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SUMMARY

Currently many dose finding clinical trial designs, including the continual reassessment method
(CRM) and the standard “3+3’ design, dichotomize toxicity outcomes based on pre-specified dose-
limiting toxicity criteria. This loss of information is particularly inefficient due to the small sample
sizes in phase I trials. Common Toxicity Criteria (CTCAEV3.0) classify adverse events into grades
1 through 5, which range from 1 as a mild adverse event to 5 as death related to an adverse event.
In this paper, we extend the CRM to include ordinal toxicity outcomes as specified by
CTCAEvV3.0 using the proportional odds model and compare results with the dichotomous CRM.
A sensitivity analysis of the new design compares various target dose-limiting toxicity rates,
sample sizes, and cohort sizes. This design is also assessed under various dose-toxicity
relationship models including proportional odds models as well as those that violate the
proportional odds assumption. A simulation study shows that the proportional odds CRM
performs as well as the dichotomous CRM on all criteria compared (including safety criteria such
as percentage of patients treated at highly toxic or suboptimal dose levels) and with improved
estimation of the MTD when the PO assumption is not violated. These findings suggest that it is
beneficial to incorporate ordinal toxicity endpoints into phase | trial designs.
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1. INTRODUCTION

The main objective of dose finding trials for cytotoxic agents in cancer and other severe
diseases is to accurately estimate the maximum tolerated dose (MTD) in addition to
assessing the safety of an investigational drug for further research in phase Il and phase 111
efficacy trials [1-2]. The maximum tolerated dose is the highest dose at which a pre-
specified percentage of patients experience a dose-limiting toxicity (DLT). What constitutes
a DLT, as well as the targeted DLT rate, must be agreed upon prior to the start of a trial.
DLT rates often range between 20-33% depending on the disease setting, and common
DLTs often include severe or life-threatening adverse events directly attributed to the
treatment [3].

Finding optimal doses of drugs or transitioning existing drugs as treatment in various
diseases requires a reliable and efficient phase | design [4]. There are many phase I trial
designs currently implemented in research, including the standard ‘3+3’ design and
O’Quigley’s continual reassessment method (CRM) [5]. These dose finding trial designs
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dichotomize toxicity based on pre-specified dose-limiting criteria; therefore, much
information is lost by not accounting for ordinal toxicity grading. General guidelines by
Common Toxicity Criteria (CTCAE v3.0) classify adverse events (AE) into grades 1
through 5, which range from 1 as a “mild AE” to 5 as “death related to an AE” [6]. This
comprehensive toxicity grading scale is already established and used in clinical practice,
which suggests that a binary response may inappropriately ignore various levels of toxicity
severity [7]. Less severe grade 1 or 2 toxicities (often classified as sub-DLTs in trials) can
still impact dose-escalation in phase I trials. These sub-DLTs can still be clinically
significant in their own right, and we may want to limit the number of a particular sub-DLTs
type in a trial [8-9]. For this reason, including individual toxicity grades could be
advantageous in a phase I trial. Secondly, sub-DLTs could also be indicative of an increased
probability of experiencing a DLT with further dose-escalation [8-9]. A design that only
incorporates a binary toxicity response would miss the increased information gained by
including sub-DLTs. By incorporating all toxicity grades into a dose finding trial design, any
toxicity experienced during a phase I trial will influence the next dose selected for testing;
therefore, the toxicity information used to estimate the MTD is a more accurate
representation of the true drug behavior in the test population.

Since most phase | trials are non-randomized and test small sample sizes, until relatively
recently statistical considerations have been largely ignored [7]. The recommended dose
obtained from a dose finding trial is often inaccurate due to the large variability of patient
responses, and the data tends to provide unreliable estimates of the risk of toxicity for any
dose studied [1,10]. With improved designs, more investigational drugs could potentially
show efficacy when they otherwise could be labeled as ineffective or too toxic due to testing
at the inappropriate dose in later phases of drug development.

While designs such as the standard *3+3’ and its variations remain popular, this is often due
to the simplicity of these designs. The “3+3’ design is still favored by many investigators
because it is algorithmic, does not require any computation to use in clinical trials, and does
not depend on a statistician. However, this design tends to treat many patients at low,
suboptimal doses, and a critical limitation in the dose escalation process is it only considers
the last cohort tested to decide how the study should proceed [3—4,11]. There is often much
uncertainty regarding the MTD as it is not truly associated with a target toxicity, it greatly
depends on the individual patients and the order they were treated, and tends to have large
variability [2,12]. This standard design cannot specify a DLT rate prior to the start of a trial,
and therefore is not necessarily intended to produce a very accurate estimate of the MTD;
instead its main purpose to assess safety quickly and identify a dose that is not too toxic for
use in efficacy trials [7].

In recent years, there has been some research to design dose finding trials to incorporate
multiple toxicity grades. Wang et al [13] suggest improvements to both the standard ‘3+3’
design and the CRM to include a severity level of toxicity for “dose-limiting” grades 3 and
4. While the specifics of the design will not be discussed in this paper, this design does
distinguish between grade 3 and 4 toxicities, but still does not incorporate milder toxicities
of grades 1 and 2. It also requires clinical investigators to assign a weight to describe the
severity of grade 4 as compared to grade 3 toxicities. The Bekele and Thall method [9]
differs substantially from traditional phase I designs by modeling patient outcome as a
vector of correlated, ordinal-valued toxicities using the Bayesian multivariate ordinal probit
regression model of Chen and Dey [14], which was extended to allow different toxicities to
have multiple severity levels [9]. Investigators must list all possible toxicities with
corresponding severity levels as well as specify a severity weight for each toxicity level
prior to the start of the trial. Investigators must also construct hypothetical cohorts with
ranges of toxicity severities, and then a dose-escalation scheme must be agreed upon for
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each hypothetical cohort. Simulations show that this method works well under various
scenarios, and while this complicated design may not appeal to all investigators, it certainly
has advantages over traditional designs that reduce several toxicities to one binary outcome
[14]. However, due to its complicated setup and the requirement of much investigator input
prior to the trial, this method is rarely implemented as a phase I design.

Yuan et al [8] developed a Quasi-CRM, which uses severity weights to convert toxicity
grades to numerical scores. Toxicity grades are represented using an “equivalent toxicity
(ET) score” where grade 3 toxicities are assigned a value of 1, grades 2 are assigned to 0.5,
and grades 4 are assigned to 1.5. They consider an ET score equal to 1 as the cutoff grade
for DLT [8]. A quasi-Bernoulli likelihood incorporates these continuous ET scores into the
CRM, and the recommended dose for the next patient is the dose level with estimated score
closest to the target score, obtained from a pre-specified toxicity profile at the MTD [8].
Simulations show that this Quasi-CRM design performs better than the traditional CRM and
is comparable to the Bekele and Thall method. However, the ET score has not been proven
to be an effective measure of toxicity severity, and it may be beneficial to consider toxicity
grades as ordinal endpoints since CTCAEV3.0 is the current standard for classifying various
toxicity severities.

Current designs attempting to include multiple toxicity grades can be somewhat difficult to
implement, computationally intensive, and require clinical investigators to assign weights to
possible toxicities seen in a trial. While intimate involvement of clinicians in trial design is
certainly a benefit, it may not be practical in many settings and many investigators may have
difficulty providing the quantitative information requested of them. Other common trial
designs such as the standard ‘3+3” and CRM still dichotomize toxicity based on dose-
limiting criteria and can be improved. The proportional odds model (POM) design extends
the modified CRM to include ordinal toxicity grading criteria already implemented in
clinical practice, thus incorporating more toxicity information than traditional dichotomous
designs.

A motivating example for this POM design is the situation where a cohort of patients all
experience a grade 2 (i.e., moderate) toxicity in a dose finding clinical trial that pre-specified
DLTs as grade 3 or 4 CTCAE toxicity prior to the start of the trial. True phase I trials can
vary the definition of DLTs to include some grade 2 toxicities such as permanent late
consequences of radiotherapy and/or exclude specific grade 3 toxicities such as neutropenia
depending on the disease setting [8-9]. However, many trials often classify DLTs as grade 3
or 4 CTCAE toxicities; therefore in this example, all three patients in this particular cohort
experience grade 2 sub-DLTs. Consequently, all patients in this cohort would be classified
as not experiencing a DLT and the trial would continue by escalating the dose for the next
cohort of patients. Under the assumption that the probability of toxicity increases as dose
increases, the last cohort of patients with grade 2 toxicities is most likely indicative of more
severe and dose-limiting toxicities at higher dose levels. While the dichotomous design
would not take these moderate toxicities into consideration, the ordinal proportional odds
design would better utilize the information from patients with moderate toxicities and would
restrict how much the dose would increase. Therefore, the ordinal design could potentially
prevent patients from being exposed to more highly toxic dose levels by incorporating all
ordinal toxicity information into the design.

2. METHODS
2.1. The Original CRM

The CRM was first developed by O’Quigley to address certain types of dose finding trial
design challenges often seen in oncology studies [5]. This Bayesian desigh was motivated
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by trials where patients are at a high risk of death in the short term, low doses are expected
to have no efficacy, little is known about the appropriate dose range for efficacy with
tolerable toxicity, and proposed therapies at high doses often have severe or fatal toxicities
[5]. The many strengths of the CRM make this dose finding trial design an appealing
alternative to the standard ‘3+3’ design. The CRM treats significantly fewer patients at
suboptimal doses and more accurately estimates the MTD [1,3,13,15]. This method has also
been shown to be efficient and unbiased, and the target DLT rate can be specified in the
CRM, unlike the standard *3+3’ [5,16-17]. The CRM may not accurately estimate the entire
dose-toxicity model, but it has been shown to be robust and accurate in estimating the MTD,
even when the selected dose-toxicity model is not correct [3,15,18]. Most importantly, the
CRM makes use of all patient information with each treated cohort to influence the next
dose studied [19-20].

2.2 Practical CRM using pseudo-data with continuous doses

Modifications to the CRM also allow investigators to add safety and stopping rules into a
dose finding trial, and most restrict steep dose escalations between treated cohorts [3]. The
CRM is often implemented in trials using discrete dose levels; however, the CRM can also
accommodate continuous dose ranges. A modified procedure for the CRM [5] as described
by Piantadosi [4] for continuous dose ranges which we will use for comparisons to the POM
design is as follows:

1. Doses can take values from a continuous range: xj; (@ < x; < b)

2. DLT is collected from the ith patient during the trial:

Ve 1 experiences a “dose — limiting ” toxicity
“~1 0 hasno “dose — limiting” toxicity

Prior to the start of the trial, obtain pre-clinical information about drug
characteristics as well as expectations of drug behavior at high and low doses. For
example, select doses that would be expected to produce 10% and 90% DLT rates.
Some of this information may come from prior studies of the investigational drug
in other disease settings, animal studies, and/or clinical impressions of the class of
drugs tested [2]. This is defined as pseudodata and is described in more detail in
section 2.3.

3. Specify a model y (x,0,8) for the dose-toxicity association. For example, one can
consider a standard 2-parameter logistic model:

1
vl @ AP Y = =

4. Use maximume-likelihood (ML) to obtain estimates of parameters (i.e., a.and f in
the two-parameter model above) by fitting the model to the pseudodata.

5. Invert the fitted model to calculate the starting dose for a pre-defined DLT rate, 74
usually set between 20-33% [3]. For the standard 2-parameter logistic model:

= log [74/1 - 4] —@

—

B

6. The initial cohort of patients is treated at X. Toxicity outcomes are collected.
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7. Repeat steps 4-6, including the pseudodata and all observed data, until a pre-
specified sample size is met. Note that pseudodata may be downweighted relative
to observed data.

8. The final re-fitted dose is considered the MTD for use in future efficacy trials.

2.3 Using pseudodata for model estimation

Many CRM approaches are Bayesian in their estimation. The approach described by
Piantadosi, however, uses ML, but requires data “anchors” to be provided to identify initial
doses and to stabilize the estimation. A benefit of the Bayesian approach is even when no
patients have experienced DLTSs, a posterior distribution can be estimated. In a standard ML
approach, a model cannot be estimated until at least one DLT is observed. Piantadosi’s
practical CRM has the benefit of incorporating investigator elicited information in practical
way and also stabilizing estimation. The practical CRM treats the investigator elicited
predicted toxicity and DLT combinations as data in the estimation. For example, x = (500,
3500); y = (0.10, 0.90) are vectors of dose and outcome information that are used to obtain
an initial dose and represent the pseudodata. However, this pseudodata can be included in
each dose estimation. Or, it can be dropped or downweighted, as described by Piantadosi et
al. [4].

2.4. Modified CRM with Ordinal Endpoints

This modified design classifies ordinal toxicity grading by Common Toxicity Criteria
(CTCAE v3.0). General guidelines for all possible adverse events describe grade 1 as a
“mild AE,” 2 as a “moderate AE,” 3 as a “severe AE,” 4 as a “life-threatening or disabling
AE,” and 5 as a “death related to AE” [6]. Deaths strictly related to an AE tend to be rare,
and if one did occur in a trial the safety review board must be notified and the trial
temporarily suspended until the board decides how to proceed. Therefore, grade 5 toxicities
will not be considered in this ordinal dose finding trial design, although it could be easily
extended to do so. In the situation where clinical investigators are unwilling to assign
importance to grade 1 toxicities, as they are often not clinically significant as compared to
experiencing no toxicity, this design does have the option of combining toxicity grades 0
and 1 into one category.

While the design is very similar to the original CRM described in section 2.2, now a
proportional odds model is implemented to incorporate ordinal toxicity endpoints. The
procedure is as follows:

1. Doses can take values from a continuous range: x;; (a < x; < b)

2. DLT is collected from the ith patient during the trial:

has no toxic response

experiences toxicity grade 1

experiences toxicity grade 2 (i=1,...,n)
experiences toxicity grade 3

experiences toxicity grade 4

=
1l
B W= O

Note that each patient may incur more than one toxicity. The toxicity response is
categorized according to the most severe grade experienced. Prior to the start of the
trial, consider toxicity grades 3 and 4 as “dose-limiting”. In a similar way as
Piantadosi’s practical CRM, obtain pre-clinical information about drug
characteristics as well as expectations of drug behavior at high and low doses (e.g.,
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select doses that are expected to produce 10% and 90% DLT rates). This defined as
pseudodata and is described in more detail in section 2.5.

3. Specify a model v (x,a,) incorporating pre-clinical expectations at high and low
doses to describe clinical investigator opinions of the dose-response relationship
prior to the start of the trial using a proportional odds model. The POM is often
selected to characterize the dose-toxicity relationship for ordinal response data, and
it assumes a common slope f and ordered intercepts aq = a > ... = oy [21].
Toxicity grades 1, 2, 3, and 4 versus dose are fitted using the proportional odds
model [22] shown in the following equation:

i=1,2,3,4

Y(x, a,B)=Pr[Y > jlx]= , .
1+exp [—(a j+/3x)J

4. Use ML to obtain estimates of parameters (i.e., o and B in the two- parameter
model above) by fitting the model to the pseudodata.

5. Toxicity grades 3 and 4 are considered as “dose-limiting”; therefore, the cutoff to
estimate the dose will be the probability of observing a toxicity grade 3 or higher
according to the clinical POM. Invert the fitted model to estimate the starting dose
for a pre-defined DLT rate, =4 usually set between 20-33%. For the proportional
odds model:

__ log [ lf;lr(,

X= —

B

|-

6. The initial cohort of patients is treated at X. Toxicity outcomes are collected.

7. Repeat steps 4-6, including the pseudodata and all observed data, until a pre-
specified sample size is met. Note that pseudodata may be downweighted relative
to observed data.

8. The final re-fitted dose is considered the MTD for use in future efficacy trials.

2.5 Pseudodata generation in ordinal CRM

Similar to the approach described in section 2.3, we use a method similar to that described
by Piantadosi, which uses maximum-likelihood but requires data “anchors” to be provided
to identify initial doses and to stabilize the estimation. The ordinal CRM also treats the
investigator elicited predicted toxicity and DLT combinations as data in the estimation. For
example, x = (200, 3000); y = (0.10, 0.90) are vectors of dose and outcome information that
are used to obtain an initial dose and represent part of the pseudodata. The ordinal CRM
differs from the original CRM in that there must be a distribution of toxicity grades at the
dose levels selected for 10% and 90% DLT prior to the start of the trial; e.g. at 200 mg, we
expect 60% no toxicity, 20% grade 1, 10% grade 2, 6% grade 3, and 4% grade 4. Similarly
at 3000 mg, we expect 2% no toxicity, 3% grade 1, 5% grade 2, 45% grade 3, and 45%
grade 4. The combination of information from the expected doses that will produce a 10%
and 90% DLT rate in addition to the distribution of toxicity grades at these dose levels
selected gives enough information to build a proportional odds model with the pseudodata.

The POM is unstable at the beginning of the trial when data accrued is sparse just like any
model based on few data points; however, given the number of parameters in the POM, the
predicted doses could be illogical. In order to help stabilize the POM, the probability of each
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toxicity grade is evaluated at an estimated 50% DLT rate according to the POM fit prior to
the start of the trial as described above. These points are added to the pseudodata in addition
to the information at 10% and 90% DLT rates. This information for an estimated 50% DLT
rate will also be incorporated into the binary CRM pseudodata for design comparison
purposes.

It is important to note that this pseudodata can be included in each dose estimation. Or, it
can be dropped, downweighted or even changed as the trial progresses, as described by
Piantadosi et al. [4]. However, when estimating a POM using ML, to obtain an estimate of
the full-model (i.e., an intercept for each grade and the slope), there must be at least one
occurrence of each level of toxicity. Otherwise, the model is unidentified. Using pseudodata,
the model will be identifiable regardless of the distribution of observed toxicities. Because
Phase | studies tend to have small sample sizes, it may be such that the trial will be near
completion (or completed) without having observed all grades of toxicity. This is not a
limitation of our approach: it would be seen as a strength if the goal is to estimate the MTD
with no patients experiencing a grade 4 toxicity.

3. SIMULATION STUDY
3.1. Approach

All simulation scenarios were conducted with 2000 datasets using the statistical package R
[23], and simulations were run for a continuous dose range of 0 mg to 3600 mg (although
the scale chosen is arbitrary). Two weighting schemes for pseudodata were implemented to
determine sensitivity to trial conduct and final dose selection. Specifically, the weight of the
pseudodata relative to the observed data was explored under two situations, referred to as the
50-50 (pseudodata has initial weight equal to one cohort) and 75-25 (pseudodata has initial
weight equal to one individual patient) for a trial with a sample size of 30 with a cohort size
equal to 3. The 50-50 weighting scheme starts with 50% weight on the pseudodata and 50%
weight on the first cohort of patients and results in only 9% weight on the pseudodata and
91% weight on the 30 patients at the end of the trial. Similarly, the 75-25 weighting scheme
starts with 25% weight on the pseudodata and concludes with only 4% weight on the
pseudodata after a total sample size of 30 is met.

Four scenarios were considered to assess the performance of the ordinal proportional odds
CRM compared to the dichotomous CRM. For each scenario, both the 50-50 and 75-25
weighting scheme and cohort size/sample size combinations of 3/30, 2/20, and 3/21 were
explored. All simulations assumed a 30% target DLT rate. Figure 1 display the pseudodata
proportional odds models utilized in various simulation scenarios. The leftmost figure is
pseudodata POM 1, and this model is implemented in Scenarios A and C. Specifically, itis a
POM with B = 0.001569, a; = —0.719265, ap = —1.70009, a3 = —2.51102, and a4 =
—3.49185. For a specified DLT rate equal to 30%, the starting dose is 1060 mg. The right
graph in figure 1 illustrates pseudodata POM 2 used in Scenarios B and D, and this model
represents a situation where clinical investigators feel that the investigational drug is not as
toxic at lower dose levels and therefore is shifted to the right as compared to pseudodata
POM 1. Pseudodata POM 2 is specified by p = 0.002092595, a3 = —3.64152, ay =
—4.78181, ag = —5.33612, and o4 = —7.93881, and the starting dose for a 30% DLT rate is
now 2145 mg.

Figure 2 displays the 4 underlying dose-toxicity relationship models used in Scenarios AD.
The top two images from left to right represent Scenario A and B respectively. Both
underlying dose-toxicity models are POMs and scenario A is specified by p = 0.0011, aq =
—0.4, 0p = —1.3, ag = —2.8, and o4 = —3.9, and scenario B is specified by B = 0.0022, a4 =
—0.2, 0p = —1.8, ag = —2.5, and a4 = —4.2. Scenarios C and D are displayed in the bottom
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left and right graphs of figure 2 respectively and these two scenarios represent true
underlying dose-toxicity relationships that violate the PO assumption. C is specified by B; =
0.0020, a1 = —5.0, B, = 0.0013, 0 = —1.0, B3 =0.0020 03 = —5.0, B4 = 0.0013, and a4 =
—6.0. D is specified by p; = 0.0021, a; = —0.4, B = 0.0009, a, = —0.9, 3 =0.0013 03 =
—2.9, B4 = 0.0008, and a4 = —4.0. Scenarios A and C have pseudodata that overestimate the
true dose-toxicity relationship, which results in starting the trial at a dose smaller than the
MTD. Scenarios B and D have pseudodata that underestimate the true dose-toxicity
relationship, thus resulting in starting the trial at a dose higher than the MTD.

For comparisons to the dichotomous CRM, a standard two-parameter logistic regression
model is used. The corresponding pseudodata and true dose-response model for the
dichotomous CRM comparisons are the same as observing a grade 3 or 4 “dose-limiting”
toxicity as seen in the proportional odds models. For all scenarios, safety checks were put
into the ordinal design as well as the comparison binary design similar to prior CRM
simulation studies [3—-4]. One safety rule does not allow dose to increase by more than 400
mg after each completed cohort. Also, if the updated dose is estimated to be less than 0 mg,
the design resets the next dose at 200 mg (unless 200mg was already explored). A safety
stopping rule ends the trial early if the next dose is estimated to be very small, i.e. doses less
than 200 mg. These estimated low doses suggest sufficient toxicity concerns and the
possibility of no true MTD for this particular trial. However, since the pseudodata specified
prior to the start of the trial could potentially begin the trial at a dose too toxic for the true
dose-toxicity relationship, the trial will not stop after the first cohort of patients tested
regardless of the next estimated dose.

One additional safety constraint included in this design requires the next dose after any
cohort of patients that experience 2 or more DLTSs (toxicity grades 3 or 4) to be at least 5%
less than the last dose tested. This constraint ensures that selected doses are logical even if
the pseudodata inaccurately reflect the truth. This rule will be unlikely to come into play
when sufficient data have been collected, but would only take effect in the very early stages
of the trial in cases where the pseudodata overestimate the true MTD.

Summary statistics collected include median final dose estimated over the 2000 datasets,
percent difference between the true MTD and final estimated dose, and expected DLT rate
according to the underlying dose-toxicity model for the final dose selected. Additionally, we
calculated the percentage of trials selecting a final dose within 10% and 20% of the true
MTD. Other safety measures such as the percentage of trials stopped early due to safety
concerns, and the median percentage of patients treated at suboptimal or highly toxic doses
were collected along with the percentage of trials that resulted in a final dose at excessively
high or low doses as compared to the true MTD.

Results from the simulation study show that regardless of scenario or model specification,
results did not greatly change based on the cohort size and sample size combinations of
3/30, 2/20, and 3/21. Results also did not greatly differ between the 50/50 and 75/25
pseudodata weighting schemes, therefore simulation-based results will only be displayed for
the cohort size and sample size combination of 3/30 with a 50/50 pseudodata weighting
scheme.

Table 1 displays selected design performance statistics for simulation scenarios A-D for a
sample size/cohort size combination of 3/30 and a 50/50 pseudodata weighting scheme.
Scenario A utilizes the Pseudodata POM 1 as displayed in the left graph of figure 1 as well
as a true underlying dose-toxicity POM in the top left image of figure 2. In this scenario,
both the pseudodata and true dose-toxicity models are proportional odds and the pseudodata
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underestimates the MTD. The ordinal POM design estimates the median final dose closer to
the true MTD than the dichotomous CRM; therefore we see a median percent difference
between the estimated final dose and true MTD closer to 0 in the ordinal model. We do see
slight improvements in the binary model in terms of percent of trials estimating the final
dose within 20% of the true MTD, as well as the percentage of trials with a recommended
dose greater than 40%; however, these differences are minimal between the ordinal and
binary designs. Interestingly, we did see an increase in the proportion of trials that
implemented a constraint to estimate the final dose in the binary CRM as compared to the
ordinal design.

Scenario B exemplifies a situation where the clinical investigators specify pseudodata that
represent a dose-toxicity relationship prior to the start of the trial at a level less toxic than the
actual dose-toxicity relationship. Therefore, the pseudodata greatly overestimate the MTD.
As shown in the second graph of Figure 1, the starting dose for a pre-specified 30% DLT
rate is 2145 mg, which is much higher than the true MTD of 751 mg as seen in the top right
image in figure 2. As a result, more patients are initially exposed to higher dose levels and
experiencing more severe toxicities. It is important to mention that many of the trials in this
scenario were stopped early due to safety concerns, with over 48% of trials stopped early in
the ordinal model as compared to over 62% stopped trials in the binary CRM. In addition,
the median dose for those trials that did not stop early due to safety concerns was closer to
the true MTD for the ordinal design as compared to the original CRM and the estimates for
the ordinal design were slightly conservatively lower than the true MTD as compared to the
original CRM. Interestingly, the median percentage of patients treated at highly toxic dose
levels was 30% in the ordinal design versus 60% in the binary design, which resulted in a
decrease of patients experiencing DLTs in the ordinal design at a median of 36.67% as
compared to 43.33% in the binary CRM.

Scenario C implements pseudodata POM 1 and represents the situation where the true
underlying dose-toxicity relationship violates the proportional odds assumption as shown in
the bottom left image of figure 2. In this scenario, the pseudodata underestimate the MTD.
For this particular scenario, the ordinal and binary designs performed similarly, with no
significant differences between the two designs. Scenario D represents one more example
where the true underlying dose-toxicity relationship violates the proportional odds
assumption as shown in the bottom right image in figure 2. Similar to scenario B, the
pseudodata POM 2 overestimates the MTD prior to the start of the trial and a larger
percentage of trials are stopped early due to safety concerns as compared to scenarios A and
C. In this scenario, the binary CRM performs slightly better; however, it is arguably no
different from the ordinal model.

4. DISCUSSION

Through this simulation study, we were able to incorporate ordinal toxicity endpoints in the
CRM by using the proportional odds model. In situations where the starting dose range is
excessively toxic, the ordinal design was able to reach optimal levels more quickly and treat
fewer patients at highly toxic dose levels. When the true underlying dose-toxicity
relationship violates the proportional odds assumption, the ordinal design performs similarly
to the binary CRM.

This proportional odds model for phase | trials with ordinal toxicity grading has many
strengths that make this new design easy to implement and an appealing alternative to other
dose finding trial designs. Since this design incorporates all potential toxicity grades in the
proportional odds model, it utilizes more information than a design that dichotomizes
toxicity based on pre-specified dose-limiting criteria. Most phase | trials do not accrue a
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large number of patients due to small eligible patient population, general difficulties in
accrual to phase | trials and the desire to move quickly into a phase 1l trial to speed up the
drug development process, and this design has the advantage of utilizing all toxicity
information to influence the selection of dose. This current design accommodates
continuous dose ranges, but it could be easily adjusted to allow for a discrete set of doses
simply by assigning rounding criteria to transform the continuous dose selected to a discrete
dose level for the next tested cohort.

Another strength of this proposed design is that it is an extension of the CRM, which has
already been shown to more efficient and accurate than standard ‘3+3’ designs [3]. This
design has the same flexibility as the CRM and can still accommaodate different sample
sizes, cohort sizes, target DLT rates, stopping rules and safety rules to limit the amount a
dose can increase or decrease between cohorts. Results from this simulation study show that
the incorporation of ordinal toxicity grades do show improvement especially in situations
where the clinical investigators mistakenly expect less toxicity than the true dose-toxicity
relationship indicates. In these situations, we find that the ordinal design moves more
quickly into a safe and effective range after starting with a dose too toxic, and therefore
results in fewer patient DLTSs.

While the results of this project will have significant clinical application for new dose
finding trials, one limitation of this design and of dose finding trial designs in general is that
it would be beneficial to obtain more dose-toxicity information from a clinician prior to the
start of the trial. For the traditional CRM, Piantadosi suggests to obtain drug behavior at
high and low doses [4]. This requires a clinician to provide the expected dosage for 10% and
90% DLT, even if the clinician is not confident about the estimate. However, since this new
design incorporates ordinal toxicity grading, in addition to the two requirements from the
traditional CRM it would also be advantageous to predict the probability of each toxicity
grade for the investigational drug. This could be obtainable if the drug has been previously
tested in other diseases or in pre-clinical experiments. Another limitation of this current
simulation study is that we only compared this POM design to the binary CRM. There are
other methods that incorporate individual grades or toxicity score schemes that we have yet
to compare to the POM design. We plan to address performance to these other designs in
future work.

We are currently developing an R library package to run this ordinal POM design as well as
the binary CRM based on Piantadosi’s likelihood method for continuous dose levels. This
package will be freely accessible for biostatisticians to use in clinical trials. We plan to
incorporate options to allow clinical investigators to specify DLT rates, cohort size/sample
size combinations, and any safety constraints such as not allowing a dose increase after 2 or
more patients in a cohort experience a DLT and/or not allowing a dose to increase past a
certain percentage or value between tested cohorts. Although this paper focuses on designs
utilizing continuous doses values, we do plan on incorporating discrete dose options into the
R library. We also plan to allow clinical investigators the option to combine grade 0 and 1
toxicities into one category. This R package is currently in development, and we plan to
make it available soon.
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Figure 1.

From left to right: pseudodata POM 1 is utilized in Scenarios A and C and has a starting
dose of 1060 mg for a 30% DLT rate, and pseudodata POM 2 is utilized in Scenarios B and
D and has a starting dose equal to 2145 mg for a 30% DLT rate
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Figure 2.

From top left: Underlying true dose toxicity models for scenarios A-D with the
corresponding MTD specified for a 30% DLT rate. Scenario A and B models are POMs and
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Scenario C and D models violate the proportional odds assumption
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