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Abstract

Lee and Sarnecka (2010) developed a Bayesian model of young children’s behavior on the Give-N
test of number knowledge. This paper presents two new extensions of the model, and applies the
model to new data. In the first extension, the model is used to evaluate competing theories about
the conceptual knowledge underlying children’s behavior. One, the knower-levels theory, is
basically a “stage” theory involving real conceptual change. The other, the approximate-meanings
theory, assumes that the child’s conceptual knowledge is relatively constant, although
performance improves over time. In the second extension, the model is used to ask whether the
same latent psychological variable (a child’s number-knower-level) can simultaneously account
for behavior on two tasks (the Give-N task and the Fast-Cards task) with different performance
demands. Together, these two demonstrations show the potential of the Bayesian modeling
approach to improve our understanding of the development of human cognition.

Introduction

Young children’s number knowledge is a classic domain of research in cognitive
development. On the one hand, evolution has given humans (like other animals) the ability
to represent implicitly small, exact set sizes (up to about 4), and to represent explicitly
larger, approximate cardinalities (e.g., approximately 50 vs approximately 100; see
Feigenson, Dehaene & Spelke, 2004 for review). On the other hand, many types of numbers
(e.g., negative integers; pi and other irrationals; etc.) are better understood as cultural
products (Piaget, 1952). This combination of innate or early-developing, preverbal
knowledge with painstakingly-acquired, verbalized knowledge makes the case of number a
perennially interesting one for cognitive development. The present work uses examples from
the domain of number to show how Bayesian models can be useful for studying cognitive
development.

The first goal of the paper is to show how a model can be used to decide between competing
theories of young children’s number knowledge. In our example, one theory, the knower-
levels theory, describes development as stage-like, involving qualitative discontinuities in
knowledge development. The other theory, the approximate-meanings theory, describes
development as essentially continuous, with improvements in children’s performance, but
no real qualitative changes in their underlying knowledge state. Our version of number
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knower-levels theory will make three claims. The first is that children learn the exact,
cardinal meanings of the number words ‘one,” ‘two,” ‘three’ and “four,” one at a time, and in
order. The second claim is that children figure out the meanings of all higher number words
at once when they learn the cardinality principle (Gelman & Gallistel, 1978), which
connects cardinal numerosity to counting; (e.g., Carey, 2009; Le Corre, Van de Walle,
Brannon, & Carey, 2006; Sarnecka & Carey, 2008; Wynn, 1992). The third claim is that,
before learning the cardinality principle, children do not know the meanings (even
approximately) of any higher number words.

Our version of approximate-meanings theory will make the claim that by the time children
have learned the number words of their language (i.e., have learned to recite the
conventional number-word list up to ten), they already know the approximate cardinal value
of each number word, although their ability to demonstrate that knowledge may be very
poor (especially for the higher numbers).

Note that we have chosen relatively simple versions of each theory as examples. More
nuanced and complicated theories could be tested by this same method. For present
purposes, it is not the exact details of particular theories that matter, but the demonstration of
how a Bayesian graphical model can be used to decide among them.

The second goal of the paper is to show how a model can be used to ask whether the same
latent psychological variable can simultaneously account for behavior on two different tasks.
In our example, the psychological variable is a child’s number-knower level. One task is
Give-N (Wynn, 1992), where children are told a number word and must generate a set. The
other task is Fast-Cards (Le Corre & Carey, 2007), where children are shown a set and must
generate a number word. We show how a formal model can be used to identify regularities
in children’s behavior (potential indicators of the same underlying knowledge) across the
two different tasks.

We first presented a version of this model in a recent paper (Lee & Sarnecka, 2010). In that
paper, we considered a dataset that contained only Give-N behavior. In this paper, we apply
the same model to new Give-N data. We then extend the modeling approach in two
fundamental ways, to address our two research goals. First, we embed an approximate-
meanings theory within the same modeling framework, to show how the theories can be
compared using Bayesian methods. Second, we extend the model to apply to both Give-N
and Fast-Cards data simultaneously, to show how multiple tasks dependent on the same
latent knowledge can be modeled using Bayesian methods.

Participants included 56 children (26 girls; 30 boys), ages 2 years, 3 months to 5 years, 3
months (mean age 3;9). All children were monolingual and native speakers of English, as
determined by parental report. Children were recruited from private child-care centers in
Irvine, California. Families received a prize (e.g., a small stuffed animal or rubber duck)
when they signed up to participate in the study; no prizes were given at the time of testing.
No questions were asked about socio-economic status, race, or ethnicity, but participants
were presumably representative of the middle-to-upper income, predominantly white and
Asian community from which they were recruited.
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Children were given three tasks (Intransitive counting, Give-N and Fast-Cards) as part of a
larger study. Intransitive counting was always given first; Give-N and Fast-Cards were
presented in counterbalanced order afterward.

Intransitive counting task—The purpose of this task was to assess the child’s
knowledge of the conventional English number-word sequence up to ten. The experimenter
prompted the child to count by saying, “Let’s count. Can you count to ten?” If a child
hesitated, the experimenter said, “Let’s count together” and counted to ten slowly,
encouraging the child to join in. Afterward, the experimenter said “Great. Now you,”
prompting the child to count alone. If a child stopped counting before ten (e.g., at five), the
experimenter repeated the last three numbers with an encouraging tone of voice (e.g., “three,
four, five, ...?"”) or asked, “What comes after five?” If a child got to ten but skipped one or
more numbers along the way, the experimenter did not provide correction, but encouraged
the child to count again (e.g., “OK! Do you want to count again?”), up to a total of three
attempts.

Give-N task—This task asked children to generate sets of a given number. Materials
included a stuffed animal, a plastic plate (approximately 11cm in diameter), and three sets of
15 plastic counters each (fish, dinosaurs and oranges, each approximately 2-3 cm in
diameter). Items in each set were homogenous. The experimenter began the task by saying,
“The way we play this game is, | will tell you what to put on the plate, and you put it there
and sli-i-i-de it over to Pig, like this (demonstrating). OK, can you give one fish to Pig?”

After the child slid the plate toward the stuffed animal, the experimenter asked one or more
follow-up questions. On low-number trials (those asking for one, two, three or four items),
there was only one follow-up question, repeating the original number word (e.g., “Is that
one?”) If the child said “yes,” then the experimenter said, “Thank you!” and placed the
item(s) back in the bowl. If the child said “no,” then the experimenter restated the original
request, starting the trial over.

On high-number trials (those asking for five, eight or ten items), the follow-up questions
encouraged the child to count. (For children who had spontaneously counted out the items
already, the follow-up was the same as on low-number trials.) For children who had not
counted the items, the first follow-up question was the same (e.g., “Is that five?”). If the
child said “yes,” the experimenter said, “Can you count and make sure it’s five?” If the child
counted and ended with a number other than five, the experimenter said “Can you fix it so
it’s five?” If the child answered no” to the original follow-up question, the experimenter said
“Can you count and fix it so it’s five?” The child’s final response (after counting and fixing)
was the response used for the analysis.

Each child was given 21 trials: three trials each of the numbers 1, 2, 3, 4, 5, 8 and 10. Trials
were presented in blocks of seven (one trial of each number). For each block, a new set of
items was used. Order of trials was randomized within each block.

Fast-Cards task—This task (adapted from Le Corre & Carey, 2007) asked children to
estimate the numerosities of briefly presented sets. Materials included 21 laminated cards
with pictures of small plastic counters (ducks, fire trucks and bananas, each approx 2-3 cm
in diameter). Items in each set were homogenous. The experimenter began the task with a
warm-up trial. The experimenter showed the child a picture of just one item and said,
“What’s on this card?” The child usually answered with a noun (e.g., “a pig”). The
experimenter said “That’s right, it is a pig! But in this game, we use our number words, so
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you say, ONE’. (Here the child would usually say, “one.”) Then the experimenter said
“Good job! OK, what do you think you say for this card?” and began the test trials.

If a child did not give a number-word response, the experimenter prompted with one of the
following questions: “Can you think of a number word for this picture?” “How about a
number?” “What number do you think goes with this picture?” After one such prompt, the
child’s response was recorded and the experimenter moved on to the next trial. The phrase
“how many” was avoided, because previous research has shown that it prompts children to
count (Sarnecka & Carey, 2008). When children did start to count the items, the
experimenter lowered the card and said, “This isn’t a counting game. You can just guess a
number.”

Each child was given 21 trials: three trials each with pictures of 1, 2, 3, 4, 5, 8 and 10 items.
Trials were presented in blocks of seven (one trial of each set size). For each block, a new
set of cards was used. Order of trials was randomized within each block.

A Model of Behavior on Number Tasks

Lee and Sarnecka (2010) developed a model of behavior on the Give-N task, formalizing the
number-knower-levels theory. The model is inherently Bayesian, based on the premise that
children use task instructions to update a prior belief about appropriate behavior into a
posterior belief.

A schematic account of the Lee and Sarnecka (2010) model is presented in Figure 1. The
child on the left is shown in a prior belief state, for a Give-N task with 15 toys. As their
thought bubble shows, the child permits the belief that any number of toys between 1 and 15
might be appropriate behavior. But, the child is pre-disposed to give some set sizes rather
than others, purely because of the nature of the task. These pre-dispositions are represented
by the size of the numerals.

This pre-disposition takes the form of a base-rate, which specifies how likely each response
would be in the absence of any instructions at all. In Figure 1, the child is a priori more
likely to construct small sets (e.g., 1, 2, 3 or 4 items) or to give all 15 objects, than to
construct larger sets that stop short of the whole (e.g., 7-14 items).

Figure 1 shows how two different instructions—*give me “two”’ and ‘give me “five”’—lead
the base-rate to be updated, based on knower-level theory. To make this demonstration
concrete, we assume the child is a 3-knower (i.e., the child knows the exact, cardinal
meanings only of the underlined numbers). For the ‘give me “two”” instruction, updating
simply corresponds to making 2 the most likely response, since it is known.

173

For the “give me “five’” instruction, the updating is more subtle, and involves two parts.
First, those numbers that are known, and are not the target number, become very unlikely
responses. This is why the numbers 1, 2 and 3 do not appear in the lower-right thought
bubble—the likelihood of the child giving any of those responses is negligibly small.
Secondly, the remaining numbers keep the same relative likelihood (e.g., 5 is still a more
likely response than 12, and less likely than 15) but they all have a greater absolute
likelihood, because the total probability still adds up to one. Acting on this posterior belief,
the child at the bottom right of Figure 1 is most likely to give 4, 5, or 15 toys.

In general, the model works by making relatively more likely a target number that is known,
relatively less likely a number that is known but is not the target number, and leaving
relatively equally likely a number that is not known. In this way, the task base-rate, the
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knower-level of the child, and the instructions giving the target number all interact to
produce a belief that is the basis for behavior.

Formal Implementation of Model

Lee and Sarnecka (2010) implemented their model using the formalism provided by
graphical models. This is a standard approach in machine learning and statistics for
specifying probabilistic generative models (e.g., Jordan, 2004; Koller, Friedman, Getoor, &
Taskar, 2007), and is becoming increasingly popular in the cognitive sciences (e.g.,
Griffiths, Kemp, & Tenenbaum, 2008; Lee, 2008; Shiffrin, Lee, Kim, & Wagenmakers,
2008). The basic idea is that unobserved variables (i.e., model parameters) and observed
variables (i.e., data) are represented by nodes in a graph, their dependencies are indicated by
the graph structure, and encompassing plates are used to indicate replications.

Figure 2 shows the graphical model for the Bayesian account of knower-level behavior on
the Give-N task. The observed data are the question gjj, which corresponds to the number of
toys the ith child is instructed to give on their jth question, and the answer gjj, which
corresponds to how many toys they actually gave.

The base-rate is represented by the vector =, with the element 7 giving the initial
probability of giving k toys. The evidence value v is a model parameter, controlling how
much more or less likely behaviors become, when the instructions provide evidence for or
against them. The discrete state parameter z; gives the knower-level of the ith child, ranging
from pre-number (PN)-knower level, where the child does not yet know the exact meanings
of any number words, to the 1-knower level (where the child knows the meaning only of
“one”), and so on up to the cardinal-principle (CP)-knower level. All of these parameters
are unknown, and must be inferred from data.

The base-rate, evidence and knower-level parameters interact with the task instruction to

generate the updated belief represented by x’ with Jr;jk giving the probability the ith child
will give k toys in response to a question about number j. Following the logic of the model
intuitively outlined above, and described in more detail by Lee and Sarnecka (2010), this
updating is given by

T jk ifk>z’,,-
T o U X Tijk ifk < z; and k=g;;

]; X T jik ifks:iandk;&q,-j. (1)

The observed behavior is simply sampled from the updated probabilities, so that gjj ~
Discrete (x").

The three parts of this updating rule correspond to the three cases described intuitively
earlier. The first case applies to numbers that are greater than the child’s knower-level, and
so the base-rate for giving that number guides their behavior. The second case applies when
the number is known, and is being asked for, so its likelihood of being given is increased by
a factor of v. The third case applies when the number is known, but it not being asked for, so
its likelihood is decreased by a factor of v.

Our modeling approach uses Bayesian inference in two separate ways, both as a model of a
child’s inference about how many toys to give, and as a method for us as scientists making
inferences about what a child knows based on their behavior (see Kruschke, 2010; Lee,
2010; Lee & Sarnecka, 2010, for detailed discussion). Because of the second,
methodological, use of Bayesian principles, we need to place priors on the unobserved
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parameters. These are given by the relatively non-informative choices = ~ Dirichlet (1,...,

1 1
1), v ~ Uniform (1,1000), and z; ~ Discrete (g, ey g).

Basic Results

Intransitive counting task—All the children except one produced the number-word
sequence correctly up to 10. The exception was a boy (age 3 years, 6 months) who produced
the sequence only up to 7. We chose to include this child’s data in the analysis after
determining that excluding them did not change the results in any noticeable way.

Give-N task—For comparison with previous studies and with the model’s sorting below,
we first present the breakdown of children into knower-levels by the standard heuristic
method. In this method, a child is counted as ‘knowing’ a number N, if that child
successfully generated sets of N for at least two of the three trials asking for that number,
and did not generate a set of N more than once during the 18 trials asking for other number
words. For this set of Give-N data, that sorting produced 4 pre-number-knowers; 7 one-
knowers; 10 two-knowers; 6 three-knowers; 8 four-knowers; and 21 CP-knowers. This
distribution is similar to those in previously reported sets of Give-N data from children of
comparable age and SES background (e.g., Le Corre & Carey, 2007; Lee & Sarnecka, 2010;
Sarnecka & Carey, 2008; Sarnecka & Lee, 2009).

Fast-Cards task—Using sorting criteria analogous to those in the Give-N sorting above,
children were counted as ‘knowing” a number N if they successfully said N on at least two
of the three trials presenting pictures of N objects; and did not say N on more than one of the
eighteen other trials. This sorting produced the following distribution: 4 pre-number-
knowers; 7 one-knowers; 21 two-knowers; 15 three-knowers; and 9 four-knowers/CP-
knowers. (The difference between four-knowers and CP-knowers cannot be reliably detected
by the Fast Cards task, as the difference depends on counting.)

Modeling Results

In this section we apply the model to the current Give-N data. We do not work through all of
the analyses in the same detail as Lee and Sarnecka (2010). Instead, we focus on the key
results that show how modeling the new data confirms the earlier findings. In particular, we
focus on the ability of the model to provide a good descriptive fit to the observed task
behavior of the children, and to infer meaningful and useful characterizations of the
processes generating this behavior.

The posterior distributions for the latent knower-level states z; classified the 56 children into
3 PN-knowers, 7 1-knowers, 10 2-knowers, 6 3-knowers, 10 4-knowers and 20 CP-knowers.
The standard Cohen’s kappa measure of agreement (Cohen, 1960) was 0.63, indicating what
is usually considered “substantial agreement” between the heuristic and model-based
classifications of children into knower-levels, although clearly they are not identical
assessments.

Consistent with the detailed analysis presented by Lee and Sarnecka (2010), the posterior
distributions were highly peaked, often giving almost all their mass to a single knower-level.
For those cases with uncertainty, it is always with respect to neighboring knower-levels,
even though no such constraint is built into the model. As Lee and Sarnecka argued, both of
these properties are consistent with latent knower-levels being meaningful psychological
characterization of the individual differences between children. The mean posterior for the
evidence parameter v was about 23 (i.e., when a 3-knower is asked to give 2, that response
becomes about 23 times more likely than it was in the prior distribution, whereas all other
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responses become about 23 times less likely.). This is comparable with the value of 29 found
by Lee and Sarnecka for the earlier dataset.

Figure 3 shows the base-rate that is inferred from the current data, and highlights a key
contribution of the model. As with the data considered by Lee and Sarnecka (2010), the
base-rate assigns high probabilities to small numbers, consistent with the child giving one to
four toys. High probability is also assigned to 15, consistent with the child’s giving the
entire set. In the context of the Give-N task, this base rate makes strong intuitive sense. The
fact that the model infers this base rate from the data shows that the model is useful in
quantifying an aspect of children’s behavior (i.e., their pattern of ‘chance’ responding) that
had never been specified before.

Figure 4 shows the fit between the model and data, examining how well the interaction of
the inferred base-rate, evidence value, and knower levels can account for trial-by-trial task
behavior. Each panel corresponds to a knower-level stage, with the x-axis listing the number
of toys asked for, and the y-axis listing the number given. The darkness of the shading in
each cell thus represents the posterior predicted probability the model gives to each
combination of question and answer. Overlayed in each panel by circular markers are the
observed data, for just those children inferred to belong to the appropriate knower-level. The
area of each circle represents the number of times each question and answer pair was
observed for children at that knower-level.

The model predictions fit the data very well, as Figure 4 shows. The distinctive pattern of
near-perfect behavior up to a child’s knower-level, but completely different behavior beyond
their knower-level, is evident in both observed and model behavior. An especially important
feature of the fit is the way the base-rate accounts for the task-specific nature of the non-
accurate behavior. It is clear in Figure 4 that this behavior is consistent with a base-rate—
giving emphasis to small numbers immediately above the knower-level, and to 15—as
formalized by the updating process within the model. In this way, the model explains task
behavior in terms of an interaction between the child’s conceptual knowledge of numbers,
and superficial aspects of the task.

Using the Model to Compare Alternative Theories

The model developed by Lee and Sarnecka (2010) accounts for several Give-N data sets
well, and provides the ability to measure interpretable aspects of the behavioral process. It
does this assuming a discontinuous (stage-like) developmental trajectory. That is, it assumes
that children learn exact meanings for the first 3—4 number words one at a time and in order,
and that during this time they do not have even approximate cardinal meanings for the
higher number words in their counting list.1 A natural question is how alternative accounts
of number-concept development fare within the same framework for modeling task
behavior. One obvious alternative is to assume that children know the meanings of all the
number words in their counting list (at least approximately), and that the answers given are
noisy estimates of the numbers asked for. Under this theory, there are no such things as
number-knower-levels. Some children merely estimate more accurately than others. This
theory also explains why children would get all trials correct up to a given number, and few
or none correct above that number—it’s simply because small set sizes are easier to estimate
than large ones. Finally, the theory explains why children’s performance would improve
over time: As children get older, their estimation ability improves, and the numbers they can
reliably estimate get larger.

LFor a refinement of knower-levels that does away with this latter assumption, see Barner and Bachrach (2010).

Cognition. Author manuscript; available in PMC 2012 September 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lee and Sarnecka

Page 8

Figure 5 shows a modified graphical model that introduces an approximate-meanings
assumption into the basic Bayesian task model. As before, a base-rate « is updated to =’
based on the question, and on a parameter controlling each child’s number representation. In
this case, the parameter is o;, corresponding to the coefficient of variation for the ith child
from approximate-meanings theory. The updating is now given by

, 1 ;
Tijp & Mijke X exp (——2(‘11',' - k)z]

1
J2n0? 20; ’
no; ©)

but the remainder of the model is formally identical to the knower-level version.

Comparing this approximate representation of number with the knower-level representation
is best done at the level of individual children. Figure 6 shows the posterior predictive fit
between the knower-level version of the model and the observed behavior of six children,
chosen at random with the constraint that one child was chosen from each knower level.
Figure 7 shows the fit of the approximate-meanings version of the model to the same six
children, together with their estimated coefficient of variation.

Figures 6 and 7 clearly show the superiority of the knower-level theory in accounting for the
behavior of the six selected children, and the same conclusion is warranted across the entire
data set. It is intuitively obvious that an approximate-meanings account cannot explain why
a child might give 15 when asked for 1, without assuming a very large coefficient of
variation. The formal modeling summarized in Figure 7 shows that the idea of updating a
base-rate does not overcome this deficiency in the approximate-meanings account. To
explain why children sometimes give numbers that are very different from the numbers they
were asked for—something regularly observed in our data—an approximate-meanings
account is forced to allow such huge coefficients of variation that almost any answer would
be consistent with the model. Consequently, the model assumes coefficients for three of the
six children that are many times larger than coefficients of 0.33 to 0.5 previously reported
for children of this age (e.g., Halberda & Feigenson, 2008).

One simple way to quantify the obvious differences in fit seen in Figures 6 and 7 is to
calculate the agreement between the observed and predicted behavior for both models. We
did this again using Cohen’s kappa, which is suited to the nominal form of the data, for each
child separately. For the knower-level model, kappa ranged from 0.45 to 0.99 across all
children, with a mean of 0.54. For the approximate-meanings model, kappa ranged from
0.01 to 0.25 with a mean of 0.13. The same pattern held when CP-knowers and non-CP-
knowers were analyzed separately. Kappa for CP-knowers ranged from .43 to .99 (mean .52)
for the knower-level model, as compared with .02 to .19 (mean .09) for the approximate-
meanings model. For non-CP-knowers, kappa ranged from .43 to .69 (mean .53) for the
knower-level model, as compared with .28 to .45 (mean .38) for the approximate-meanings
model. It would, of course, be possible to consider more advanced Bayesian model
comparison measures (e.g. Pitt, Myung, & Zhang, 2002; Shiffrin et al., 2008), but we think
these basic results paint a clear picture of the superiority of the knower-level model in
describing the current data.

Modeling Knower-Level Accounts of Multiple Tasks

Throughout the empirical sciences, a basic hallmark of a good theory is that it is able to
describe observations or make accurate predictions across a wide range of situations. This
unification is something that can naturally be achieved within the current Bayesian graphical
modeling framework (Lee, 2010). As a first demonstration of this approach, we show how
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knower-level theory can be evaluated in terms of its ability to account for behavior in two
tasks: Give-N and Fast-Cards. The tasks have similar data structure—in one, the child
generates a set size to match a number word; in the other, the child generates a number word
to match a set size. The tasks are fundamentally different in that only the Give-N task allows
counting as a strategy. On Fast-Cards, children are forced to estimate. However, if the
knower-level theory is correct, this distinction should not matter for most of the children in
this study. These children (the pre-, one-, two-, three- and four-knowers) have not yet
acquired the cardinality principle, and so do not use counting to solve the Give-N task in any
case. The tasks also make different performance demands. For example, Give-N requires no
talking (making it appealing to shy children) whereas Fast-Cards requires verbal responses.
Finally, Give-N has a clear maximum response of 15 objects; Fast-Cards has no maximum
response, because the child could potentially say any number word at all.

Modeling Give-N and Fast-Cards

Figure 8 presents a graphical model formalizing the integration of the Give-N and Fast-
Cards tasks. At the heart of the model is the knower-level, zj, for the ith child, which plays a
key role in generating behavior for all the trials on both tasks. For the Give-N task, the
questions and answers continue to be represented by qiLand 9ij; and the equivalent
observations in the Fast-Cards task are represented by gjj and gjj. Each task has its own base-
rate, = and s, and its own evidence value, v and v. Updating for both tasks is done exactly as
for the Give-N model, as per Equation 1. Thus, the model in Figure 8 assumes that a child’s
knower-level is fundamental for both tasks, and variations in the way they answer the same
question are due to task-specific base-rates and evidence values.2

Task Differences

We applied the model in Figure 8 to the within-subjects Give-N and Fast-Cards data. The
base-rate for the Give-N task is essentially the same as that shown in Figure 3. The base-rate
for the Fast-Cards task is shown in Figure 9, and is very different. It spans a range of
possible answers from 1 to 100 (the largest observed answer in the data set). Most of the
probability is found for the numbers 1-10, with progressively greater probabilities on the
smaller, more common, numbers. There is then a little probability between 10 and 20, with
small ‘bumps’ at intuitively reasonable places like 20, 50, 70 and 100, consistent with
theories of ‘prominent’ or ‘spontaneous’ numbers (e.g., Albers, 2001).

There was only a small difference in the inferred evidence values for the two tasks, with
Fast-Cards being about 20, in comparison to the 23 found for Give-N. This suggests that
requesting a number has a similarly large influence in both tasks, and means a more
parsimonious model could be considered in which just a single evidence value drives
behavior in both tasks.

Combining Knower-Level Information Across Tasks

One basic capability provided by the combined model is a method for estimating knower-
levels based on the data from both tasks. This is not easily done by the heuristics usually
used. When knower-levels were computed using the heuristic method we described earlier,
the knower-level assigned based on Fast Cards agreed with that based on Give-N in only 21
of the 56 cases (38%). In 16 cases (29%), the levels differed by one (e.g., a child might
perform as a three-knower on Give-N, but a two-knower on Fast Cards). In 13 cases (23%),
the levels differed by two (e.g., a child might be a three-knower on Give-N, but a one-

2For the application of the approximate-meanings model considered earlier to the Fast-Cards data, see the supplementary online
materials at www.socsci.uci.edu/~mdlee/LeeSarneckaTN.pdf.
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knower on Fast Cards). In five cases (9%), the levels differed by three (one child performed
as a three-knower on Fast Cards, but a pre-knower on Give-N; the other four cases were
children who performed as CP-knowers on Give-N, but two-knowers on Fast Cards). And
there were two cases (4%) of children performing as CP-knowers on Give-N, but pre-
knowers or one-knowers on Fast Cards.

Heuristics do not not offer a clear way of interpreting these discrepancies. Some researchers
might choose to ignore one dataset altogether. For example, in 78% of discrepant cases, the
Give-N knower level was higher than the Fast Cards knower-level, presumably reflecting
the fact that Fast Cards was a quick-response task. Thus, researchers might conclude that
Give-N provided a more accurate assessment of knower-level. But excluding half the data
hardly seems an ideal solution, and does not account for the 22% of cases where the Fast
Cards knower-level was actually higher. Of course, it would be possible to extend the
heuristics for estimation by defining some sort of rule for combination. But this would
require more ad hoc decisions, for procedures that already have several arbitrary
components. There is nothing principled about the two-thirds cutoff in correct responding,
for example, nor the restriction to one error of commission. In fact, other researchers have
used different values within the same heuristics for the same knower-level estimation
problem. Most fundamentally, faced with such discrepancies and arbitrariness, researchers
might reasonably conclude that knower-levels are not a valid construct at all.

The probabilistic model-based approach offers a more principled way of combining
information. Because the model formalizes how knower-levels generate behavior on both
tasks, Bayesian inference automatically combines the evidence provided by all of the
observed data to estimate knower-levels. Space does not permit us to present a detailed
analysis of this simulataneous probabilistic estimation for all 56 children. Figure 10,
however. shows results for three children who collectively provide a good characterization
of what is observed looking at all children, whose cases we now discuss.

Consistent and Clear Estimation—Child 25, in the top row of Figure 10 is typical of
the clear and consistent across-task estimation observed for 12 of the 56 children. The left
three panels show their inferred knower-level, when modeling just their Give-N behavior,
just their Fast-Cards behavior, or both simultaneously. The middle and right panels show the
posterior predictive fit between the combined model and all of the child’s data (with the
Fast-Cards answers bounded at 20 for legibility, excluding just a few data). The knower-
level inferences coming from both tasks independently agree with one another, leading to a
near-certain inference for the combined model, which has the benefit of having both sources
of task information. The posterior predictive fits show that the individual trial behavior of
the child is well described, and the model is able to capture task-specific effects. For
example, for Child 25, the model expects the observed answers of 15 to requests above the
child’s 2-knower level for the Give-N task, but just expects inaccurate answers a little
greater than 2 for the Fast-Cards task.

Consistent but Uncertain Estimation—The results for Child 35 are a good example of
what is seen for 27 of the 56 cases. Here, the individual analyses for the tasks separately lead
to consistent, but uncertain, inferences about the knower-level. It is possible Child 35 is
either a 1-knower or 2-knower, because they make a few mistakes with both numbers, but
seem too accurate to be a pre-number knower. But, the combined model, because it models
all of the data from both tasks, is able to reduce this uncertainty significantly, and makes a
clear inference in favor of 1-knower. The posterior predictive fits again show a good account
of the observed behavior, and show intuitively how the ambiguity is resolved. Each task
individual has many correct behaviors when asked for “two”, but, cumulatively, there are
too many errors, leading to the 1-knower conclusion. For 7 of the 56 children, a different
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pattern of uncertainty is seen, in which the two tasks separately reach moderately confident,
but different, conclusions. Typically, one task gives a knower-level that is one level different
from the other task. In these cases, the combined model reflects the uncertainty by giving
posterior mass to both neighboring possibilities.

Inconsistent Estimation—In total, the scenarios just discussed apply to 46 of the 56
(82%) of the individual analyses. The analysis of Child 18 in Figure 10 is included to show
that, in the 10 remaining cases, the combined model fails to account well for the observed
behavior. In one sense, this might be regarded as comforting. It demonstrates by counter-
example that the model is not just a fancy, circular way of re-describing the data. For Child
18, the knower-level inferences are very different for the Give-N and Fast-Cards tasks. The
compromise reached by the combined model is unsatisfactorily consistent with neither of the
individual analyses, and the posterior predictive fit (especially for the Fast-Cards) shows that
it fails to provide a good account of the data. We think the inconsistencies in observed
behavior for this child can probably be explained in terms of boredom and disengagement
from the task.3 This, of course, is just speculation but demonstrates the general point that
our model, like all models, is incomplete, and is only useful when applied to data consistent
with its theoretical scope. In this case, the model assumes that children are trying to comply
with the experimenter’s instructions. Deliberately inconsistent performance results in a
pattern for which the model has no explanation.

Discussion

These analyses show how a formal model, grounded in developmental theory, can contribute
to our understanding by generating specific and testable predictions about behavior. In this
case, the model was useful in two ways. First, it gave us a formal framework for comparing
alternative theories about the same behavior. Second, it gave us a principled way of asking
whether data from two very different tasks reflected the same underlying knowledge.

First, we used modeling to compare a knower-levels (stage-like) theory of number-word
learning to an approximate-meanings (non-stage-like) theory. Both theories were plausible
on the surface. For example, both explained why children would perform better on lower
numbers than higher numbers, and why childrens performance would gradually improve as
they got older. Modeling allowed us to generate and test detailed quantitative predictions for
each theory, which led to the finding that the data were actually much more consistent with
the knower-levels account.

Second, we used modeling to test the robustness of the knower-levels construct by
comparing behavior from two different number tasks: Give-N (where a child hears a number
word and produces a set) and Fast Cards (where a child sees a set and produces a number
word). If knower-levels are ‘real’ (i.e., if they are a valid psychological construct), then a
child’s knower-level should be detectable across a range of tasks. Our combined model
formalized the superficial differences between the two tasks. This made it possible to
separate task-specific aspects of behavior from those that reflect the childs underlying
conceptual knowledge. To the extent that knower-levels are an accurate way of representing
this knowledge, the model should be able to describe, predict and interpret behavior on both
tasks simultaneously, at the level of the individual child. The advantage of modeling over

3This child (a girl, aged 4 years) performed perfectly on the intransitive counting task, volunteering to count to ten in Spanish and
Hebrew, as well as English. She also performed near-perfectly on the Give-N task, and on two other tasks that were part of a larger
study. Fast-Cards was her final task, presented perhaps 25 minutes into the test session. She estimated accurately on the first block of
trials, but when the second set of pictures was brought out, she began to give wildly inaccurate estimates (e.qg., saying “one” for a
picture of 10 items and “eleven” for pictures of 1 and 3). It seems likely that this child was simply bored and ready to return to her

classroom.
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more informal, heuristic ways of testing the knower-levels theory is that modeling generates
specific quantitative predictions for each individual child across the two different tasks. The
fact that our combined model does a good job—in terms of describing the data, inferring the
knower-level, and modeling the details of the tasks themselves—provides a powerful form
of evidence for knower-levels as a valid construct.

The arguments here have been about number, but this type of modeling could be equally
useful in other areas of cognitive and developmental science. Investigators in every domain
are faced with alternative explanations for the same data, and every branch of psychology
must test the validity of its constructs. We think that probabilistic generative models offer
researchers a powerful tool for solving these problems.
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Figure 1.
Intuitive operation of model, showing a child who is a 3-knower responding to instructions
to ‘give “two™’ and to ‘give “five™.
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Figure 2.
Graphical model for a knower-level account of task behavior.
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Figure 3.
Inferred base-rates for the Give-N task.
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Figure 4.
Posterior predictive fit of the knower-level model to task behavior for all children.
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Figure 5.
Graphical model for an approximate-meanings account of task behavior.
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Posterior predictive fit to task behavior of the approximate-meanings version of the model,

for six selected children.
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Figure 8.
Graphical model using latent knower-level to account for both Give-N and Fast-Cards task

behavior simultaneously.
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Figure 9.
Inferred base-rate for the Fast-Cards task.
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Figure 10.

Knower-level inferences for individual tasks, and Give-N and Fast-Cards tasks combined
(left panels), and posterior predictive fits (middle and right panels) for three selected

children. See text for details.
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