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Abstract
Background and Objective—Genetic linkage and association studies in late-onset
Alzheimer’s disease (LOAD) or LOAD endophenotypes have pointed to several candidate regions
on chromosome 10q, among these the ~250kb LD block harboring the three genes IDE, KIF11
and HHEX. We explored the association between variants in the genomic region harboring the
IDE-KIF11-HHEX complex with plasma Aβ40 and Aβ42 levels in a case-control cohort of
Caribbean Hispanics.
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Methods—First, we performed single marker multivariate linear regression analysis relating the
individual SNPs with plasma Aβ40 and Aβ42 levels. Then we performed 3-SNP sliding window
haplotype analyses, correcting all analyses for multiple testing

Results—Out of 32 SNPs in this region, three SNPs in IDE (rs2421943, rs12264682,
rs11187060) were significantly associated with plasma Aß40 or Aß42 levels in single marker and
haplotype analyses after correction for multiple testing. As described above, all these SNPs lie
within the same linkage disequilibrium block, and are in linkage disequilibrium with the
previously reported haplotypes.

Conclusion—Our findings provide modest support for an association in the IDE harboring
region on chromosome 10q with Aβ 40 and 42 levels.
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INTRODUCTION
Risk loci for late-onset Alzheimer’s disease (LOAD) may be present on chromosome 10q
having been identified using case-control status, age-of onset, or plasma Aβ levels as the
phenotype. One of the functionally plausible candidate genes lying within the genetic region
showing evidence for association or linkage reported by these studies is IDE occurring in a
~250kb haplotype block with KIFF11 and HHEX. Following the initial report on linkage
and association of markers around IDE with LOAD (Bertram et al., 2000), some studies that
used LOAD as the phenotype did not find an association (Cousin et al., 2009; Reiman et al.,
2007) but other independent studies identified haplotypes spanning the IDE-KIFF-HHEX
complex that show association with LOAD risk or intermediate LOAD phenotypes (Ertekin-
Taner et al., 2004; Prince et al., 2003), including CSF tau levels, MMSE scores, senile
plaque and neurofibrillary tangle density, and age-at-onset (Prince et al., 2003). The same
haplotypes were associated with plasma Aβ levels in 24 extended Caucasian LOAD
families, and with LOAD status in two independent case control series (Ertekin-Taner et al.,
2004). Three SNPs in IDE, that are in linkage disequilibrium (LD) with these haplotypes,
have been shown to influence IDE expression in LOAD brains (Zou et al., 2010). The
objective in the present paper was to confirm or refute a role of genetic variation in the IDE-
KIF11-HHEX complex on chromosome 10q in variation of plasma Aβ40 and Aβ42 levels,
the main putative culprits in LOAD.

METHODS
Participants

We selected unrelated affected and unaffected individuals from Caribbean Hispanics
participating in a population-based study in northern Manhattan (Tang et al., 1998) and
single individuals from Caribbean Hispanic families multiply affected by LOAD (Romas et
al., 2002). The final analytic sample consisted of 454 Caribbean Hispanic subjects (160
cases, 294 controls) with information on plasma Aβ40 and 42 levels. Dementia diagnosis
was based on DSM-IV criteria and NINCDS/ADRDA criteria.

Plasma Aß40 and Aß42 levels
Plasma was obtained at baseline and follow-up, and was stored within 2 hours after
collection at −70 °C. Aß40 and Aß42 levels were measured using a combination of
monoclonal antibody 6E10 (specific to an epitope present on 1 to 16 amino acid residues of
Aß) and rabbit antibodies specific for Aß40 (R162) and Aß42 (R165) in a double-antibody
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sandwich ELISA. The detection limit for this assay was 5pg/mL for Aß40 and 10pg/mL for
Aß42.

Genotyping
Genotyping was performed using the HumanHap650Y BeadChip from Illumina, Inc.
Included in the present analyses were 32 SNPs spanning the IDE-KIF11-HHEX region
(Supplemental table 1).

Statistical Methods
Regression analyses were performed individually relating the 32 SNPs with Aβ40 and Aβ42
levels, adjusting for sex, age-at-onset or age-at-examination, APOE genotype, education,
and population stratification. Finally, we performed three-SNP sliding window haplotype
analyses for Aβ40 and 42 levels. We did not correct for multiple testing as all explored
SNPs are in strong LD (Figure) and marker-phenotype associations are therefore not
independent (Nyholt, 2001).

RESULTS
All SNPs were in HWE. The man age of the sample was 82.2±6.3 years. The A-allele of
IDE SNP rs2421943 was associated with significantly higher Aß40 levels and the A allele of
IDE SNP rs12264682 was associated with significantly lower Aß40 levels (Table 1,
Supplemental table 2). While the association of rs2421943 with Aß40 was driven by LOAD
cases, the association of rs12264682 was driven by the unaffected persons.

Haplotype analyses confirmed these findings. In 3-SNP sliding window haplotype analyses,
haplotypes that included the A alleles of SNP rs2421943 (rs11187062|rs11187064|
rs2421943: TTA, ß=7.8, p=0.04; rs11187064|rs2421943|rs7908111: TAG, ß=7.9, p=0.03;
and rs2421943|rs7908111|rs1999763: AGG, ß=7.8, p=0.03) were associated with higher
Aß40 levels, and halotypes that included the A allele of SNP rs12264682 (rs7908111|
rs1999763|rs12264682: GGA, ß=−20.5, p=0.02; rs1999763|rs12264682|rs7100623: GAC,
ß=−20.5, p=0.02; and rs12264682|rs7100623|rs6583826: ACG, ß=−22.6, p=0.01) were
associated with lower Aβ40 levels.

The association with Aß42 levels differed (Table 1). In these analyses, the T allele of IDE
SNP rs11187060 was associated with lower Aß42 levels in LOAD cases. Also this finding
was confirmed by haplotype analyses (rs11187025|rs7078413|rs11187060: CCT, ß=-−9.5,
p=0.02; rs7078413|rs11187060|rs11187062: CTT, p=0.07; ß=-−5.6, rs11187060|
rs11187062|rs11187064: TTT, ß=-−8.1, p=0.01). Of note, the directions of effects for all
three SNPs were similar for Aβ40 and 42 levels, and all three SNPs lie in the same
haplotype block as the previously reported SNPs (Figure) (Ertekin-Taner et al., 2004;Prince
et al., 2003;Zou et al., 2010). Adjustment for disease duration did not change the
associations. When we used AD as the phenotype to explore whether any of the identified
SNPs is also associated with the disease phenotype, the C allele of SNP rs11187062 was
associated with significantly lower AD risk (OR=0.54±0.3, p=0.03). Of note, this SNP is
adjacent and only 2kb apart from rs11187060 that is associated with Aβ 42 levels.

DISCUSSION
Three IDE SNPs (rs2421943, rs12264682, rs11187060) were significantly associated with
changes in plasma Aß40 or Aß42 levels in single marker and haplotype analyses. We used
nominal p-values as all assessed SNPs are in strong LD and marker-phenotype associations
are therefore not independent (Nyholt, 2001). Of note, while these SNPs have not been
assessed in previous studies, they also lie within the same LD block as the haplotypes
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reported in previous Caucasian studies (Ertekin-Taner et al., 2004; Prince et al., 2003). In
addition, they are in strong LD (D’ >90) with the three SNPs that have previously been
shown to influence IDE expression in brain samples of 200 LOAD cases (Figure) (Zou et
al., 2010).

While SNPs rs2421943 and rs12264682 were associated with changes in Aβ 40 levels,
rs11187060 was associated with changes in Aβ42 levels. The directions of associations of
all three SNPs were consistent for Aβ 40 and Aβ 42 levels. A likely explanation for the
differences in the strengths of the associations of the individual SNPs with Aβ 40 and 42
levels is, that Aβ 42 is a stronger surrogate of pathological changes underlying AD than Aβ
40 which is rather a marker of aging. This note is supported by the fact that the association
of SNP rs11187060 with Aβ 42 levels is 10-fold stronger in cases than controls (β: −5.6 vs.
−0.5), and that this SNP is in close proximity (~2kb) and strong LD with SNP rs11187062
that is associated with AD. Alternative explanations for differences in the strengths of the
associations with Aβ 40 and 42 levels are differences in allele frequencies or power.

IDE binds and degrades Aβ40 and Aβ42 (Perez et al., 2000), and this Aβ degrading activity
has been shown to be lower in AD brains than in controls (Perez et al., 2000). In IDE-
knock–out mice, brain Aβ levels are elevated (Farris et al., 2003), suggesting that IDE
activity is one of several factors determining the amount of brain Aβ in vivo. Enhanced IDE
activity in IDE and APP double transgenic mice decreases their brain Aβ levels, and reduces
the formation of AD pathology (Leissring et al., 2003). Finally, polymorphisms in IDE may
also contribute to the risk of type 2 diabetes (Rudovich et al., 2009), which itself is
associated with LOAD. Taken together the findings reported here support the possibility that
the IDE-KIF11-HHEX region on chromosome 10q may contain genetic variants that modify
Aβ40 and 42 levels.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure.
LD pattern of the 10q region spanning IDE, KIF11 and HHEX in the present sample. The
boxes indicate SNPs significant in the present analyses, the black arrows indicate SNPs
significant in the study by Ertekin-Taner (2004).(Ertekin-Taner et al., 2004) The green
arrow indicates the SNPs that have been shown to influence IDEexpression in LOAD brain
samples inthe study by Zou et al.(Zou et al., 2010)
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