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Abstract

Background: Individuals infected by HIV are at an increased risk for developing non-Hodgkin’s lymphomas (AIDS-NHL). In
the highly active antiretroviral therapy (HAART) era, there has been a significant decline in the incidence of AIDS-associated
primary central nervous system lymphoma (PCNSL). However, only a modest decrease in incidence has been reported for
other AIDS-NHL subtypes. Thus, AIDS-NHLs remain a significant cause of morbidity and mortality in HIV infected individuals.
Recently, much attention has been directed toward the role of miRNAs in cancer, including NHL. Several miRNAs, including
those encoded by the miR-17-92 polycistron, have been shown to play significant roles in B cell tumorigenesis. However,
the role of miRNAs in NHL in the setting of HIV infection has not been defined.

Methodology/Principal Findings: We used quantitative realtime PCR to assess the expression of miRNAs from three
different paralog clusters, miR-17-92, miR-106a-363, and miR-106b-25 in 24 cases of AIDS-NHLs representing four tumor
types, Burkitt’s lymphoma (BL, n = 6), diffuse large B-cell lymphoma (DLBCL, n = 8), primary central nervous system
lymphoma (PCNSL, n = 5), and primary effusion lymphoma (PEL, n = 5). We also used microarray analysis to identify a
differentiation specific miRNA signature of naı̈ve, germinal center, and memory B cell subsets from tonsils (n = 4). miRNAs
from the miR-17-92 paralog clusters were upregulated by B cells, specifically during the GC differentiation stage. We also
found overexpression of these miRNA clusters in all four AIDS-NHL subtypes. Finally, we also show that select miRNAs from
these clusters (miR-17, miR-106a, and miR-106b) inhibited p21 in AIDS-BL and DLBCL cases, thus providing a mechanistic
role for these miRNAs in AIDS-NHL pathogenesis.

Conclusion: Dysregulation of miR-17-92 paralog clusters is a common feature of AIDS-associated NHLs.

Citation: Thapa DR, Li X, Jamieson BD, Martı́nez-Maza O (2011) Overexpression of MicroRNAs from the miR-17-92 Paralog Clusters in AIDS-Related Non-Hodgkin’s
Lymphomas. PLoS ONE 6(6): e20781. doi:10.1371/journal.pone.0020781

Editor: Alma Zernecke, Universität Würzburg, Germany

Received March 7, 2011; Accepted May 9, 2011; Published June 16, 2011

Copyright: � 2011 Thapa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: DRT received fellowship support from the California HIV Research Program (CHRP) (D08-LA-311). These studies were supported by grants from the
National Institutes of Health (R01-CA57152, and pilot project supplemental funds from the NCI to U01-AI35040, P30-AI28697 and P30-CA016042). Lymphoma
specimens were provided by the AIDS and Cancer Specimen Resource (ACSR), which is supported by the NIH (NCI U01-CA096230). UCLA AIDS Institute Center for
AIDS Research (CFAR) core facilities were used in this study and were supported by an NIH grant (P30-AI28697). This work was carried out in the facilities of the
UCLA AIDS Institute, which were supported, in part, by funds from the James B. Pendleton Charitable Trust and the McCarthy Family Foundation. No additional
external funding was received for this study. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: omartinez@mednet.ucla.edu

Introduction

The risk for developing non-Hodgkin lymphoma (NHL) is

greatly increased in those persons who are living with HIV

infection. In fact, NHL in the setting of HIV infection, is an AIDS

defining condition. AIDS-related NHL comprise a heterogenous

group of B cell lymphomas that includes Burkitt’s lymphoma (BL),

diffuse large B-cell lymphoma (DLBCL), primary central nervous

system lymphoma (PCNSL), primary effusion lymphoma (PEL)

and plasmablastic lymphomas (PBL) [1]. In the post-HAART era

there has been a dramatic reduction in the incidence of PCNSL,

however, only a modest decrease has been reported for other NHL

subtypes [2,3]. Various factors are believed to contribute to the

pathogenesis of AIDS-NHL, including immune deficiency,

chronic B cell stimulation, cytokine dysregulation, genetic lesions

involving oncogenes or tumor suppressor genes, and the presence

of Epstein-Barr virus (EBV) and/or Kaposi’s sarcoma-associated

herpesvirus/human herpesvirus-8 (KSHV/HHV-8) [4].

microRNAs (miRNAs) are a class of endogenous small non-

coding RNAs (,21–23 nt) that bind to the 39 untranslated region

(UTR) of mRNAs and mediate cleavage or cause translational

inhibition [5]. miRNAs are conserved and expressed across diverse
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species including animals, plants, and viruses [6]. So far, 940

human miRNAs (Sanger miRBase v15) have been identified in

humans and they regulate critical cellular processes including

proliferation, differentiation, metabolism, cell death/apoptosis and

tumorigenesis (reviewed in [7]). miRNAs can also act as tumor

suppressors or oncogenes and have been shown to be deregulated

in almost every tumor type studied. Furthermore, miRNA

profiling has revealed tumor specific signatures with diagnostic,

prognostic, and therapeutic implications [7].

It is becoming increasingly clear that miRNAs play a role in B

cell tumorigenesis. miR-16-1/miR-15a cluster located at 13q14, is

frequently deleted or downregulated in chronic lymphocytic

leukemia (CLL), leading to upregulation of its target protein

Bcl2 [8]. Loss of miR-16-1 binding sites due to translocation of

CCND1 (cyclin D1) and truncation of its 39UTR contributes to its

overexpression in mantle cell lymphomas (MCL) [9]. Additionally,

miR-155, encoded by exon 3 of the non-coding BIC (B cell

integration cluster) transcript [10], is upregulated in Hodgkin’s

lymphoma [11,12], primary mediastinal B cell lymphomas [11],

and DLBCL [11,13], but not in BL [14]. Accordingly, transgenic

overexpression of miR-155 in mouse model leads to development

of pre-B cell leukemia and ultimately high grade lymphomas [15].

Even a B cell tropic oncogenic herpesvirus, EBV, has been shown

to upregulate miR-155 [16], whereas HHV-8 encodes miR-K12-

11, which is an ortholog of human miR-155 [17,18].

Several studies have suggested an oncogenic role for the miR-

17-92 cluster (which encodes seven miRNAs: miR-17-5p, miR-17-

3p, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92-1) in B

cell lymphomagenesis. Chromosomal amplification at 13q31-q32

leads to overexpression of the miR-17-92 cluster encoded by the

Chromosome 13 open reading frame 25 (C13orf25) gene in several B cell

lymphomas, including DLBCL [19–21], follicular lymphoma

[21,22], mantle cell lymphoma [23], and primary cutaneous B-

cell lymphomas [24]. Consistent with its proposed oncogenic role,

enforced expression of the miR-17-19b polycistron greatly

accelerated lymphoma onset in mouse model of lymphoma driven

by c-myc expression [21]. miR-17-92 is also overexpressed in MLL

(mixed lineage leukemia)-rearranged acute myeloid leukemia

(AML) and acute lymphoblastic leukemia (ALL) [25], and in

CD34+ chronic myeloid leukemia (CML) [26]. Overexpression of

the miR-17-92 cluster has been shown to enhance proliferation in

CML lines [26], BL and DLBCL lines [27], and to play a role in a

mouse model of MLL-leukemia [28], by targeting the cell cycle

inhibitor p21. In the c-myc induced B-cell lymphoma mouse model,

miR-19a and miR-19b were shown to be largely sufficient for the

oncogenic property of miR-17-92 cluster, operating by targeting

the tumor suppressor PTEN [29]. Finally, miR-17-92 cluster was

also shown to target the proapoptotic protein Bim, in a mouse

model, with overexpression [30] or deletion of the cluster [31].

Even though HIV does not directly infect B cells, HIV

infection is associated with a marked increase in risk for NHL

[32]. In contrast to NHLs that develop in immunocompetent

hosts, AIDS-NHLs typically exhibit a more aggressive clinical

phenotype with a predilection for extranodal sites [1]. The role of

miRNAs in B cell lymphomas in the setting of HIV/AIDS and

immunodeficiency is not well understood. Here we asked if

miRNA overexpression from the miR-17-92 cluster, as well as its

two other paralogs (miR-106a-363, and miR-106b-25), is also a

common feature of B cell lymphomas in the setting of HIV

infection and AIDS. Using quantitative real-time PCR (q-PCR),

we assessed the expression of miRNAs from these three paralog

clusters in 24 cases of AIDS-NHLs representing four tumor types:

BL (n = 6), DLBCL (n = 8), PCNSL (n = 5), and PEL (n = 5). Also,

in order to establish a differentiation specific miRNA profile, we

compared the miRNA profile of three tonsillar B cell subsets:

naı̈ve, germinal center (GC), and memory. Our results demon-

strate that miRNAs from the miR-17-92 paralog clusters are

selectively upregulated by B cells during the GC stage of

differentiation and are also significantly overexpressed in all of

the AIDS-NHL types we examined. Additionally, we show that

miR-17, miR-106a, and miR-106b inhibit p21 expression in

AIDS-BL and DLBCL, thus supporting an oncogenic role for

these miRNAs in AIDS-NHL pathogenesis.

Materials and Methods

Ethics statement
An application for the use of all anonymized patient samples,

including tonsils, peripheral blood, and archived tissues utilized in

this study was submitted to the UCLA Institutional Review Board

(IRB), which concluded that these activities did not involve human

subjects, and therefore did not require IRB review or certification,

or exemption from IRB review. Tonsil tissue specimens (excess

surgical pathology materials) were obtained from the Translational

Pathology Core Laboratory (TPCL) of the University of California

Los Angeles (UCLA) Medical Center. Written consent was not

obtained from those subjects from whom the tonsils specimens

were obtained. The TPCL has approval from the UCLA IRB

confirming that patient consent is not needed when the human

tissue samples are provided to investigators in a completely

anonymized fashion. Peripheral blood mononuclear cells (PBMC)

from healthy donors were provided by the Virology Core of the

UCLA AIDS Institute, which obtained these discarded specimens

from the UCLA Blood and Platelet center. These PBMC were

obtained with written informed consent, and the Virology Core

has IRB approval for obtaining and distributing these specimens.

The AIDS & Cancer Specimen Resource (ACSR), which provided

primary AIDS-NHL samples, obtained written informed consent

from all participants and have approved IRB protocols for this

study at each collecting sites.

Cell lines, tissues, and clinical specimens
The AIDS-Burkitt’s cell line (2F7, ATCC CRL-10237) and a

DLBCL line (Toledo, ATCC CRL-2631) were cultured in RPMI

1640 (Cellgro, Manassas, VA) supplemented with 10% fetal calf

serum (Atlanta Biologicals, Lawrenceville, GA), 1% L-glutamine

(Cellgro, VA), and 1% penicillin/streptomycin (Cellgro, VA).

293T cells (ATCC CRL-11268) were cultured similarly, but in

DMEM (Invitrogen, Carlsbad, CA). All three cell lines used in

this study, 2F7, Toledo, and 293T were obtained from the ATCC

(www.atcc.org). PBMC and tonsil tissue specimens were provided

without any indirect or direct patient identifiers and were

completely anonymized. Twenty-four primary B cell tumors

from HIV infected individuals were obtained from the AIDS &

Cancer Specimen Resource (ACSR) repository (Table S1). Snap

frozen specimens were obtained for six Burkitt’s lymphomas,

eight DLBCL, and two PEL. 3610 mM sections from FFPE

blocks were obtained for one DLBCL, five CNS and three PEL

tumors.

Isolation of tonsillar B cell subsets
Tonsils, obtained from four different donors, were minced and

the mononuclear cell population was isolated from the buffy layer

following centrifugation in Ficoll-paque (GE Healthcare, Uppsala,

Sweden). B cells were isolated from this population using CD19+
immunomagnetic dynabeads (Invitrogen, Carlsbad, CA). The

CD19+ immunomagnetic beads were removed using CD19

DETACHaBEAD (Invitrogen, Carlsbad, CA). These CD19+ cells
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were then stained with CD38-PE (BD Pharmingen, San Jose, CA)

and IgD-FITC (BD Pharmingen, San Jose, CA) antibodies.

Following staining, the cells were separated into naı̈ve (IgD+,

CD382), germinal center (IgD2, CD38+), and memory (IgD2,

CD382) populations using the method described by Pascual V

et al. [33]. Fluorescence-activated cell sorting (FACS) was

performed using FACSAriaII high-speed cell sorter (Becton

Dickinson) housed at the UCLA Jonsson Comprehensive Cancer

Center (JCCC) and Center for AIDS Research Flow Cytometry

Core Facility.

Total RNA isolation
Total RNA from tonsillar B cell subsets, and cell lines were

extracted using mirVana miRNA isolation kit (Ambion, Austin,

TX); from snap-frozen tumor specimen using mirVana PARIS kit

(Ambion, Austin, TX); and from FFPE samples using RecoverAll

total nucleic acid isolation kit (Ambion, Austin, TX). All extraction

was done following the manufacturer’s suggested protocol.

MicroRNA expression profiling
Cellular and viral miRNAs were profiled at the UCLA Clinical

Microarray Core facility using miRCURYTM LNA microRNA

array v.11.0 (Exiqon, Vedbaek, Denmark). Briefly, up to 0.5 mg

total RNA was Hy3 labeled and hybridized overnight to the

microRNA array. The following day, the array slides were washed

and scanned using GenePix personal 4100A scanner (Axon

Instruments, Union City, CA). After data quality evaluation and

filtration to remove miRNAs with signals below baseline (mean of

negative control+3 standard deviation), the signal was normalized

using a factor derived from the mean of the signal intensity of

several house-keeping small RNAs (U6, snRNAs, snoRNAs and

5SRNAs). This normalized data was then log2-transformed and

analyzed using the MultiExperiment Viewer Software v.4 (http://

mev.tm4.org) [34]. miRNA expression was ranked by standard

deviation across samples and only the top 50% of variably

expressed miRNAs were selected for further analysis. Unsuper-

vised hierarchical clustering was done using Euclidean distance

and average linkage clustering. This microarray data is available

through the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo) using accession number GSE27504.

MicroRNA target prediction
Predicted gene targets of miRNAs were obtained from the

TargetScan [35] website: http://www.targetscan.org.

Real-time quantitative PCR
Mature miRNAs miR-17, miR-18a, miR-19a, miR-106a, and

miR-106b were first converted to cDNAs using TaqMan

microRNA RT kit and microRNA specific primers (Applied

Biosystems, Foster City, CA) followed by quantitative PCR using

TaqMan microRNA Assay (Applied Biosystems, Foster City, CA).

Sequences for all miRNAs that are targeted by these assays can be

found at: http://www.appliedbiosystems.com/. miRNA levels

were normalized to the expression of small nucleolar RNA,

RNU48. Relative mRNA levels of p21 were quantified using the

one step TaqMan RNA to CT reagent (Applied Biosystems, Foster

City, CA) in combination with gene specific primers/probe from

TaqMan gene expression assay (Applied Biosystems, Foster City,

CA). All mRNA expression values were normalized to b-actin

levels. CT values were obtained using ABI 7300 Real-Time

machine (Applied Biosystems, Foster City, CA). The relative

amount of miRNA (or mRNA) was calculated as 22dCT (where

dCT = CT gene(or miRNA)2CT endogenous control) and expressed as a

% of the endogenous control. The efficiency of PCR was

calculated from the slope of the standard curve and was within

the range of 90–110%.

Cell transfection and proliferation assay
AIDS-BL line 2F7 and DLBCL line Toledo were transfected

using Amaxa nucleofector reagent V (Lonza, Switzerland) using a

nucleofector device (Lonza, Switzerland). Briefly, 56106 cells were

resuspended in 100 uL of reagent V with synthetic miRNA

precursors or anti-miRNAs (Ambion, Austin, TX) at a concen-

tration of 200 nM. The cells were then electroporated using pre-

set protocol O-006. Transfected cells were cultured in T25 flasks

and cell proliferation was assessed by using XTT Cell Proliferation

Kit II (Roche, Mannheim, Germany). Briefly, 100 mL aliquots of

cell culture were incubated for 4 hours with a 50:1 mixture of

XTT labeling reagent:electron-coupling reagent. Metabolization

of XTT to formazan salt by viable cells was measured as

absorbance value at 480 nm with 650 nm being the reference.

Western blots
Cells were washed with 16 PBS and resuspended in RIPA

buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40,

0.5% sodium deoxycholate, 1 mM EDTA, 0.1% SDS) supple-

mented with 16Halt protease inhibitor cocktail (Pierce, Rockford,

IL) and 20 mM MG-132 (VWR, West Chester, PA). The cells were

iced for 10 minutes, sonicated briefly, vortexed and centrifuged.

The supernatant was collected and the protein quantified using

BCA assay (Pierce, Rockford, IL). The cell lysates were run on 4–

20% Tris-HCL ready gels (Biorad, Hercules, CA), transferred for

1.5 hrs on to Immobolin-Psq membrane (Millipore, Billerica, MA)

and blocked using 5% non-fat dry milk before incubating

overnight in primary antibodies. Following washing, HRP

conjugated secondary antibodies were added for 1 hour and the

signal detected using Supersignal West Pico substrate (Pierce,

Rockford, IL). The following antibodies were used at the

concentration recommended by the manufacturers: p21

(DCS60), Rb (4H1), p53 (1C12), Bcl2 (#2872), CDK4

(DCS156), CDK6 (DCS83), and Bim (Cell Signaling Technology,

Boston, MA); p53 (DO-7) (Dako, Carpinteria, CA) and b-actin

(AC-15) from Sigma (St Louis, MO). Kodak 1D 3.6 Scientific

Imaging Software was used to quantify protein band intensity. For

each gene the normalized expression was calculated as: gene

signal/b-actin signal where signal = mean pixel intensity6area of

band.

39UTR cloning and luciferase assays
The 39UTR of CDKN1A was obtained by PCR of its cDNA

clone (OriGene, Rockville, MD). Spe I and Mlu I restriction sites

was introduced at its ends and then cloned into pMIR-REPORT

vector (Ambion, Austin, TX) downstream of firefly luciferase.

Additionally, to disrupt the miRNA:39UTR interaction, two base

pairs in the middle of the miRNA recognition seed sequence were

mutated using the QuickChange II XL site-directed mutagenesis

kit (Stratagene, La Jolla, CA). All inserts and mutations were

verified by sequencing.

The following primers were used (restriction sites are italicized,

mutations are in bold): CDKN1A 39UTR Fw GCTGACTAGT-

CACAGGAAGCCTGCAGTCCT, Rv CGACACGCGTGAG-

CACCTGCTGTATATTCAGC; CDKN1A Fw (CT to GA

mutation, site #1, nucleotide 468–474).

TTTGAGAAGTAAACAGATGGCAGATTGAAGGGGCC-

TCACCGAGTG and reverse compliment; CDKN1A Fw (CT to

GA mutation in site#2, nucleotide1148–1154).
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CATCCCTCCCCAGTTCATTGCAGATTGATTAGCAG-

CGGAACAAGG and reverse compliment.

Briefly, 293T cells were seeded at a density of 50,000 cells/well

in 24 well plates a day before transfection in antibiotic-free media.

20 ng of the plasmids with the 39UTR of the gene of interest

cloned into the pMIR-REPORT were co-transfected with 10 ng

of renilla luciferase expressing vector pRL-SV40 (Promega,

Madison, WI) and 100 nM precursor/antimiR miRNA oligos

(Ambion, Foster City, CA) using lipofectamine-2000 reagent

(Invitrogen, Carlsbad, CA). 24 hours post transfection, cells were

washed with PBS and the amount of firefly and renilla luciferase

was quantified using dual-luciferase reporter assay system

(Promega, Madison, WI) using a BD monolight 2010 instrument

(BD, New Jersey). All samples were assayed in triplicates and

independently repeated three times.

Statistical analysis
Comparison between groups was done by t-test or Mann-

Whitney U test using the GraphPad Prism 5 software. p,0.05 was

considered statistically significant. Error bars represent standard

deviation.

Results

miRNAs are differentially expressed in tonsillar B cell
subsets

Most cancers of mature B cells, including many AIDS-NHL, are

thought to arise from neoplastic transformation during the GC

transition. Hence, in order to establish a miRNA signature

associated with normal B cell differentiation and maturation we

first looked at the miRNA expression pattern of tonsillar B cell

subsets. Mature B cells isolated from tonsils were separated by flow

cytometry into three subsets: naı̈ve (IgD+, CD382), germinal

center (GC) (IgD2, CD38+), and memory (IgD2, CD382) B

cells. miRNA expression in these B cell subsets was profiled using

Exiqon’s miRCURYTM LNA microRNA microarray. Unsuper-

vised hierarchical clustering of miRNAs from these subsets

produced a heat map, which demonstrates that these B cell

subsets cluster distinctly from each other (Figure 1A). Out of the 48

miRNAs differentially regulated between the naı̈ve to GC

transition, 33 miRNAs were downregulated and 15 miRNAs were

distinctly upregulated. Several miRNAs including miR-30, miR-

150, miR-222, miR-223, and the let-7 family of miRNAs (let-7a,

let-7c, let-7e, let-7f, let-7g, and let-7i) were downregulated by the

naı̈ve B cell subset upon GC entry, and remained at baseline levels

even in the memory subsets. Among those 15 GC upregulated

miRNAs, eight miRNAs (miR-17, miR-18a, miR-18b, miR-19a,

miR-20a, miR-20b, miR106a, miR-106b) are members of the

miRNA paralog clusters miR-17-92, miR106a-363, and miR-

106b-25, located at three different chromosomal sites (Figure 1B).

Six miRNAs (miR-1280, miR-1826, miR-1285, miR-933, miR-

1264, miR-146b-5p) were also found to be specifically upregulated

in memory subsets. Overall, tonsillar B cell subsets show a

remarkable level of coregulation of miRNAs as groups in an

asymmetrical fashion, especially that of the miR-17-92 paralog

clusters (indicated by arrows in Figure 1A), which is GC subset

specific.

miRNAs from the miR-17-92 paralog clusters are
overexpressed in AIDS-NHLs

Our study of AIDS-NHL includes mature B cell lymphoma

types derived from GC or post-GC B cells. BL and DLBCL

display GC B cell markers. PCNSL are DLBCL with immuno-

blastic features and EBV LMP1 expression. Both PCNSL and

PEL display post-GC markers. Based on this information and our

data showing specific upregulation of the miR-17-92 paralog

clusters in GC subsets, we used quantitative realtime PCR (q-

PCR) to assess the level of several miRNAs encoded by this cluster

in 24 primary AIDS-NHL samples (Table S1). The expression of

miRNAs was normalized to the expression of the small nucleolar

RNA, RNU48, and shown as relative miRNA levels (Table S2).

We assessed the expression of miR-17, miR-106a, miR-106b,

miR-18a, and miR-19a in AIDS-NHL subtypes, BL (n = 5),

DLBCL (n = 8), PCNSL (n = 5), PEL (n = 5) and compared it to

control CD19+ B cells isolated from PBMC and tonsils (Figure 2

A–E). In the control samples, as expected, there was a clear (but

nonsignificant) elevation of these miRNAs in tonsillar B cells

compared to peripheral B cells. However, all of these miRNAs

were significantly overexpressed in the lymphoma samples

(*p,0.05; **p,0.01) when compared to non-neoplastic B cell

controls (both, PBMC and tonsil derived), except for in three

instances: miR-106b in PEL (p = 0.085), miR-18a in PCNS

(p = 0.0651), and miR-19a in PEL (p = 0.0635) (Figure 2 A–E).

Nonetheless, even in the nonsignificant cases, the mean (data not

shown) and median of these miRNA expressions was clearly

higher than in the controls. Overall, our results show that miRNAs

from the miR-17-92 paralog clusters—miR-17, miR-106a, miR-

106b, miR-18a, and miR-19a are overexpressed in AIDS-NHLs.

miR-17 family members target p21/CDKN1A
Given the overexpression of miR-17-92 cluster miRNAs in

AIDS-NHL, we next focused on potential molecular targets for

these miRNAs. miRNAs target mRNAs with a specificity

primarily determined by Watson-Crick base-pairing of the

miRNA seed region (nucleotides 2 to 7/8) to the 39UTR of target

mRNAs. Hence, miRNAs sharing similar seed sequences are

grouped as families and they are predicted to have similar targets.

As such, we selected miR-17, miR-106a, and miR-106b which all

share the seed sequence AAAGUG, for further analysis.

TargetScan (http://www.targetscan.org) predicts 2 binding sites

for this family of miRNAs in the 39UTR of the key cell cycle

inhibitor p21 (Figure 3A). We cloned the 39UTR of p21 with, or

without, mutation in both seed region recognition sites down-

stream of the firefly luciferase gene. This construct was then co-

transfected into 293T cells with renilla luciferase (as transfection

control) and precursor miRNAs. For bona fide miRNA targets, it

is expected that miRNA:mRNA interaction will lead to suppres-

sion of firefly luciferase activity. miR-106a and miR-106b

significantly inhibited luciferase activity in unmodified p21

39UTR when compared to the mutant p21 39UTR (Figure 3B).

In order to shown that this miRNA:mRNA interaction also takes

place in a physiological milieu in B cells, we transfected antimiRs

to specifically block the endogenous miR-17, miR-106a, and miR-

106b in Toledo cells. Functionally blocking a miRNA should lead

to decreased binding of the miRNA to its target mRNA, and

Figure 1. miRNA profiling of tonsillar B cell subsets. (A) Unsupervised hierarchical clustering of miRNAs from naı̈ve (N) (IgD+, CD382),
germinal center (GC) (IgD2, CD38+), and memory (M) (IgD2, CD382) cells isolated from CD19+ tonsillar B cells. Arrows point to miRNAs that are
members of the miR-17-92 paralog clusters. Red denotes overexpression; green, downregulation; and black, median expression. (B) Schematic
representation of the three paralogous cluster showing genomic location and the relative position of individual miRNAs (figure modified from Tanzer
A et al. [61]).
doi:10.1371/journal.pone.0020781.g001

miR-17-92 Overexpression in AIDS-Related NHL

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e20781



miR-17-92 Overexpression in AIDS-Related NHL

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e20781



consequently, increased target protein expression. As expected,

blocking endogenous miR-106a and miR-106b activity in Toledo

resulted in a 1.4 and 1.6 fold increase in p21 protein levels

respectively (Figure 3C). This increase was also reflected at the

mRNA level with a 1.77 fold increase in p21 mRNA for both

antimiR-106a and antimiR-106b (Figure 3D). However, blocking

endogenous miR-17 did not increase p21 protein level (in fact, a

0.79 fold decrease was noted) (Figure 3C), despite a 1.37 fold

increase in p21 mRNA level (Figure 3D). This suggests that, while

miR-17 has some affinity for p21 mRNA binding, the overall p21

protein expression may be primarily dependent on the presence of

miR-106a and miR-106b, which presumably bind p21 mRNA

with a higher affinity.

Additionally, we also looked at the effect that blocking these

miRNAs have on the expression of other proteins that play a role

in cell survival and proliferation. Inhibition of all three of these

miRNAs had no effect on the levels of Bcl2, but led to increased

levels of Bim (isoform L), and decreased levels of CDK4 and

CDK6 (Figure 3C). Both Bcl2 and Bim regulate apoptosis, albeit

in an opposing manner. Bcl2 is a pro-survival molecule that

inhibits apoptosis while Bim is a proapoptotic molecule. CDK4

and CDK6 promote S phase entry and cell cycle progression by

partnering with cyclin D to phosphorylate the Rb protein. Overall,

these results demonstrate an oncogenic role for miR-17, miR-

106a, and miR-106b by targeting the cell cycle inhibitor p21 and

the proapoptotic Bim protein.

Given that these miRNAs target a cell cycle inhibitor, next we

studied its effect on cellular proliferation. We selected two cell

lines, 2F7 (AIDS-BL) with modest expression and Toledo

(DLBCL), with overexpression, of miR-17, miR-106a, and miR-

106b. Overexpression of synthetic precursors for all three miRNAs

increased cellular proliferation in 2F7 cells by 48 hrs post

transfection (Figure 3E). We also transfected synthetic antimiR-

NAs to functionally block these endogenous miRNAs in Toledo

cells. AntimiR-17 showed no effect in Toledo proliferation,

whereas proliferation was decreased with antimiR-106a and

antimiR-106b by up to 87% and 83% of control proliferation,

respectively (Figure 3F). Thus, miR-17, miR-106a, and miR-106b

accelerate cellular proliferation by targeting the cell cycle inhibitor

p21.

p21 is silenced post-transcriptionally in primary AIDS-
NHL tumors

Finally, we examined p21 protein (Figure 4A) and mRNA

(Figure 4B) expression in primary AIDS-BL and AIDS-DLBCL

cases. p21 mRNA levels in Figure 4B are shown as a percentage of

the housekeeping gene b-actin expression (set to 100). p21 protein

expression was not detected in any of the tumor samples, despite

p21 mRNA levels approaching up to 20% of b-actin expression.

We also looked at the expression of p53 in these tumors using the

anti-p53 antibody clone D0-7 which detects both wild-type and

the mutant p53 variant (Figure 4A). p53, in the setting of DNA

damage, induces p21 expression at the transcriptional level. p53

expression was detected in four of six BL and five of eight DLBCL

tumors (Figure 4A). However, inactivating mutations in p53 occurs

in up to 60% of AIDS-BL [36] and 40% of AIDS-DLBCL [37]

often leading to enhanced p53 protein stability and its accumu-

lation in tumors [38]. Therefore, it is likely that we are detecting

mutant p53, which is unable to act as a transcription factor, thus

having no effect on p21 transcription. Overall, due to the lack of

p21 protein detection we are unable to show an inverse correlation

between these miRNAs and p21 protein expression. However,

given the p21 mRNA expression in these tumors, it is clear that

miRNA-17 family members (including miR-17, miR-106a, miR-

106b) play a significant role in inhibiting p21 protein expression in

AIDS-NHLs.

Discussion

Recently, it has become increasingly clear that miRNAs play a

significant role in B cell tumorigenesis, especially those encoded by

the miR-17-92 polycistron. However, the role of miRNAs in NHL

in the setting of HIV/AIDS has only begun to be appreciated.

Previous studies have found downregulation of the tumor

suppressor miRNAs, miR-221, miR-222, and let-7 in PEL lines

[39,40], and targeting of the T-cell attracting chemokine CXCL-

11 by EBV miRNA BHRF1-3 in primary AIDS tumors [41]. In

this report, we used primary AIDS-NHL tumors and investigated

whether miRNAs from the miR-17-92 cluster and its paralogs

were also associated with AIDS-NHLs pathogenesis.

First, in order to establish a differentiation specific role for

miRNA in normal B cell maturation, we assessed the miRNA

profile of naı̈ve, GC, and memory B cells isolated from tonsils. We

and others [42–44] have shown that these B cell subsets exhibit a

distinct miRNA signature. Many of the miRNAs that are

dynamically regulated as the cells progress through the GC

reaction have been shown to target transcription factors and key

regulators of cell proliferation and apoptosis. miR-223, which is

downregulated during the naı̈ve to GC transition, targets the GC

expressed transcription factors LMO2 [42,43] and MYBL1 [43].

miR-150, downregulated in GC subsets, targets c-Myb and

survivin [44]. miR-30c and miR-30e are downregulated in GC

when its target, the GC specific Bcl6 is expressed [45]. And let-7a,

which is expressed only in the naı̈ve subset, targets PRDM1/

Blimp-1 [46], which is a key regulator of post GC differentiation

into plasma cells. Finally, we show that miRNA members from the

miR-17-92 paralog clusters (miR-17, miR-18a, miR-18b, miR-

19a, miR-19b, miR-20a, miR-20b, miR-106a, and miR-106b) are

tightly controlled in normal B cells, with increased expression seen

only during naı̈ve to GC transition and immediate downregulation

upon GC exit (Figure 1A).

The oncogenic role for the miR-17-92 polycistron in B cell

NHL has been well established [19–23,30]. Gene duplication

events of the miR-17-92 cluster (chromosome 13) gave rise to its

paralogs, miR-106a-363 (chromosome X), and miR-106b-25

(chromosome 7) (Figure 1B). We find that miRNAs from all three

clusters, miR-17, miR-18a, miR-19a from miR-17-92 cluster;

miR-106a from miR-106a-363 cluster; and miR-106b from

miR106b-25 cluster, are overexpressed in various AIDS-NHLs

including, BL, DLBCL, PCNSL, and PEL types. miRNA

members from this paralog clusters have been shown to target

Figure 2. miRNAs from miR-17-92, miR-106a-363, and miR-106b-25 paralogous clusters are overexpressed in AIDS-NHLs. Taqman
q-PCR assessed relative levels of (A) miR-17, (B) miR-106a, (C) miR-106b, (D) miR-18a, and (E) miR-19a in AIDS related BL, DLBCL, CNS, PEL compared
to B cells from PBMC and tonsils. The expression of miRNAs was normalized to the expression of RNU48. Table S2 summarizes the Y-axis values used
in these plots. Horizontal line through sample cluster represents the median value for each group. The median of each tumor group was compared to
the combined median of the non-tumor group (PBMC and tonsil). P values were calculated using two-tailed Mann-Whitney U test (* signifies p,0.05
and ** signifies p,0.01). BL, Burkitt’s lymphoma; DLBCL, diffuse large B-cell lymphoma; CNS, primary central nervous system lymphoma; PEL, primary
effusion lymphoma.
doi:10.1371/journal.pone.0020781.g002
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genes involved in cell cycle/proliferation and apoptosis. miR-17-

5p and miR-20a target cyclin D1 [47]; miR-25 targets Bim [48]

and p57 [49]; miR-17 and miR-20 target E2F1 [50]; miR-19a

targets PTEN [51]; and miRNAs-17, miR-20, miR-106b, and

miR-93 target p21 [27,28,48,52]. Recently, p21 was also shown to

be targeted by the PEL associated herpesvirus HHV-8 miR-K1

[53]. p21 is a cyclin dependent kinase inhibitor that blocks G1 to S

cell cycle progression. Our results show that the miR-17 family

mediated suppression of p21 is also a common feature in AIDS-

NHL. It is appropriate that miRNAs specifically upregulated

during the GC stage target negative regulators of cell cycle

progression. Rapid proliferation is a hallmark of GC B cells and is

required for the generation of highly antigen specific plasma and

memory cells. We hypothesize that the inability of normal B cells

to turn off expression of miR-17-92 and its paralogs upon GC exit

may be a factor in the pathogenesis of these mature B cell cancers.

Several studies have looked at the transcriptional regulation of

the miR-17-92 cluster. c-Myc, the proto-oncogene activated in

most BL, has been shown to be a transcription factor for the miR-

17-92 polycistron [54]. c-Myc was also shown to have a

significantly higher transcriptional activity in DLBCL tumor

subsets overexpressing the miR-17-92 cluster miRNAs [55].

However, c-Myc is downregulated in centroblastic B cells in the

germinal center [56] arguing for a distinct mechanism of miR-17-

Figure 4. p21 protein and RNA expression in primary AIDS-NHL samples. (A) p21 Western blot analysis of primary AIDS- BL and AIDS-DLBCL
samples. The blot was stripped and sequentially probed for p53 (Ab clone DO-7) and b-actin. No p21 protein expression was detected. The positive
control is lysate from p21 cDNA transfected B cell line Ramos. (B) Taqman q-PCR of p21 mRNA levels in primary AIDS-NHL samples shown in A. In
each sample, p21 mRNA level is shown as a % of b-actin expression, which is set to 100.
doi:10.1371/journal.pone.0020781.g004

Figure 3. miR-17 family members target p21/CDKN1A. (A) Schematic of the 39UTR of p21 showing the two locations in the 39UTR targeted by
miR-17 family. Boxed region shows the miRNA seed sequence common to this family. Mutations made in the p21 39UTR construct that was cloned
into p-MIR-REPORT vector is also shown. (B) p21-39UTR firefly/renilla luciferase reporter activity in 293T cells cotransfected with precursor miRNAs.
premiR-106a (*, p = 0.03) and premiR-106b (**, p = 0.01) showed significant downregulation of luciferase activity when wt p21-UTR was compared to
p21-UTR mutant. Error bars represent the mean +/2 SD of three independent experiments. Relative luciferase = Firefly luciferase (39UTR)/Renilla
luciferase (transfection control). (C) Representative Western blot of Toledo cells 3 day post transfection with antimiRs-17, -106a, -106b. Numbers
represent fold change in p21 protein density (normalized to b-actin). antimiR-control transfected lane value was set to 1. The membrane was stripped
and reprobed sequentially for Bcl2, Bim, CDK 4/6, and b-actin. (D) Taqman q-PCR of p21 mRNA levels normalized to b-actin in Toledo cells transfected
as in C. Error bars represent mean +/2 SD of three independent experiments. (E, F) 2F7 and Toledo cells were transfected with precursors or antimiRs
(respectively) for miR-17, miR-106a, and miR-106b along with scrambled controls. XTT cell proliferation assay was done at 24 hr intervals post
transfection. Proliferation of cells were standardized to the proliferation of control pre/antimiR transfected cells at 48 hrs, which was set to 100%.
Error bars represent the mean +/2 SD of three independent experiments. * signifies p,0.05 for miR-106b when compared to control proliferation.
doi:10.1371/journal.pone.0020781.g003
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92 transcriptional control in normal GC B cells compared to

tumors. E2F1 and E2F3, belonging to the E2F family of

transcription factors required for cell cycle progression, have also

been shown to activate miR-17-92 transcription [57]. And under

hypoxic conditions, p53 directly competes with the TATA-binding

protein (TBP) transcription factor binding to the promoter of miR-

17-92, thus inhibiting its expression [58]. The precise mechanism

by which these and other factors control transcription of miR-17-

92 and its paralogs, leading to its dysregulation in various

lymphoma subtypes, remain to be answered.

Finally, in addition to elucidating molecular roles for miRNAs

in tumor pathogenesis, the possible utility of miRNAs as diagnostic

and prognostic biomarkers cannot be overlooked, especially as

these miRNAs can be detected in body fluids, which can be

obtained by less invasive means than are required to obtain tumor

biopsy specimens. Lawrie et al. reported the expression of miR-

155, miR-210, and miR-21 in serum from DLBCL patients and

found association of high miR-21 expression with relapse-free

survival [59]. More recently, miR-21, and two members of the

miR-17-92 cluster, miR-19 and miR-92a, were found to be

elevated in the cerebrospinal fluid (CSF) of PCNSL patients [60].

This is in agreement with our results, which show overexpression

of miR-17-92 paralog clusters in PCNSL tumors.

In conclusion, we show that miRNAs from the miR-17-92

cluster and its paralogs are overexpressed in various AIDS-NHL

subtypes and provide evidence that these miRNAs contribute to

the pathogenesis of these tumors by suppression of p21. Future

studies looking at tumor deregulated miRNAs and its presence in

relatively accessible body fluids should enhance the early

detection, differential diagnosis, and prognosis of various B

lymphoma subtypes.
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