over ET; the same was found for peptidyl-prolyl cis-trans isomerase A (three
spots), and for several others. Previous results from studies in liver and intestine reveal
similar patterns (Epperson et al. 2004; Martin et al. 2008). However, in the present study,
two proteins were identified that were higher in SA in one spot, and higher in ET in a
separate spot. These were aconitase 2 (ACO2) and guanine nucleotide binding protein
(GNAOL.) Both proteins may be subject to shifts in charge (Bota and Davies 2002; Spickett
et al. 2006). This spot pattern suggests a post-translational modification in hibernation
(reviewed in Storey 1997), a strategy for controlling enzyme activity likely to be used along
with alterations in small molecules (Nelson et al. 2009; Serkova et al. 2007) rather than de
novo gene expression for the rapid winter switches required. Examples remain sparse,
although several modified proteins have been identified that might play critical roles in
hibernation (reviewed in Carey et al. 2003; Chen et al. 2001; Frerichs et al. 1998; Lee et al.
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2007; van Breukelen et al. 2004). Investigation of multiple winter stages and identification
of specific modifications is required to reveal the importance of post-translational
modification in torpor and arousal cycles.

Highly significant changes between SA and ET in brainstem proteins illuminate pathways
that are likely to be critical in enabling survival during hibernation (Table 5). The well-
known shift away from predominantly carbohydrate metabolism in summer (Andrews et al.
2009) is indicated by the decrease in winter of many enzymes of glycolysis/gluconeogenesis
as well as an increase in alanine and aspartate metabolism. The central role of energy
homeostasis in hibernation shown previously in cortex metabolite shifts (Henry et al. 2007)
is further revealed by the increased abundance of numerous key proteins in both the TCA
cycle and oxidative phosphorylation.

The collective winter upregulation of numerous mitochondrial proteins suggests a model for
rapid ATP synthesis with selective use of a portion of the TCA cycle during hibernation,
specifically the three steps that follow introduction of acetyl CoA, as depicted in Fig. 4. In
this model, near the end of a euthermic interbout arousal when biochemical tasks that
require higher temperatures are completed, demand for ATP tapers, allowing ATP to
accumulate in the mitochondrial matrix. Elevated ATP would enable phosphorylation of key
TCA cycle enzymes such as alpha-ketoglutarate dehydrogenase (OGDH), leading to
inactivation by well-established mechanisms and a reduction in ATP synthesis. During
torpor, TCA cycle precursors derived from ketone bodies or amino acids would accumulate
in the mitochondrial matrix because the TCA enzymes are inactive. Near the end of a torpor
bout after slow use and local depletion of ATP, OGDH would be dephosphorylated and thus
reactivated. Isocitrate dehydrogenase (IDH3A) and pyruvate dehydrogenase (PDH) are
similarly activated via dephosphorylation. A rapid shift in the activity of these three
enzymes would be consistent with a predicted quick reversal of oxidative suppression at the
end of torpor when Ty, is still very low (reviewed in Staples and Brown 2008). The restored
catalytic activity of these three enzymes would generate reducing power in the form of
NADH to be taken up by the adjacent electron transport chain, a process that demonstrated a
unilateral upregulation in brain in ET for several of its protein subunits. The higher winter
copy number of proteins in the oxidative phosphorylation pathway would allow for rapid
production of ATP during arousal from torpor when demand for energy is high and in the
ensuing euthermic interbout arousal (Fig. 4).

Several additional pathways were identified as changing seasonally. Pathways of protein
translation, folding and turnover were elevated in either ET or SA, indicating an elaborate
and potentially protein-specific strategy for synthesis, salvage and degradation. Another of
the largest functional groups represented in Table 5 is that of cytoskeleton and cell motility,
consistent with dramatic cellular restructuring during hibernation. Finally, redox balance,
signal transduction and clathrin-mediated vesicle formation all altered from SA to ET, with
all identified proteins with roles in vesicle formation increased in winter.

The results of this study support the hypothesis that differential expression of genes common
to the mammalian genome plays a major role in the biochemistry of hibernation rather than
expression of novel genes not found in other, non-hibernating mammals (Srere et al. 1992).
These specific protein changes provide new insights into the molecular events that
orchestrate and enable survival of the remarkable physiological extremes of hibernation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Ty core body temperature

SA summer active

ET early torpor
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Body temperature (Ty) of a 13-lined ground squirrel for several weeks in late fall and into
the first three months of winter heterothermy, i.e. hibernation; SA, summer active; FT, fall
transition; ET, early torpor.
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Early Torpor, Cy3 Summer Act tive, CyS

Fig. 2.

Brainstem protein differences between SA and ET. Two different Cy images from a single
gel separation of soluble 13-lined ground squirrel brainstem proteins by 2DE are shown. (a)
ET brainstem proteins labeled with Cy3, master numbers are indicated for spots elevated in
ET. (b) SA proteins labeled with Cy5, master numbers are indicated for spots elevated in SA
over ET. On the left side of the figure are markers of approximate molecular mass in kDa,
and across the top are indicated the approximate isoelectric (pl) values in pH.
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Fig. 3.

Comparison of DIGE and western quantitation for OGDH. (a) Isoform-specific quantitation
using the normalized spot volumes obtained by DIGE of seven 2D gel spots for which
OGDH was the uniquely identified protein; symbols represent protein spots as indicated,;
ET: n=6, SA: n=6; fold changes and Student’s t-test p values for each of the seven OGDH
spots are in Table 1. DIGE values are aligned with western blot lanes, except for the
depleted SA6. (b) Western blot distinguishes two isoforms of OGDH at ~114kDa; after
electrophoretic separation, the protein gel was cut and proteins in the top portion were
transferred for immunoblotting, the bottom (c) was stained with Sypro Ruby. Molecular
mass is indicated in kDa, normalized volumes are indicated under each band after correction
for protein loading to the volume of the corresponding rectangle in the Sypro Ruby-stained
portion of gel. Fold change for OGDH (combined bands) as determined by western, 1.39X
(ET>SA); ET: n=6, SA: n=5; p<0.0006, Student’s t-test.
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Fig. 4.

A model for rapid ATP production in hibernation, specifically during arousal from torpor
and in interbout arousal. Unshaded boxes, unique ids elevated in ET; shaded boxes, unique
ids reduced in ET. Aconitase 2 (partially shaded) was found in 3 spots, one was elevated in
ET and two were reduced in ET. *, derived from amino acids; **, activity reversible by
phosphorylation where phosphorylated form is inactive and dephosphorylation activates the
enzyme. Circled numbers represent the succession of events. 1) During a torpor bout,
intermediates of the citric acid (TCA) cycle accumulate and ATP stores in the mitochondrial
matrix are slowly consumed until 2) ATP concentrations are depleted to a threshold
resulting in dephosphorylation and therefore activation of several key metabolic enzymes. 3)
Catalysis of stockpiled intermediates rapidly creates reducing power in the form of NADH
which is taken up by the adjacent electron transport chain and 4) converted to ATP.
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Table 5

Page 25

Functional groupings for proteins found to alter from SA to ET. The official symbols of the genes encoding

proteins that differed between SA and hibernating (ET) ground squirrels are listed.

higher in early torpor higher in summer active

glycolysis, sugar metabolism

PYGB

MDH1-cytosolic (3 spots)
ALDOC (2 spots)

TPI1

ENO2

LDHB (2 spots)

GALK2

pyruvate dehydrogenase complex

DLD (2 spots)

PDHB
PDHX
TCA cycle
ACO2 ACO2 (2 spots)
IDH3A
DLD (2 spots)

OGDH (7 spots)

intracellular trafficking

DNM1
NSF (2 spots)
GSNAP
CLTA (clathrin, 2 spots)
NAPA (alpha SNAP)
signal transduction
GNAOL1 (3 spots) GNAO1
GNB1 YWHAG (14-3-3 gamma)
ANXAS5 ARHGDIA
redox
ACO1
AKR1A1l
DDAH1
AKR1B3
HDHD2
GSTM2
TKT (2 spots)
PRDX2
ion modulation
ASNAL CLIC4
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higher in early torpor

higher in summer active

VDAC2 CALB2
cytoskeleton/cell motility
TUBAIB (2 spots) DPYSL2 (3 spots)
TUBA1C DPYSL3 (2 spots)
TuBB2C DPYSL5
NDRG?2 (2 spots) CFL2
RPSA SNCG (3 spots)
TPM3 PFN2
HSPB1 PDXP (2 spots)
CFL1
ETC/oxidative phosphorylation
NDUFS1
ATP5A1
ATP5B (2 spots)
UQCRC1
NDUFS3
NDUFV2
UQCRH
apoptosis/antiapoptosis

HSPAS GLO1

PEA15

PDCD5

protein synthesis and folding (anabolism)

CCT5
CCT2
TUFM
ERP29
EIF5A

HSPAA4 (3 spots)
HSPAS
SERPINB1
PCMT1

PPIA (3 spots)

protein and amino acid breakdown (catabolism)

USP5
VCP

APEH
ALDH4A1
PSMD14
BCAT1
HIBADH
UCHL1

transcription/nucleic acid processing

PURA (2 spots)
STRAP
TCEB2

PIR
HPRT1
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