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Abstract

The Aedes aegypti densovirus (AeDNV) has potential as a delivery vector for foreign nucleic acids into mosquito cells. In this
study, we investigated the ability of plasmids containing recombinant viral transducing genome to induce RNA interference
(RNAi) effects in C6/C36 cells. We then evaluated the efficiency of a recombinant AeDNV vector to induce RNAi in Aedes
albopictus larvae. We found that the expression of V-ATPase was inhibited by up to 90% at 96 h post-transfection in
transfected C6/C36 cells. In addition, the bioinsecticidal activities of various RNAi-expressing AeDNV vectors used to infect
Ae. albopictus larvae were also tested. We found that when Ae. albopictus larvae were infected with recombinant AeDNV,
expression of V-ATPase was downregulated by nearly 70% compared to controls. Furthermore, the median survival time
bioassays demonstrated that recombinant AeDNV caused more serious pathogenic effects than the wild type virus. This is
the first report showing that recombinant virus plasmid and corresponding recombinant AeDNV can be used as an effective
in vitro and in vivo RNAi delivery system, respectively.
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Introduction

Mosquito-borne diseases are a major international public health

problem that continue to pose a public health threat [1]. Chemical

insecticides, which have traditionally been used in response to

epidemics, are a major part of sustainable, integrated mosquito

management for the prevention of mosquito-borne diseases. However,

such strategies have proven to be relatively ineffective or undesirable

as a result of to the development of resistance within mosquito

populations and the negative environmental impacts [2,3]. In light of

these problems, the search for new alternative approaches that could

be applied to combat the spread of these diseases continues.

The technique of RNA interference (RNAi) is a powerful means

of suppressing the expression of specific genes and, as such,

provides a powerful new tool for the investigation of gene function

[4]. In fact, RNAi offers a great deal of potential for successful

mitigation of various crop pest insects [5–7]. Although the dsRNA-

mediated silencing of essential genes in insects can induce

antifeedant effects and, ultimately, morbidity, the efficient uptake

of dsRNA by oral or topical applications is required [5].

Unfortunately, in the case of mosquitoes, in vivo RNAi delivery

has thus far relied on microinjection [8]. Microinjection is highly

technically demanding and time-consuming, and is therefore not

suitable for high-throughput genetic analyses or practical applica-

tions, including mosquito control.

Mosquito densoviruses (MDV; family Parvoviridae, genus Brevi-

densovirus) are non-enveloped, single-stranded DNA viruses, which

are relatively stable in the environment and have the potential to

spread and persist naturally in mosquito populations. MDVs can

cause systemic infection in mosquitoes and replicate in many

different tissues, including the midgut, malpighian tubules,

fatbody, musculature, neurons, and salivary glands [9]. Plasmid-

based, infectious clones of MDV can be constructed by inserting

the intact genome into a plasmid. Once these clones are

transfected into mosquito cells, the viral genome can be released

from the plasmid vector and infectious viral particles are

produced. Using plasmid vectors, the viral genome can easily be

manipulated and recombinant viruses can be generated in vitro by

transfecting cultured mosquito cells with helper virus [10,11].

These characteristics make MDV a valuable transducing agent in

mosquito biology.

In the present study, we developed a recombinant Aedes aegypti

Densovirus (AeDNV) siRNA expression system that utilized

artificial introns and a putative mosquito U6 snRNA promoter-

driven siRNA expression cassette. The endogenous V-ATPase gene

of the Asian dengue fever mosquito, Ae. Albopictus, was targeted for

silencing both in vitro and in vivo, and bioassays were carried out in

vivo to measure the effect of recombinant viruses on larval survival.

Materials and Methods

siRNAs
Five candidate siRNAs against the gene encoding the Ae.

albopictus V-ATPase subunit A were generated using siRNA design
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tools (Dharmacon, USA) and analyzed by a BLAST search to

ensure that they did not have significant sequence homology with

other genes. The most effective two siRNAs, as confirmed by the

RT-PCR analysis of transfected C6/36 cells, were selected to

construct the siRNA expression vector. The two siRNAs (siRNA1

and siRNA2) corresponded to the coding regions at 1,418–1,436

and 309–327 nucleotides, respectively, of the V-ATPase subunit A

mRNA (Accession no. AY864912). The control RNA (scRNA,

CGACGACTATCGTGCAATT) consisted of a unique sequence

that did not match any sequence in the genome of interest.

Plasmid construction
The DH5a strain of Escherichia coli was used for all cloning

procedures and plasmid preparation. Functional features of the

plasmids constructed included the following (Figure 1): pUCA is

the infectious clone containing the AeDNV genome (3,981 nt) in

pUC19; non-structural 1 (NS1) and structural protein (VP) genes

were transcribed from the P7 and P61 promoters in the genome,

respectively, as described previously [12]. p7NS1-GFP expresses

an NS1-green fluorescent protein (GFP) fusion protein from the p7

promoter. The construction of p7NS1-GFP was described in detail

elsewhere [11].

p7NS1-Intron-GFP was generated by inserting artificial introns

into the AgeI sites of pNS1-GFP. An artificial intron sequence was

obtained from the sequence of pCI-neo (Promega, Madison, WI,

USA) and created by artificial synthesis, and MluI and NheI sites

were introduced between the 59-donor site and the branchpoint

site to facilitate subsequent insertion of the RNAi expression

cassette.

pAnSI-1, pAnSI-2, pAeSI-1 and pAeSI-2 were constructed using

U6snRNA polymerase III (Pol III) promoters from Anopheles

gambiae (AnGam-2 Long promoter) and Aedes aegypti (Aedes-1

promoter) to express shRNAs as described in detail previously

[13]. The shRNA expression cassette was generated by artificial

synthesis and was composed of a promoter, the sense V-ATPase

target sequence, the 7-bp hairpin loop sequence (TCAAGAG) the

antisense target sequence, and a poly(T) tract to terminate Pol III

transcription. To prepare the shRNA expression vectors pAnSI-2,

pAnSI-1 and control vector pAnCSI, the An. gambiae Pol III

promoter was used to drive siRNA-1, siRNA-2, or scRNA

expression and these were subcloned into the MluI and NheI sites

of p7NS1-Intron-GFP. pAeSI-2, pAeSI-1, and control plasmid

pAeCSI were constructed using the same approach but using the

Pol III promoter of Ae. aegypti instead. All of the constructs were

confirmed by sequencing (data not shown). The plasmids used in

this study are depicted in Figure 1 and sequences of all the shRNA

expression cassettes are shown in Text S1.

Mosquito cell maintenance and transfection
Ae. albopictus C6/36 cells (ATCC CRL-1660) were grown at

28uC in Roswell Park Memorial Institute (RPMI) 1640 medium

(Gibco BRL, USA) supplemented with 10% heat-inactivated fetal

bovine serum (FBS; Gibco BRL, USA). One day before

transfection, 26105 cells per well were plated in six-well plates.

The transfection of different RNAi plasmids was performed using

Lipofectamine 2,000 (Invitrogen, USA), according to the manu-

facturer’s protocol. Supercoiled plasmids used for transfection

were prepared using an OMEGA endo-free Plasmid Purification

Kit (Omega, USA). The transfected cells were examined at a

wavelength of 490 nm to detect GFP expression.

Recombinant virus production
Recombinant viruses for RNAi (rAepAnSI-1, rAepAnSI-2,

rAepAeSI-1, and rAepAeSI-2) and control (rAepAnCSI and

rAepAeCSI) treatments were generated along with the infectious

clone pUCA by cotransfecting the corresponding infectious clones,

pAnSI-1, pAnSI-2, pAeSI-1, pAeSI-2, pAnCSI, or pAeCSI, with

helper plasmid pUCA into C6/36 cells according to the

Figure 1. Schematic organization of recombinant AeDNV plasmids. The p7 and p61 viral promoters drive the expression of the NS and VP
genes, respectively. In p7NS1-GFP, GFP is fused to the NS1 gene. In p7NS1-Intron-GFP, the chemical intron sequence is inserted in the AgeI site of the
NS1-GFP fusion. RNAi plasmids pAnSI-1, pAnSI-2, pAeSI-1 and pAeSI-2, contain the artificial shRNA expression cassette, which was cloned into the
MluI and NheI sites of the intron.
doi:10.1371/journal.pone.0021329.g001

Recombinant Densovirus-Mediated RNA Interference

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21329



manufacturer’s protocol (the cotransfection concentration ratio

was 2:1). After a 5 day incubation, MDV-infected cells were

harvested using cell scrapers, lysed by freezing and thawing, and

then centrifuged for 10 min at 3,750 rpm. The supernatants were

kept as recombinant virus and wild-type AeDNV mixed stocks.

Mosquito maintenance and transduction
The Ae. albopictus strain used in this work was obtained from the

Center for Disease Control and Prevention of Guangdong

Province. Mosquitoes were maintained at 27uC with 70–80%

relative humidity and a 16 h: 8 h photoperiod. Larvae were fed on

yeast powder, while adults were maintained on a 10% sugar

solution.

To minimize the effect of salt concentration on larval

susceptibility to infection [11,14], 1,000 second-instar Ae. albopictus

larvae were exposed to recombinant virus rAepAnSI-1, rAepAnSI-

2, rAepAeSI-1, or rAepAeSI-2 mixed stocks by introducing them

into the beaker that contained 100 ml deionized water and 5 ml of

the mixed virus stocks, while rAepAnCSI, or rAepAeCSI mixed

stocks were used as negative controls. The blank control group,

which received no virus, was exposed to C6/36 cell culture

medium in identical conditions to the treatment groups.

After incubation for 24 h at 28uC, the larvae were transferred

back to the pans and fed regularly. Once the fluorescent larvae

were detected postexposure, they were separated into an

individual test plastic cup to facilitate the following continuous

observation for detection of portal of entry and tissue tropisms of

recombinant virus in Ae. albopictus larvae. The same transduction

was repeated, but to test of the knockdown of V-ATPase in Ae.

albopictus larvae 3 days post-transduction, the fluorescent larvae

were detected and separated into three groups according to the

location of GFP expression: in the anal papillae infection group

(API), GFP expression was restricted to the anal papillae of the

larvae; in the systemic infection group (SI), GFP expression was

distributed throughout the body; and in the systemic RNAi test

group (SRT), GFP expression was restricted to the anal papillae,

which were removed from the body, while the rest of the body was

retained for RNAi testing. Each experiment was performed in

triplicate. Fluorescent signals of the fusion protein were observed

under an inverted fluorescence microscope, and photographs were

made using a Nikon ACT-2U digital camera. Data were processed

and superimposed using Adobe Photoshop 7.0 software (Adobe

Systems Inc., San Jose, CA).

RNA extraction, reverse transcription (RT) and
quantitative real-time PCR

Total RNA was extracted from the different groups of GFP-

expressing mosquito larvae and cells at 12 h, 24 h, 48 h, 72 h, and

96 h post transfection using the Total RNA Kit I (Omega, USA).

Any residual DNA was removed with RNase-free DNase

treatment. First-strand cDNA was synthesized using an oligo

(dT) 18 primer and the M-MLV RTase cDNA Synthesis Kit

(Takara, Japan). V-ATPase mRNA levels were compared with

those of beta-actin (Accession no. DQ657949). Gene-specific

primers were designed using Beacon Designer software 7.5

(Premier Biosoft International, Palo Alto, CA, USA). Primers

specific for the V-ATPase gene were: V-ATPase-F, 59-ACGTATC-

TATGATGGCTGATTCGACCTCTC-39; and V-ATPase-R,

59- ACCGACGATGGACACCGAACCTTC-39, generating a

product of 196 bp. Primers used for beta-actin were: b-actin-F, 59-

CCTGGGTATGGAAGCCTGCGGTATC-39; and b-actin-R, 59-

GGCAATGATCTTGATCTTCATGGTGGATGG-39, with a

product of 195 bp.

Reactions were performed using a RealMasterMix (SYBR

Green) (Tiangen, China) and run on MX3005P Real Time PCR

System (Stratagene, La Jolla, CA, USA) according to the

instructions of the manufacturer. Each reaction contained 10 ml

of enzyme mix, 0.15 mM of each primer and 2 ml of DNA solution

along with buffer in 20 ml of reaction volume. The PCR program

used was: denaturation at 95uC for 1 min, followed by 40 cycles of

95uC for 15 s, 53uC for 30 s, and 68uC for 30 s. Each sample was

assessed in triplicate. The real-time PCR results were analyzed

using the 2-DDCT method as described [15].

Western blots
Cells were harvested at the indicated time points after viral

infection and total protein was extracted from the cells and

mosquito groups using a Total Protein Extraction Kit (Keygen,

China) resolved on a 12% sodium dodecyl sulfate (SDS)–

polyacrylamide gel and transferred onto a polyvinylidene fluoride

(PVDF) membrane. Rabbit anti-V-ATPase polyclonal IgG and

mouse monoclonal anti-b-actin antibodies (GeneScript, USA)

were used as the primary antibodies (1:600 dilution) and

horseradish peroxidase (HRP)-conjugated goat anti-rabbit and

goat anti-mouse IgG (Sigma, USA) were used as the secondary

antibodies, respectively.

Effect of V-ATPase knock down on the lifespan of Ae.
albopictus larvae

The copy numbers of recombinant virus and AeDNV in the

three mixed viral stocks were confirmed by SYBR green-based

real-time PCR, as previously described [16]; however, the primer

sequences used for recombinant AeDNV were changed (sense, 59-

AGCAGAATCATGGCAGACAG-39; and antisense, 59-TA-

CACCGGTAGCGTAGTTGC-39) and the copy number of

recombinant virus and AeDNV were adjusted to the same ratio

(recombinant virus copy number: AeDNV copy number = 1:5) by

adding different volumes of pure AeDNV.

Newly hatched first-instar larvae (1,200 total) were randomly

divided into six groups: four recombinant virus experimental

groups from I-IV (treated with recombinant mixed stocks

rAepAnSI-1/AeDNV, rAepAnSI-2/AeDNV, rAepAeSI-1/

AeDNV, or rAepAeSI-2/AeDNV) a wild-type AeDNV-treated

group, and a control group. Larvae in all four treatment groups

were exposed to the same concentration of mixed recombinant

virus or wild type stocks to a total volume of 10 ml, and food was

withheld for 24 h. The control group, which received no virus, was

exposed to C6/36 cell culture medium in identical conditions to

the treatment groups. After 24 h, mosquito larvae were transferred

into dechlorinated tap water and fed regularly. Larval mortality

was scored every 12 h for 15 days.

The median survival time (LT50) was calculated from the time-

mortality curve of larvae that were infected by recombinant virus

and wt virus at a concentration of 1.061010 copies/ml.

Statistical analysis
Survival curves were formulated using the Kaplan-Meier test.

The log-rank test was used to analyze the differences between

survival curves. LT50 values were determined by probit analysis.

The LT50 values were compared between different treatments by a

one-way analysis of variance (ANOVA) followed by the Fisher’s

least significant difference test (LSD). P-values ,0.05 were

considered to be statistically significant. The SPSS computer

software version 17.0 (SPSS Inc., Chicago, IL) was used for data

analysis.

Recombinant Densovirus-Mediated RNA Interference
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Results

Generation of the Pol III-mediated intronic shRNA
expression vector

We inserted the Pol III promoter-driven shRNA expression

cassettes into a chimeric intron composed of the 59 donor site from

the first intron of the human beta-globin gene and the branch and 39

acceptor site from the intron of an immunoglobulin gene heavy

chain variable region [17]. This design takes advantage of the

natural process of pre-mRNA splicing, by which introns are

removed from pre-mRNA transcripts [18]. NS1 protein is

preserved in its entirety in the recombinant genome as the NS1-

GFP fusion protein, because of the multiple activities that this

densovirus replication initiator protein possesses. Moreover, GFP

also provides a robust marker for the recombinant vector-

transfected cells in vitro and in vivo. For the intronic shRNA

expression vector, if the artificial intron is not removed in

mosquito cells, the frame-shift mutation in the fused GFP marker

will preclude fluorescence. We detected GFP in all shRNA

expression vector transfected cells, confirming the function of the

artificial intron in mosquito cells (Figure 2).

Knockdown of V-ATPase mRNA and protein expression in
C6/36 cells

The direct visualization of green fluorescence allowed us to

detect recombinant plasmids that were expressed in mosquito cells.

The first fluorescent cells were observed as early as 4 h after

transfection, but maximum levels of expression were observed

about 48 h later. At 60 h post-transfection, the efficiency was

determined by counting GFP-positive cells and total cells from six

random fields for each condition. More than 96% transfected

cells were GFP-positive determined by Fluorescence inverted

microscopy.

To compare and validate the effect of the different RNAi

vectors and determine the time-response effect of silencing V-

ATPase, C6/36 cells were transfected with pAnSI-1, pAnSI-2,

pAeSI-1, or pAeSI-2, and the expression of V-ATPase was

detected by real-time PCR and western blotting at 12, 24, 48, 72,

and 96 h post-transfection. Real-time PCR analysis showed that

the silencing effects of pAnSI-1, pAnSI-2, pAeSI-1, and pAeSI-2

on C6/36 cells varied. Of these constructs, An. gambiae Pol III

promoter-driven RNAi vectors pAnSI-1 and pAnSI-2 exhibited

significant silencing effects at all time points. The inhibition ratio

of pAnSI-1 was 35.0366.35% (p,0.01) at 12 h post-transfection

and reached a peak at 24 h (63.85616.85%) (p,0.01). The levels

of inhibition declined between 48 h (56.4863.56%; p,0.01) and

96 h (18.2166.87%; p,0.01), respectively. For pAnSI-2, effective

inhibition was observed as early as 12 h (56.5164.75%; p,0.01)

and then increased to 74.0662.97% (p,0.01) at 48 h. This was

followed by a constant decline in mRNA expression at 72 h

(68.4968.07%; p,0.01) and 96 h (59.6264.62%; p,0.01) after

transfection. In contrast, no significant expression changes were

observed in the pAnCSI-control group (p . 0.5) (Figure 3A,

graph).

However, the Ae. aegypti Pol III promoter-driven RNAi vectors

pAeSI-1 and pAeSI-2 appeared to be more effective at silencing

genes than those driven by the An.gambiae Pol III promoter.

Analysis of cells transfected with pAeSI-1 indicated that V-ATPase

knockdown was evident at 12 h (41.02613.58%; p,0.01) and

peaked at 48 h (82.0963.42%; p,0.01) post-transfection in these

cells. Cells transfected with pAeSI-2 exhibited sustained silencing

of V-ATPase expression. Maximum down-regulation of V-ATPase

by pAeSI-2 exceeded 90% at 96 h (98.13614.1%; p,0.01) post-

transfection (Figure 3B, graph).

Western blot data also indicated that both An. gambiae and Ae.

aegypti Pol III promoter-driven RNAi vectors effectively inhibited

Figure 2. Pol III-mediated intronic siRNA expression vector. Intronic shRNA is transcribed by the U6 promoter accompanied by a pre-mRNA
transcribed by the p7 promoter. After pre-mRNA splicing, the exons are ligated to form a mature mRNA. For NS1-GFP fusion protein synthesis, the
shRNA is further processed into mature siRNA capable of triggering post-transcriptional gene silencing.
doi:10.1371/journal.pone.0021329.g002
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V-ATPase protein expression in these cells. As expected, V-ATPase

inhibition increased over time (Figure 4). Notably, pAeSI-2 V-

ATPase protein expression dropped to undetectable levels at 96 h

post-transfection (Figure 4B, graph).

Portal of entry and tissue tropisms of recombinant virus
in Ae. albopictus larvae

Ae. albopictus larvae were exposed to recombinant virus mixed

stocks. GFP marker expression was examined under fluorescence

microscopy. The newly emerging GFP-positive larvae were

separated continuously from 1 to 3 days post-exposure. The

GFP expression was observed in 75.1%, 71.3%, 72.8%, and

78.4% larvae in rAepAnSI-1, rAepAnSI-2, rAepAeSI-1 and

rAepAeSI-2 respectively. In the different groups, respectively,

39.3%, 41.9%, 41.3% and 45.1% larvae first showed GFP in the

anal papillae; 12.8%, 15.3%, 13.0%, and 16.2% within the bristle

cell; 9.8%, 7.9%, 8.5%, and 9.0%, at the base of an anal papilla.

Other tissue locations accounted for 6.2%, 6.0%, 7.4%, and 7.1%

of the primary infection sites. Furthermore, 28.5%, 24.1%, 26.8%,

and 29.3% of larvae showed primary infection in more than one

tissue site (Table 1). Investigation into the dissemination of

recombinant virus in separated individual mosquitoes was based

on daily monitoring of GFP expression. Nearly 83.1%, 87.7%,

92.3%, and 94.7% of larvae developed other infected tissues,

including muscle fibers, the midgut, salivary glands, nerves, the

malpighian tubule, the foregut and hindgut, and others. Only

1.7%, 0.9%, 2.1%, and 1.5% of larval infection was restricted to

the anal papillae, or they lost their infected anal papillae, which

delayed or prevented further dissemination.

Knockdown of V-ATPase in Ae. albopictus larvae
The anal papillae of mosquito larvae are classic transport

epithelia that can absorb inorganic ions from extremely dilute

external media and control the ion balance between the

Figure 3. AeDNV-delivered recombinant siRNA inhibits V-ATPase mRNA expression in mosquito cells. Analysis of V-ATPase mRNA
expression in Ae. albopictus C6/36 cells after transfection with recombinant siRNA vector. (A) An. gambiae U6 promoter-driven siRNA vector. (B). Ae.
aegypti U6 promoter-driven siRNA vector. Error bars represent the standard deviation of the 2-ggCT values for V-ATPase mRNA expression in the C6/
36 cell line as evaluated by real-time RT-PCR.
doi:10.1371/journal.pone.0021329.g003

Figure 4. AeDNV-delivered recombinant siRNA inhibits V-ATPase expression in mosquito cells. Western blot analysis of V-ATPase
expression and b-actin (loading control) protein levels in Ae. albopictus C6/36 cells after transfection with recombinant siRNA vector. (A) An. gambiae
U6 promoter-driven siRNA vectors. (B). Ae. aegypti U6 promoter-driven siRNA vectors.
doi:10.1371/journal.pone.0021329.g004
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mosquito’s hemolymph and its surrounding environment [19,20].

Anal papillae are the major portal of entry of AeDNV, with

dissemination to the whole body occurring from there [16].

However, in some cases the anal papillae present a barrier to virus

dissemination, in which case the infection remains restricted to the

anal papillae. In these instances, whether the recombinant virus

restricted to the anal papillae can also result in a whole body RNAi

response is still unknown. To explore this possibility, anal papillae

from mosquitoes with infection restricted to the anal papillae were

removed and the rest of the body was collected to test the SRT

group for whole body RNAi response. Figure 5 shows the different

groups being analyzed for this purpose. The effect of recombinant

virus on V-ATPase knockdown was investigated by real time PCR

and western blot. Triplicate experiments showed that the An.

gambiae Pol III promoter-driven RNAi vectors rAnpAnSI-1

exhibited reductions in V-ATPase gene expression of 29.776

6.1% (p,0.01), 61.4767.51% (p,0.01) and 25.963.16%

(p,0.05) in the API, SI, and RT groups, respectively, while the

same groups infected with rAnpAnSI-2 exhibited reductions of

31.2267.22% (p,0.01) 64.5662.97% (p,0.01) and 27.576

7.97% (p,0.05), respectively (Figure 6A). As expected, Ae. aegypti

Pol III promoter-driven RNAi vectors showed higher rates of V-

ATPase mRNA inhibition in vivo than that of An. gambiae Pol III

promoter-driven rAepAnSI-1, reducing larval expression by

34.14613.41% (p,0.01) 69.9665.30% (p,0.01) and 23.666

2.65% (p,0.05) in the API , SI, and RT group, respectively.

rAepAnSI-2 exhibited the strongest inhibitory effect on V-ATPase

mRNA, as it reduced expression by 38.04614.70% (p,0.01),

72.8765.74% (p,0.01) and 28.79612.81% (p,0.05) in the SI,

API, and RT groups, respectively (Figure 6B). These data were

confirmed by Western blot analysis (Figure 7, graph), which

suggested that the siRNA blocked expression of V-ATPase at the

protein level in mosquito larvae.

Knockdown on the lifespan of Ae. albopictus larvae
To study the pathogenicity of recombinant densovirus in Ae.

Albopictus, newly-hatched first-instar larvae were naturally infected

by introduction of the recombinant virus mixture into the water,

and their survival was recorded. Figure 8 shows the cumulative

proportion of Ae. Albopictus that survived for longer than 15 days

when exposed to 161010 copies/ml of densovirus for 48 h. The

survival of mosquitoes exposed to rAepAnSI-1, rAepAnSI-2,

rAepAeSI-1, or rAepAeSI-2 was significantly different from those

exposed to wild-type AeDNV (log rank P,0.05). The LT50 values

of recombinant AeDNV-exposed mosquitoes were 8.00 (rAe-

pAnSI-1), 7.5 (rAepAnSI-2), 7.5 (rAepAeSI-1) and 7.0 days

(rAepAeSI-2) (Table 2). These LT50 values were significantly

lower than wild-type-exposed mosquitoes (10.0 days). In particu-

lar, larvae treated with rAepAeSI-2 mixed stocks exhibited the

highest pathogenic effects. Therefore, the increased mortality

observed in the recombinant virus-infected larvae was caused by

reduced V-ATPase expression in larval cells as a result of the RNAi

treatment.

Discussion

Currently, electroporation, lipid-based transfection reagents,

and nanoparticles are commonly used to transfer RNAi molecules

into cultured mosquito cells. However, despite growing interest in

the application of siRNAs for mosquito gene function analysis or

vector control, in vivo delivery has been difficult. Direct injection of

dsRNA is the most commonly used delivery method for in vivo

siRNA delivery [21–25]. However, this technique is technically

demanding and the relatively short half-lives of the delivered

dsRNA or siRNA limit their utility [26]. In contrast, viral-based

shRNA expression systems have been developed to overcome

extracellular and intracellular barriers. In addition, viral-based

shRNA delivery has the advantages of easy manipulation, higher

transfection efficiency, longer-term expression, and more persis-

tent silencing effects in vivo [27]. There are now many successful

examples of the use of viral vector-mediated RNAi to inhibit gene

expression in animal models of disease [28–30]. In addition, this

study describes a novel MDV-based siRNA delivery system for

mosquito RNA interference applications.

Although their biological characteristics make MDVs attractive

vectors for gene transfer in mosquito cells, their relatively small

genome has been a major obstacle to application. Insert size

testing suggests that 4,100–4,400 bp is the optimal genome size for

packaging. With the essential MDV inverted terminal repeats

(ITRs) 39 and 59 untranslated regions, and NS1 elements, the

expression cassette can easily surpass the packaging limits [9]. This

poses a problem for large shRNA expression cassettes. As is well

known, permanent gene suppression can be achieved by siRNAs

as stem-loop precursors transcribed from an RNA Pol II or Pol III

promoter-based vector [31], but this size limit excludes most Pol II

promoters if the entire NS1 protein is retained for replication of

the recombinant virus genome. Another frequently used strategy is

inversion of the Pol III promoter-driven shRNA cassette in the 39

end of the genome [32]. However, in the MDV genome, this

region contains the sequences necessary for the termination of

viral mRNAs [9]. To solve this, we inserted the Pol III promoter-

driven shRNA expression cassettes into a chimeric intron. When

this intron was inserted into the protein coding regions of the

MDV, mature virus mRNA sequences were unaltered after

splicing, regardless of the shRNA expression cassette used. Our

Table 1. Location and frequency of portal of entry in first-instar Ae. albopictus larvae.

Primary infection site GFP larvae number infected with recombinant virus

rAepAnSI-1 rAepAnSI-2 rAepAeSI-1 rAepAeSI-2 Total

Anal papillae (SA*) 393(244) 419(235) 413(217) 451(243) 477(290)

Bristle cell (SA) 328(169) 353(178) 330(189) 362(190) 400(206)

Base of anal papillae (SA) 98(24) 109(27) 125(34) 130(32) 144(31)

Other** (SA) 69(11) 71(9) 48(9) 59(9) 70(20)

Multiple sites 285 241 268 293 279

*SA = site alone, the location indicated was unique site of GFP expression observed.
**All locations other than the three types of primary infection indicated in the table.
doi:10.1371/journal.pone.0021329.t001
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results also demonstrated the advantages of preservation of the

NS1 gene and IRS in all recombinant constructs in which NS1

fusion protein and IRS mediate the excision and replication of the

recombinant genome in host cell. The continuously increasing

copy number of the self-replication vector may contribute to

highly efficient and constant down regulation in C6/36 cell than

the common RNAi plasmid vector.

Our results demonstrate that the incorporation of an intronic

strategy offers a new paradigm to overcome MDV vector size

limitations for the efficient use of RNAi in mosquitoes. This result

suggests that Drosha processing of the shRNA is relatively efficient

even when the shRNA cassette is in an intron. The success of

vectors that incorporate a synthetic intron also indicates that the

conserved sequences for mRNA splicing (59 donor, branch, and 39

acceptor sites) suffice for the efficient processing of pre-mRNAs.

Recently, the U6snRNA promoters of Ae. aegypti and An. gambiae

were characterized for the expression of shRNA targeting firefly

luciferase to mediate knockdown of a co-transfected luciferase

reporter gene in mosquito cells [13]. Because genome information

is lacking for Ae. albopictus, and the U6snRNA promoters have not

been cloned for this species, the U6snRNA promoters of Ae. aegypti

and An. gambiae were used in this study to express shRNA in Ae.

albopictus cells, and the gene-silencing effects of these two shRNA

expressing cassettes were evaluated and compared.

The characteristic RNAi effects were compared between

experiments using the An. gambiae U6 promoter and those using

the Ae. aegypti promoter. Both of the Ae. aegypti promoter-based

constructs exhibited increased silencing compared with the An.

gambiae-based constructs, whether used in cultured cells or larvae.

In particular, the pAeSI-2 construct exhibited more rapid and

Figure 5. Grouping of mosquito larvae by GFP expression location. In the systemic infection group (SI) GFP expression was distributed
throughout the body. In the anal papillae infection group (API) GFP expression was limited to the anal papillae. In the systemic RNAi test group (SRT)
The GFP anal papillae were removed (arrow shown).
doi:10.1371/journal.pone.0021329.g005

Figure 6. AeDNV-mediated expression of recombinant siRNA inhibits V-ATPase mRNA expression in mosquito larvae. Analysis of V-
ATPase mRNA expression in Ae. albopictus larvae in various expression level groups after expression of recombinant siRNA directed against V-ATPase
driven by: A, An. gambiae U6 promoter; or B, Ae. aegypti U6 promoter. Error bars represent the confidence intervals of 2-DDCT6s for V-ATPase mRNA
expression data collected at each time point. s = the standard deviation of the DDCT value. *P,0.05.
doi:10.1371/journal.pone.0021329.g006
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sustained silencing of ATPase expression in cells. This could be due

to the genetic linkage similarity of mosquitoes, as Ae. aegypti is

closely related to Ae. albopictus than to An. gambiae. Furthermore, a

previous study showed that the An. gambiae U6 promoter is more

effective at driving RNAi-mediated gene knockdown in AG-55 An.

gambiae cells [13]. The characteristics of the promoters used in this

study should be useful for many mosquito system applications,

including functional genomic experiments, and development of

RNAi-based strategies for vector control.

Ae. albopictus was selected as the target insect because it is an

important vector of the Chikungunya (CHIKV) and dengue

(DENV) viruses. DENV is considered the most important

arbovirus disease on the planet. CHIKV, which has contributed

to epidemics in continental Africa and Asia, has caused several

serious health and economic problems.

Vacuolar ATPases (V-ATPases) a family of ATP-dependent

proton pumps, are commonly found in eukaryotic cell plasma

membranes and the membranes of intracellular compartments

[33–35]. Acidification of intracellular compartments, such as

lysosomes, endosomes, and parasitophorous vacuoles, is mediated

by V-ATPase, and is essential for entry by many enveloped

viruses, as well as invasion into, or escape from, host cells by

intracellular parasites [36]. V-ATPases are relatively conserved

among mosquitoes, such as Ae. aegypti, Culex quinquefasciatus, Ae.

albopictus and An. gambiae [37–39]. Furthermore, previous reports

have shown that V-ATPase has essential functions, making it the

best RNAi target for causing lethality in coleopteran insect pests

[5]. Therefore, given its essential role in a variety of cellular

functions, and its key role in mediating pathogenic invasion, V-

ATPase is the preferable target gene for pest control and/or

disruption of arbovirus transmission.

Systemic RNAi is a phenomenon in which local cellular uptake

of dsRNA leads to systemic spreading of the RNAi effect [40,41].

Insect systemic RNAi has been documented in several insect

Figure 7. AeDNV-mediated expression of recombinant siRNA inhibits V-ATPase expression in mosquito larvae. Western blot analysis
of V-ATPase and b-actin (loading control) protein levels in API, SI, and SRT groups transfected with siRNA driven by the: A, An. gambiae U6 promoter
or B, Ae. aegypti U6 promoter.
doi:10.1371/journal.pone.0021329.g007

Figure 8. The cumulative proportion of surviving Ae. albopictus after first-instar larvae were exposed to doses of wt-type AeDNV and
four kinds of recombinant AeDNV mixed stocks at 1010 copies/ml.
doi:10.1371/journal.pone.0021329.g008
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orders, including Diptera, Coleoptera, Hymenoptera, Orthopetra,

Blattodea, Lepidoptera and Hemiptera[42], but there is limited

information available on the use of systemic RNAi in mosquitoes.

In our previous studies, we found that the primary portals of

AeDNV entry in Ae. albopictus were the anal papillae. For most larvae,

viral dissemination occurred from infected anal papillae to the whole

body. However, in some cases the infection was restricted to the anal

papillae, indicating that the anal papillae may be a barrier for

recombinant virus dissemination to the whole body [16]. However,

our results show that in the SRT groups studied, even if the infected

anal papillae were removed, V-ATPase was still down regulated in the

rest of the body. In other words, shRNA with restricted expression in

the anal papillae can lead to an RNAi response in the whole body.

There are still some limitations of the system, e.g. although the

pure recombinant virus can be generated by the Sindbis virus

expression system, they would lose the ability for secondary

transmission that takes place in vivo with a defective genome.

Therefore, cotransfection with wt virus is necessary for dissemi-

nation of recombinant virus in vivo from primary infection sites to

other parts. However, the problem of the persistence of

recombinant virus could be solved effectively by the construction

of nondefective hypervirulent strains, and this appears to be

feasible with the use of appropriate genetic methods in our

ongoing studies.

In conclusion, the ability to reliably deliver RNAi to mosquitoes

by recombinant viruses will not only provide a tool for functional

analysis of mosquito genes, but will have obvious commercial

application as well. RNAi provides a unique mode of action for

vector control that could complement current strategies. However,

whether this system will become a practical method for insect

control remains to be seen. Safety issues will need to be addressed,

including possible infection of non-target organisms and the risk of

gene flow into non-target organisms [43]. Although MDVs are

highly specific for mosquito hosts, and siRNA is highly selective,

more data will be needed to support the environmental safety of

genetically modified AeDNV. Analogous research regarding the

feasibility of using RNAi in the protection of crops against insect

herbivores has shown that this strategy holds great promise for the

future because it allows for the suppression of a wide range of

potential gene targets in insects [7,44]. Because chemical insecti-

cides have a limited shelf life, and their excessive and repeated use

leads to resistance, vector resurgence and environmental problems,

effective vector management requires a diversity of tools. We feel

that the relative risks of recombinant viruses are far lower than those

posed by many chemical insecticides, while offering clear benefits in

terms of environmentally safe insect pest control.
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