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Abstract
Making an accurate diagnosis of schizophrenia and related psychoses early in the course of the
disease is important for initiating treatment and counseling patients and families. In this study, we
developed classification models for early disease diagnosis using structural MRI (sMRI) and
neuropsychological (NP) testing. We used sMRI measurements and NP test results from 28
patients with recent-onset schizophrenia and 47 healthy subjects, drawn from the larger sample of
the Mind Clinical Imaging Consortium. We developed diagnostic models based on Linear
Discriminant Analysis (LDA) following two approaches; namely, (a) stepwise (STP) LDA on the
original measurements, and (b) LDA on variables created through Principal Component Analysis
(PCA) and selected using the Humphrey-Ilgen parallel analysis. Error estimation of the modeling
algorithms was evaluated by leave-one-out external cross-validation. These analyses were
performed on sMRI and NP variables separately and in combination. The following classification
accuracy was obtained for different variables and modeling algorithms. sMRI only: (a) STP-LDA:
64.3% sensitivity and 76.6% specificity, (b) PCA-LDA: 67.9% sensitivity and 72.3% specificity.
NP only: (a) STP-LDA: 71.4% sensitivity and 80.9% specificity, (b) PCA-LDA: 78.5% sensitivity
and 91.5% specificity. Combined sMRI-NP: (a) STP-LDA: 64.3% sensitivity and 83.0%
specificity, (b) PCA-LDA: 89.3% sensitivity and 93.6% specificity. (i) Maximal diagnostic
accuracy was achieved by combining sMRI and NP variables. (ii) NP variables were more
informative than sMRI, indicating that cognitive deficits can be detected earlier than volumetric
structural abnormalities. (iii) PCA-LDA yielded more accurate classification than STP-LDA. As
these sMRI and NP tests are widely available, they can increase accuracy of early intervention
strategies and possibly be used in evaluating treatment response.

Keywords
Schizophrenia; Schizophreniform; Schizoaffective; PCA; LDA; Biomarkers; Neuropsychology;
MRI; Cross-validation; Diagnosis; MCIC

Introduction
Making an accurate diagnosis after a first psychotic episode is important for initiating
treatment and counseling patients and families (Harrigan et al. 2003). Classification systems
for psychiatric disorders are distinguished from the classification of other diseases by their
major reliance on behavioral signs and symptoms. Nearly 40 years ago Robins and Guze
(1970) outlined a means for developing laboratory tests for mental disorders in order to
improve the reliability and validity of classification and move diagnostic assessment beyond
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clinical description. They suggested that, following clinical description, one should strive to
identify reliable and precise laboratory measures to assist in diagnosis. Neuropsychological
(NP) measures of cognitive dysfunction are reliable and in most cases are precise throughout
disease progression. On the other hand, structural MRI (sMRI) of the brain can generate
reliable and precise estimates of brain volumes. Several experimental studies have revealed
abnormalities in schizophrenia using NP or sMRI measures (Andreasen et al. 1990;
Ballmaier et al. 2008; Hawkins 1999; Hulshoff Pol and Kahn 2008; Leeson et al. 2008;
Midorikawa et al. 2008; Segall et al. 2009; Wang et al. 2008; Watson et al. 1981). Thus, NP
and sMRI are suitable candidate laboratory tests for the early identification of individuals
with schizophrenia and related psychoses.

Our goal in this study was to develop and evaluate diagnostic models for recent-onset
schizophrenia spectrum illnesses based on NP and sMRI variables, in combination and
separately. The choice to evaluate recent-onset patients was based on our intent to develop
diagnostic tools that can be of practical adjunct use in a real-life first visit to a mental health
clinic. To this end, we drew participants from four geographic regions of the United States
(Minnesota, New Mexico, Iowa, and Massachusetts).

Previous work by our group demonstrated the potential of applying Linear Discriminant
Analysis (LDA) (Green 1978) on accurately diagnosing adult (Georgopoulos et al. 2007)
and adolescent (Pardo et al. 2006) schizophrenic patients. To evaluate recent-onset patients
in the current study we followed two approaches. In the first approach, based on stepwise
(STP) LDA (Dixon 1992), we selected subsets of pertinent variables which would lead to
faster models, risking however the rejection of useful information. In the second approach,
based on Principal Component Analysis (PCA) (Green 1978) and LDA, we aimed at
maximally exploiting data information from our sample, leading to potentially more
accurate tests. Through these two approaches we sought to develop NP and sMRI models
that could be used as biomarkers for the diagnosis of recent-onset psychotic disorders. In
addition, we sought to obtain an unbiased error estimate of future performance of the
modeling algorithms using external-cross-validation (Ambroise and McLachlan 2002).

Method
Subject Selection

Subjects were selected from the larger MIND Clinical Imaging Consortium (MCIC) sample
(Segall et al. 2009). In the Consortium, prospective recent-onset patients and healthy
subjects underwent structured CASH or SCID-I diagnostic interview evaluations by trained
assessors (Andreasen et al. 1992; First et al. 2001), sMRI scanning and NP testing. The
disease was labeled as of “recent-onset” when any one of the following criteria was present:
(a) psychotic symptoms of any duration with a maximum lifetime exposure of 10 mg
haloperidol equivalents, (b) psychotic symptoms of no more than 5 years duration,
combined with no or minimal antipsychotic exposure (no more than a total lifetime exposure
of the equivalent of 10 mg haloperidol), (c) psychotic symptoms of no more than 5 years
duration, combined with no more than 12 weeks of antipsychotic exposure, and with no
exposure during the previous 3 weeks, or (d) psychotic symptoms of no more than 2 years
duration, combined with no more than 6 months of antipsychotic exposure.

Patients had one of the following diagnoses: schizophrenia, schizophreniform disorder, or
schizoaffective disorder. We used data from 47 healthy controls and 28 patients (Ntotal=75)
in this analysis. (From a total of 84 subjects available, 9 were excluded due to incomplete
NP testing.) The demographic characteristics of the two groups are presented in Table 1
(Hollingshead and Redlich 1958). After complete description of the study to the subjects,
written informed consent was obtained. Procedures were in accordance with the policies and
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ethical standards of the institutional review boards at the four sites and the Declaration of
Helsinki (World Medical Association General Assembly 2004).

Neuropsychological Assessment
Neuropsychological assessment was based on a battery of tests (Annett 1970; Brandt 1991;
Delis et al. 2001; Miller 1990; Reitan 1958; Ruff and Parker 1993; Shallice 1982; Wechsler
1997a, b; Wilkinson 1993) yielding a total of 75 scores, the specifics of which are given in
Table 2. None of the NP variables was a composite of others (i.e. sums, averages), which
allowed maximum non-overlapping information to be incorporated in the models without
adding redundant variables. It is also important to note that none of these 75 variables was
used in diagnosing patients. The approximate duration to complete these tests was 3 hours.

sMRI Processing
Cross-site sMRI acquisition calibration and reliability were established in a preceding study
using human phantoms following guidelines developed by the Biomedical Informatics
Research Network (BIRN) testbed for morphometry (Jovicich et al. 2006, 2009). The MRI
acquisition protocol for high-resolution coronal T1-weighted images were matched across
the four different sites (University of Minnesota: Siemens 3 T Trio, University of Iowa:
Siemens 1.5 T Sonata, Massachusetts General Hospital and University of New Mexico:
Siemens 1.5 T Avanto): 3 T Trio: TR/ TE/flip angle=2.53 s/3.79 ms/7°, 1.5 T Sonata: TR/
TE/flip angle=20 ms/6 ms/20°, 1.5 T Avanto TR/TE/flip angle 12 ms/4.76 ms/20°,
FOV=16×16 cm, 128 contiguous slices (imaging matrix=256×256, in plane resolution=
0.625×0.625 mm, slice thickness=1.5 mm), NEX=3. Acquisition time for this Gradient Echo
sequence was approximately 20 minutes.

Volumetric measurements of brain areas were obtained from sMRI scans in an automated
manner using the Freesurfer software package (http://surfer.nmr.mgh.harvard.edu, Version
4.0.1) (Fischl et al. 2002). Minor manual intervention following the standard Freesurfer
processing manuals was required for the MRI data of one subject. A total of 95 sMRI
variables were used in this analysis (Table 3). The approximate total duration for an MRI
acquisition was 40 minutes.

Model Development
Two types of models were developed for discriminating recent-onset patients from healthy
controls. Both analyses were based on LDA (Green 1978). The first analysis was applied on
the raw data. STP-LDA was performed using Wilk’s Λ as a criterion, with an enter-criterion
of p=0.05 and a remove-criterion of p=0.10. This analysis yielded classification functions
from subsets of the original variables. The second analysis involved a dimensionality
reduction and was applied on standardized data. For that purpose, raw values were
transformed to z-scores (across subjects, within each variable) and then subjected to PCA
(Green 1978). An LDA was performed using the first k principal components as predictors;
k was determined using Humphrey-Ilgen’s permutation procedure (O’Connor 2000). Finally,
in both analyses, prior probabilities for the two groups were set to be equal in the LDA
(chance level= 50%). This allowed easier, and more accurate, data interpretation since more
controls were in the study (47 vs. 28). If priors were not set equal and a model were biased
towards controls, the model would have higher overall accuracy and specificity on the
specific sample simply by chance (up to 47/75=62.7%), though sensitivity would be lower.

Variable Sets Used
The two analyses mentioned in the preceding paragraph were applied under three variable
settings: (a) using only NP variables, (b) using only sMRI variables, and (c) using both NP
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and sMRI variables. This approach allowed us to evaluate how accurate the prediction is by
each set of variables separately, and whether their combination might improve or worsen
classification.

External Cross-Validation
In addition to developing models that discriminate the two groups, we were interested in
evaluating the accuracy of our modeling algorithms on new subjects through cross-
validation. For that purpose, we used an external leave-one-out loop. Specifically, before
any analysis was performed, a single subject was left out and was used only to cross-validate
our results, avoiding selection bias and, thus, overfitting (Ambroise and McLachlan 2002;
Duda et al. 2001). This operation was iteratively applied until all subjects were left out (Fig.
1). With respect to PCA-LDA, the z-scores and principal components of each external
subject were computed based on coefficients derived from the remaining subjects.

Ultimately, both STP-LDA and PCA-LDA yielded classification tables from which the
performance of the two classification methods was evaluated by computing the following
measures: overall accuracy of classification, sensitivity, specificity, positive likelihood-ratio,
negative likelihood-ratio, χ2 and the odds-ratio (i.e. strength and direction of the
association).

STP-LDA Models for All Subjects
The external cross-validation analyses described in the preceding section were aimed to
assess the success (or error) rates of the classification algorithms but cannot provide
consistent information concerning the relative importance of the NP and/or sMRI predictors,
since those varied depending on the particular subject left out. This information can be
gained by performing the same analyses using all subjects. For that purpose, we developed
specific models for the STP-LDA using all 75 available subjects under the three settings
described above, and evaluated the relative contribution of each variable to the respective
model. Each variable’s contribution was assessed based on its standardized coefficient. We
further investigated how the variables selected in the STP-LDA models relate to the disease
using ANOVA with group as a fixed factor and an ANCOVA using sex, age, and
intracranial volume as covariates. In the case of the PCA-LDA the analysis described above
was not performed since all variables contribute to all principal components and by
extension to the LDA.

Software Packages Used
PCA-LDA was performed using the MatLab software package and built-in functions, except
for Humphrey-Ilgen analysis which was based on free access code by O’Connor (2000).
Regarding STP-LDA this was performed using the SPSS version 15 software package.
Special care was taken to remove a subject from the external leave-one-out loop prior to any
analysis (Fig. 1), since the SPSS built-in stepwise function selects variables prior to
removing a subject and only removes a subject prior to calculating variable coefficients.
Settings for each analysis are described in the respective methods sections.

Results
The results of the external cross-validation are presented in Table 4. Ordered contributions
of original variables for the proposed final STP-LDA models are presented in Table 5 and
their individual relations to the disease group are presented in Table 6.

In general, models developed under PCA-LDA achieved better classification than those
under STP-LDA, except for the sMRI-only setting where results were comparable. For the
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PCA-LDA, NP-only was better than sMRI-only models, while the combination of NP and
sMRI variables provided the best classification. In contrast, classification accuracy for STP-
LDA was comparable across all combinations of data (NP-only, sMRI-only, NP-sMRI).

The NP variables that were selected through STP-LDA reflected visual memory, problem
solving, executive function, and spatial motor abilities. In all those NP tests patients
performed worse than controls. Regarding the selected sMRI variables, they were mostly
from frontal, temporal and subcortical areas. Of the sMRI variables that had a significant
group effect, patients had smaller left precentral brain volume, but larger volume for all the
other structures. This remained consistent even when accounting for age, sex, and
intracranial volume for variables with significant differences between groups.

Discussion
Overall Diagnostic Usefulness

We applied STP-LDA and PCA-LDA under three settings (NP-only, sMRI-only, Combined
NP-sMRI) to discriminate recent-onset psychotic patients and controls. Rejection of the null
hypothesis that classification was due to chance was achieved for all modeling approaches
under all settings (χ2≥ 11.6; p≤7×10−4). These results indicate that both methods under all
three settings can contribute at a variable level to disease diagnosis (i.e. accurately
identifying whether an individual does or does not suffer from a psychotic disorder).

PCA-LDA vs. STP-LDA
When comparing between the two modeling methods, there was generally better
classification with the PCA-LDA than with the STP-LDA algorithm, with the exception of
the sMRI-only setting where results were comparable (compare top vs. bottom of Table 4).
This finding indicates that PCA-LDA is more robust as a classification model probably due
to the greater amount of accounted total variance. In the case of the STP-LDA, only certain
variables are selected each time and, in addition, these variables partially covary (i.e. carry
common information). On the other hand, the variables selected through PCA are
composites of all original variables, and are between them orthogonal (zero covariance).

NP-Only vs. sMRI-only vs. Combined NP-sMRI
Comparison of the three variable settings is slightly more complicated. When comparing
individually the NP-only setting to the sMRI-only setting, better classification is achieved
using only NP variables under both algorithms. This finding indicates that there is more
pertinent information in the NP relative to sMRI variables and, by extension, that cognitive
deficits are probably more sensitive to the occurrence of psychotic disorders than structural
abnormalities. However, this finding does not necessitate that an sMRI-only model cannot
be developed, but rather that the amount of information used and the approach followed did
not lead to any strong sMRI diagnostic measure.

The improved classification of the NP-sMRI combination only for the PCA-LDA, but not
for the STP-LDA can be explained as follows. Through PCA-LDA all variables contribute
to each principal component, and thus more of the original variance is incorporated in a
model. On the other hand, through STP-LDA, a selection always has to be performed and
the amount of variance explained will probably not be as large. In our case, the extra
variance incorporated in the PCA-LDA was relevant to discriminating healthy subjects from
patients. However, if the combination of variables added information irrelevant to disease
diagnosis, then classification could have been worse. It is the relevance of variables to
disease diagnosis that makes the NP-sMRI PCA-LDA method the best approach.
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Best Model
From the modeling methods applied, the best diagnostic outcome for all measures was
provided under the Combined NP-sMRI setting of the PCA-LDA algorithm. The high values
of sensitivity (89.3%), specificity (93.6%), positive likelihood-ratio (13.99), and diagnostic
odds-ratio (122.22), and the low negative likelihood-ratio (0.11) suggest a diagnostic
usefulness of the PCA-LDA under combined NP-sMRI. The fact that all variables need to be
used in this model makes it a better candidate as an adjunct in disease diagnosis rather than a
fast screening tool (i.e. approximately three and a half hours for a subject to undergo all NP
and sMRI testing).

Utility of Other Models
On the other hand, when it comes to a faster model, it is more practical to use fewer
variables. That can be achieved through the STP-LDA models. In these models, sensitivity
and specificity are good, yet not as high as in the best model presented above. Overall, the
findings on the STP-LDA models do not make them ideal screening tests, but there are
indications of their usefulness as faster tools (duration of about 1 h for the NP-only) and
with the introduction of more subjects in the MCIC database prediction could improve. NP-
only models can be useful to a health provider since NP tests are straightforward in their
administration and, even more, there are now objective computerized tests that can be
widely available to the community, even in remote areas. Similarly, in those cases where
patients visiting the doctor’s office have already had an MRI, an sMRI-only model could be
used as an adjunct during initial evaluation.

Variable Contribution in STP-LDA
The fact that differences in NP score means were more significant than sMRI variables
indicates that cognitive deficits are more sensitive for early diagnosis than volumetric
structural deficits and, thus, also supports the findings discussed above. The specific
variables that were selected by the STP-LDA related to memory (verbal and visual), motor
dexterity and speed, visuospatial abilities, and executive function. Patients consistently
performed worse in these tests relative to controls (see Table 6). These findings are in
agreement with a large body of evidence on the nature of cognitive deficits in chronic and
first-episode schizophrenia (Hawkins 1999;Leeson et al. 2008;Midorikawa et al.
2008;Watson et al. 1981).

The sMRI structures that were selected by STP-LDA were frontal, temporal and subcortical.
The involvement of basal ganglia in schizophrenia has been reported in MRI studies of
minimally medicated patients, however volumetric differences between groups have not
been consistently observed, with larger, smaller, or equal volumes in patients versus controls
(Ballmaier et al. 2008; Glenthoj et al. 2007; Kawasaki et al. 2004; Velakoulis et al. 2002;
Wang et al. 2008). Our findings indicate a tendency for increased putamen and pallidum
volumes in patients. On the other hand, the relation observed between increased ventricle
size and schizophrenia is better characterized in the literature and consistently observed
(Andreasen et al. 1990; Hulshoff Pol and Kahn 2008). Regarding the volumetric differences
in the frontal and temporal lobes, results from previous research indicate an association
between decreased volume and schizophrenia (Borgwardt et al. 2007; Hazlett et al. 2008;
Kawasaki et al. 2004; Velakoulis et al. 2002). However, there are several reports for
regional variability within lobes (Selemon 2001). Szeszko et al. (1999) report volume
variability within lobes, specifically, more frontal subregions in the frontal lobe having
increased size and posterior subregions having decreased size in patients, which agrees with
our findings (increased frontal pole volume and decreased precentral volume). The only
finding in our results that has not been reported in previous studies is the increased size of
the right parahippocampal cortex (Baaré et al. 2001). This could be due to the fact that the
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patients in the study were recent-onset, and decreased volume of temporal structures is
associated with increased disease duration (Velakoulis et al. 2002). On a cellular level, the
volumetric differences above can be explained through synaptic pruning in the cortex
(Harrison 1999; Keshavan et al. 1994; Selemon 2001) and an increase in the number of
synapses in the basal ganglia (Roberts et al. 2008).

This research, which uses computerized assessment of MRI scans, a thorough
neuropsychological test battery, and a sophisticated analysis procedure carries potential for
clinical application. It is possible that the MRI and neuropsychological indices may be
useful for cases that are difficult to diagnose; however, in the current study only research
subjects who met diagnostic criteria on a standard structured interview were included in the
analysis. Therefore, the potential for neuropsychological and MRI procedures to assist
specifically in complex cases is not fully tested. The present findings represent a first step in
identifying indices that are viable candidates for biomarkers to enhance diagnostic
determinations in schizophrenia.

As this study addresses the utilization of sMRI and neuropsychological testing for
classification, it is appropriate to note prior results in this sample from more traditional
group-based analyses. Regarding neuropsychological testing, Sponheim et al. (2009) have
reported that both the recent-onset and chronic schizophrenic subjects exhibit a wide range
of cognitive deficits compared to controls, which is consistent with the body of findings
documenting cognitive dysfunction in schizophrenia. Regarding sMRI, one published report
describes gray matter in MCIC subjects combined with a sample of BIRN subjects in order
to increase power in detecting differences between patients and controls (Segall et al. 2009).
Statistically significant differences in gray matter concentration were evident between
schizophrenic patients and controls for similar brain regions across the various study sites.
Thus, traditional group-based analyses on sMRI and neuropsychological measures carry
some diagnostic utility. Of note, however, the above studies included both recent-onset and
chronic schizophrenic patients in their analyses.

Practical Considerations
It is important to keep in mind that we evaluated minimally medicated patients who
resemble patients coming to the office for the first time. This makes the derived models
useful adjuncts in verifying the diagnosis early in the course of the disease with high
specificity and sensitivity. The use of sMRI and NP tests allows objective measures to be
incorporated into disease diagnosis, thus negating the subjectivity of structured interviews
while allowing, at the same time, non-specialists to contribute in screening for disease
through computerized tests. This would be an asset in rural areas and primary care centers.
Even more, such models can potentially be used as surrogate biomarkers for treatment
response. Full description of the Mind Clinical Imaging Consortium data base and tools for
data abstraction can be accessed as referenced below (see Information Sharing Statement).
The databases are currently being expanded to include data on genetic variation in the
sample. Analyses that examine a combination of single nucleotide polymorphisms (SNPs),
structural MRI, functional MRI, and cognitive performance may further enhance the utility
of biomarkers to assist with diagnostic determinations of schizophrenia.

The best model proposed is that of the PCA-LDA with all NP and sMRI variables included.
However, useful information can be obtained from the NP variables only, if, for example, a
faster test were desirable. In general, the accuracy of modeling algorithms is likely to be
improved with increase in the number of subjects studied. Moreover, this approach holds
promise for differential diagnosis, for example, between schizophrenia and bipolar disorder
(Pardo et al. 2006), with and without psychotic features, as well as between schizophrenia
and schizophreniform disorder. Finally, current criteria require 6 months for the specific
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diagnosis of schizophrenia to be established. If our models successfully pass all phases of
biomarker development (Pepe 2005), they could help make these criteria more efficient and
lead to early discrimination between schizophreniform disorder and schizophrenia.

Information Sharing Statement
For more information on the methods, models, applications and tools used in this article,
when they are publically available, please visit https://portal.mind.unm.edu/mcic/public/.
Data will be accessible on Xnat (http://www.xnat.org/) in the near future.
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Fig. 1.
Flowchart of model development and external cross-validation for the STP-LDA and the
PCA-LDA
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Table 2

Neuropsychological variables used

NP Testa,b,c,d NP name Function/Domain assessed

1 Annett Scale of Hand Preference Continuous (SUM) Handedness

2 WRAT-3 Reading Total Reading Reading/Potential or Premorbid IQ

3 Benton Visual Retention Error Categories: Omissions Visual memory

4 Benton Visual Retention Error Categories: Distortions Visual memory

5 Benton Visual Retention Error Categories: Perseverations Visual memory

6 Benton Visual Retention Error Categories: Rotations Visual memory

7 Benton Visual Retention Error Categories: Misplacements Visual memory

8 Benton Visual Retention Error Categories: Size Errors Visual memory

9 Benton Visual Retention Error Categories: Left Errors Visual memory

10 Benton Visual Retention Error Categories: Right Errors Visual memory

11 Benton Visual Retention Number Correct Score Visual memory

12 Category Fluency Vegetables Verbal/Linguistic

13 Letter Fluency Starts With ‘F’ Verbal/Linguistic

14 Letter Fluency Starts With ‘A’ Verbal/Linguistic

15 Letter Fluency Starts With ‘S’ Verbal/Linguistic

16 Category Fluency Animals Verbal/Linguistic

17 Category Fluency Fruits Verbal/Linguistic

18 WAIS-3 Block Design Total Raw Score Spatial motor coordination

19 WAIS-3 Letter-Number Total Raw Score Working memory

20 WAIS-3 Vocabulary Total Raw Score Verbal/Linguistic

21 WAIS-3 Similarities Total Raw Score Verbal abstraction

22 WMS-3 (Immediate) Story A Recall Score Verbal declarative memory

23 WMS-3 (Immediate) Story A Thematic Score Verbal declarative memory

24 WMS-3 (Immediate) Story B 1st recall score Verbal declarative memory

25 WMS-3 (Immediate) Story B 1st recall Thematic score Verbal declarative memory

26 WMS-3 (Immediate) Story B 2nd recall score Verbal declarative memory

27 WMS-3 (Immediate) Story B 2nd recall Thematic score Verbal declarative memory

28 Trail Making Trials A: Time Problem solving/Executive

29 Trail Making Trials A: Errors Problem solving/Executive

30 Trail Making Trails B: Time Problem solving/Executive

31 Trail Making Trails B: Errors Problem solving/Executive

32 CalCap SRT Base: Reaction Time Processing speed & attention

33 CalCap CRT Base: Reaction Time Processing speed & attention

34 CalCap CRT Base: True Positive Processing speed & attention

35 CalCap CRT Base: False Positive Processing speed & attention

36 CalCap CRT SEQ1: Reaction Time Processing speed & attention

37 CalCap CRT SEQ1: True Positive Processing speed & attention

38 CalCap CRT SEQ1: False Positive Processing speed & attention

39 CalCap CRT SEQ2: Reaction Time Processing speed & attention
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NP Testa,b,c,d NP name Function/Domain assessed

40 CalCap CRT SEQ2: True Positive Processing speed & attention

41 CalCap CRT SEQ2: False Positive Processing speed & attention

42 WMS-3 (Delay) Story A recall score Verbal declarative memory

43 WMS-3 (Delay) Story A Thematic score Verbal declarative memory

44 WMS-3 (Delay) Story B recall score Verbal declarative memory

45 WMS-3 (Delay) Story B Thematic score Verbal declarative memory

46 WMS-3 (Delay) Recognition Total Score Verbal declarative memory

47 WMS-3 (Delay) Percent Retention Verbal declarative memory

48 Tower of London Moves Made: 3 Ring Problem solving/Executive

49 Tower of London Moves Made: 4 Ring Problem solving/Executive

50 Tower of London Moves Made: 5 Ring Problem solving/Executive

51 Tower of London Avg. Pickup Time: 3 Ring Problem solving/Executive

52 Tower of London Avg. Pickup Time: 4 Ring Problem solving/Executive

53 Tower of London Avg. Pickup Time: 5 Ring Problem solving/Executive

54 Tower of London Avg. Total Time: 3 Ring Problem solving/Executive

55 Tower of London Avg. Total Time: 4 Ring Problem solving/Executive

56 Tower of London Avg. Total Time: 5 Ring Problem solving/Executive

57 Tower of London Total Trials Time: 3 Ring Problem solving/Executive

58 Tower of London Total Trials Time: 4 Ring Problem solving/Executive

59 Tower of London Total Trials Time: 5 Ring Problem solving/Executive

60 Tower of London Avg. Trial Time: 3 Ring Problem solving/Executive

61 Tower of London Avg. Trial Time: 4 Ring Problem solving/Executive

62 Tower of London Avg. Trial Time: 5 Ring Problem solving/Executive

63 WMS-3 Faces (Immediate) Recognition total score Visual memory

64 WMS-3 Faces (Delay) Recognition Total Score Visual memory

65 Hopkins verbal learning (Immediate) Total Raw: Trial 1 Verbal declarative memory

66 Hopkins verbal learning (Immediate) Total Raw: Trial 2 Verbal declarative memory

67 Hopkins verbal learning (Immediate) Total Raw: Trial 3 Verbal declarative memory

68 Grooved pegboard Dominant Hand: # Drops Fine motor dexterity & speed

69 Grooved pegboard Non-dominant Hand: Time Fine motor dexterity & speed

70 Grooved pegboard Non-dominant Hand: # Drops Fine motor dexterity & speed

71 Grooved pegboard Dominant Hand: Time Fine motor dexterity & speed

72 Hopkins verbal learning (Delay) Delay Total Raw Verbal declarative memory

73 Hopkins verbal learning (Delay) Recognition: Hits Verbal declarative memory

74 Hopkins verbal learning (Delay) Recognition: F/A Related Verbal declarative memory

75 Hopkins verbal learning (Delay) Recognition: F/A Unrelated Verbal declarative memory

a
WRAT: Wide Range Achievement Test—Third Edition

b
WAIS-3: Wechsler Adult Intelligence Scale—Third Edition

c
WMS-3: Wechsler Memory Scale-III

d
CalCap: California Computerized Assessment Package
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Table 5

Variable selection and ordered contribution during STP-LDA. All-subject model

Rank NP name sMRI name NP and sMRI name

1 Benton Visual Retention: Error Categories:
   Left Errors

Frontal: Left precentral Frontal: Left precentral

2 Grooved pegboard: Dominant Hand: Time Subcortical: Right Pallidum Tower of London: Total Trials Time: 5 Ring

3 WMS-3 (Delay): Story B recall score Subcortical: Third Ventricle WMS-3 (Delay): Recognition Total Score

4 Tower of London: Total Trials Time: 3
Ring

Frontal: Right frontal pole Frontal: Left superior frontal

5 WMS-3 (Delay): Recognition Total Score Temporal: Right parahippocampal Subcortical: Left Putamen

6 Benton Visual Retention: Error Categories:
   Rotations

Benton Visual Retention: Error Categories:
   Distortions

7 Tower of London: Total Trials Time: 5
Ring

WMS-3 (Immediate): Story B 1st recall
   Thematic score

8 WMS-3 (Delay): Story B Thematic score WMS-3 (Delay): Story B recall score

9 Benton Visual Retention: Error Categories:
   Perseverations

Subcortical: Right Accumbens area

10 Benton Visual Retention: Error Categories:
   Misplacements

Frontal: Right superior frontal

11 Grooved pegboard: Dominant Hand: #
Drops

Benton Visual Retention: Error Categories:
   Misplacements

12 WAIS-3: Block Design Total Raw Score Grooved pegboard: Non-dominant Hand:
Time

13 Temporal: Right temporal pole
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Table 6

Relationship to disease of individual variables from the STP-LDA

Variable name Patients vs. Controls F[1,73] p

Story B recall score Worse 79.63 3×10−13

Story B Thematic score Worse 53.22 3×10−10

Error Categories: Left Errors Worse 38.18 3× 10−8

Story B 1st recall Thematic score Worse 37.93 4× 10−8

Non-dominant Hand: Time Worse 31.54 3× 10−7

Total Trials Time: 5 Ring Worse 30.88 4× 10−7

Recognition Total Score Worse 24.39 5× 10−6

Error Categories: Distortions Worse 24.34 5× 10−6

Dominant Hand: Time Worse 22.24 10−5

Block Design Total Raw Score Worse 16.36 10−4

Error Categories: Misplacements Worse 15.99 2×10−4

Error Categories: Perseverations Worse 15.84 2×10−4

Right frontal pole Larger 11.5 0.001

Right parahippocampal Larger 8.14 0.006

Left precentral Smaller 7.56 0.008

Left Putamen Larger 6.66 0.012

Total Trials Time: 3 Ring Worse 6.03 0.016

Right Pallidum Larger 4.34 0.041

Third Ventricle Larger 4.07 0.047

Right temporal pole Larger 3.45 0.067 (ns)

Right Accumbens area Larger 3.36 0.071 (ns)

Dominant Hand: # Drops Worse 2.03 0.158 (ns)

Left superior frontal Larger 0.25 0.615 (ns)

Right superior frontal Larger 0.21 0.651 (ns)

Error Categories: Rotations Worse 0.03 0.858 (ns)
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