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Abstract: Spatial independent component analysis (ICA) applied to functional magnetic resonance imag-
ing (fMRI) data identifies functionally connected networks by estimating spatially independent patterns
from their linearly mixed fMRI signals. Several multi-subject ICA approaches estimating subject-specific
time courses (TCs) and spatial maps (SMs) have been developed, however, there has not yet been a full
comparison of the implications of their use. Here, we provide extensive comparisons of four multi-sub-
ject ICA approaches in combination with data reduction methods for simulated and fMRI task data. For
multi-subject ICA, the data first undergo reduction at the subject and group levels using principal com-
ponent analysis (PCA). Comparisons of subject-specific, spatial concatenation, and group data mean sub-
ject-level reduction strategies using PCA and probabilistic PCA (PPCA) show that computationally
intensive PPCA is equivalent to PCA, and that subject-specific and group data mean subject-level PCA
are preferred because of well-estimated TCs and SMs. Second, aggregate independent components are
estimated using either noise-free ICA or probabilistic ICA (PICA). Third, subject-specific SMs and TCs
are estimated using back-reconstruction. We compare several direct group ICA (GICA) back-reconstruc-
tion approaches (GICA1-GICA3) and an indirect back-reconstruction approach, spatio-temporal regres-
sion (STR, or dual regression). Results show the earlier group ICA (GICA1) approximates STR, however
STR has contradictory assumptions and may show mixed-component artifacts in estimated SMs. Our
evidence-based recommendation is to use GICA3, introduced here, with subject-specific PCA and noise-
free ICA, providing the most robust and accurate estimated SMs and TCs in addition to offering an intui-
tive interpretation. Hum Brain Mapp 32:2075–2095, 2011. VC 2010 Wiley Periodicals, Inc.
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INTRODUCTION

In functional magnetic resonance imaging (fMRI) of the
brain, spatial independent component analysis (ICA) is
commonly used to separate spatially independent patterns
from their linearly mixed blood-oxygen-level-dependent
(BOLD) signals via maximization of mutual independence
among components. Unlike voxel-wise univariate methods
such as regression analysis or Kolmogorov-Smirnov statis-
tics, ICA does not naturally generalize to a method
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suitable for drawing inferences about groups of subjects.
For example, when using the general linear model, the in-
vestigator specifies the regressors of interest, and so draw-
ing inferences about group data comes naturally, since all
individuals in the group share the same regressors. In ICA,
by contrast, different individuals in the group will have
time course and spatial map differences, and they will be
sorted differently, so it is not immediately clear how to
draw inferences about group data using ICA. To address
these issues, several multi-subject ICA approaches have
been proposed [Beckmann et al., 2005; Calhoun et al.,
2001a,b, 2004a; Esposito et al., 2005; Guo and Pagnoni, 2008;
Lukic et al., 2002; Schmithorst and Holland, 2004; Svensén
et al., 2002]. The various approaches differ in terms of how
the data are organized prior to the ICA, how group and sub-
ject estimates are computed, what types of output are avail-
able (for example, single subject contributions, group
averages, etc.), and how the statistical inference is made.

As we discuss in a recent review article, group ICA
approaches can be organized into five categories [Calhoun
et al., 2009]. Some approaches use single-subject ICA and
then attempt to combine the output into a group post hoc
by using approaches such as self-organized clustering or
spatial correlation of the components [Calhoun et al.,
2001a; Esposito et al., 2005]. This has the advantage of
allowing for unique spatial and temporal features, but has
the disadvantage that since the data are noisy the compo-
nents are not necessarily unmixed in the same way for
each subject. The other four approaches involve an ICA
computed on the group data as a whole. Temporal concat-
enation [Calhoun et al., 2001b] and spatial concatenation
[Svensén et al., 2002] have both been examined. The
advantage of these approaches is that they perform one
ICA, which can then be divided into subject-specific parts,
hence the comparison of subject differences within a com-
ponent is straightforward. The temporal concatenation
approach discussed in this article allows for unique time
courses (TCs) for each subject, but assumes common ag-
gregate spatial maps (SMs) whereas the spatial concatena-
tion approach not discussed here allows for unique SMs
but assumes common TCs. Although they are really just
two different approaches for organizing the data, temporal
concatenation appears to work better for fMRI data
[Schmithorst and Holland, 2004] most likely because the
temporal variations (and hence nonstationarity) in the ICA
time courses are much larger than the variation in the spa-
tial maps at conventional field strengths of 3T and below
[see for example, Calhoun et al., 2008a].

Temporal concatenation has been widely used for group
ICA of fMRI data and has been implemented initially in
the group ICA of fMRI toolbox (GIFT) [Calhoun, 2004] for
Matlab (http://icatb.sourceforge.net/) and more recently
in the multivariate exploratory linear optimized decompo-
sition into independent components (MELODIC) software
(http://www.fmrib.ox.ac.uk/fsl/). The GIFT software
additionally implements a back-reconstruction step which
produces subject-specific images, which has been noted to

show accurate estimation of variations in subject-specific
TCs and SMs through a simulation example [Calhoun
et al., 2001b]. This enables a comparison of both the TCs
and the SMs for one group or multiple groups [Calhoun
et al., 2008b]. The approach implemented in GIFT thus
trades-off the use of a common model for the SMs against
the difficulties of combining single subject ICA. An inter-
mediate approach would use temporal concatenation sepa-
rately for each group [Celone et al., 2006], although in this
case, matching the components post hoc becomes again
necessary. Yet another approach involves averaging the
data prior to performing ICA [Schmithorst and Holland,
2004]. This approach is less computationally demanding,
but makes a more stringent assumption of having a com-
mon TC and a common SM. In [Guo and Pagnoni, 2008],
an extended group tensor model was presented to esti-
mate group-specific temporal responses and common spa-
tial maps. CanICA [Varoquaux et al., 2010] uses canonical
correlation analysis with multi-subject fMRI data to esti-
mate only the aggregate SM from the ICA step. Hence
CanICA does not provide a way to estimate subject-spe-
cific TCs and SMs. Finally, tensor decompositions (also
known as multidimensional, multi-way, or N-way decom-
positions), have received renewed interest recently,
although their adaptation to group and multi-group fMRI
data is still being explored. One approach is based upon a
three-dimensional tensor that has been developed to esti-
mate a single spatial, temporal, and subject-specific
‘‘mode’’ for each component to attempt to capture the mul-
tidimensional structure of the data in the estimation stage
[Beckmann and Smith, 2005]. This approach, however,
may not work as well (without additional preprocessing)
if the TCs between subjects are different, such as in a rest-
ing state study in which the time course is obviously not
synchronized between subjects as it is in a task paradigm
with similar timing between subjects.

In this article, we compare three subject-level principal
component analysis (PCA) dimension reduction strategies
with four multi-subject ICA methods using both simulated
data and real fMRI data collected during a task. Figure 1
illustrates the group ICA process and the areas of focus of
this article, and Table I summarizes notation. There are
commonly two PCA reduction steps, one at the subject
level and a second at the group level. The three subject-
level PCA strategies we compare are subject-specific [Cal-
houn, 2004; Calhoun et al., 2001b], spatial concatenation
[Beckmann et al., 2005], and group data mean in ME-
LODIC v3.0 [Beckmann and Smith, 2004]. We also com-
pare PCA with probabilistic PCA (PPCA). We also
compare noise-free ICA with probabilistic ICA (PICA)
[Beckmann and Smith, 2003; Calhoun, 2004]. To construct
subject-level TCs and associated SMs, the multi-subject
ICA methods we compare are three variations on PCA-
based direct back-reconstruction approach group ICA
(GICA) [Calhoun et al., 2001b, 2002] and a least squares-
based indirect back-reconstruction approach spatio-tempo-
ral regression (STR, or dual regression) [Beckmann et al.,
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2009; Calhoun et al., 2004b]. We present comparisons of
PCA, ICA, and back-reconstruction strategies and give evi-
dence-based recommendations. Some mathematical details
illustrating key results are left to the Appendix.

MATERIALS AND METHODS

PCA

Principal component analysis is necessary for the multi-
subject ICA methods described here so we begin with a
short description [Pearson, 1901]. For observed vectors (a
time series for each voxel), Zv, v ¼ 1, : : : ,V, subtract the
mean and concatenate column wise into Y ¼ [Z1, : : : ,ZV] �

Z1T, where 1T is the transpose of a column vector of 1s.
Let the T-dimensional, zero mean, random row vector Y
have singular value decomposition (SVD) of its covariance
matrix, RY ¼ FTDTF

T
T . Order the eigenvectors in the order

of descending eigenvalues to form an ordered orthogonal
basis with the first eigenvector specifying the direction of
largest variance of the data. Let F and D be the matrices of
the first T1 ordered eigenvectors and eigenvalues, that is

RZ ¼ F F2½ � D 0
0 D2

� �
FT

FT2

� �
(1)

The data can be represented by the first T1 basis vectors
of the orthogonal basis as Y* ¼ FTY, the PCA-reduced

Figure 1.

Common steps and choices in a multi-subject ICA analysis. In this article, we discuss Steps (3)–

(8), with attention to (4) subject-level PCA and (8) back-reconstruction. The findings in this arti-

cle recommend using PCA with subject-specific subject-level PCA reduction and noise-free ICA

with GICA3 back-reconstruction. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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data. The best linear predictor (BLP) of Y is ‘‘Y-smile’’,
Y
^

¼ FDD�1Y� ¼ FFTY ¼ PCðFÞY and is optimal in mean
squared error (MSE), where PC(F) ¼ FFT is the perpendicular
projection operator (PPO) onto the column space of F, C(F),
since F is orthonormal. The Moore-Penrose pseudoinverse
simplifies to F� ¼ (FTF)�1 FT ¼ FT.

Data

Let Yi be the T-by-V magnitude data matrix for subject i
containing the preprocessed and spatially normalized data
with rows of zero mean, where T time points over V voxels
are collected onM subjects (Figure 1, Steps 1, 2, and 3). Let Y
: [YT

1 ,. . .,Y
T
M]

T be the temporally concatenated subject data.
The data are compressed via two PCA dimension reduction
steps. The subject-level PCA has computational benefits due
to dimension reduction and the denoising benefits of projec-
ting the data onto the principal subspace of the data. Group-
level PCA is required for the multi-subject ICA methods
presented here to reduce the dimension of the data to the
number of components estimated with ICA.

Subject-Level PCA

To make the estimation computationally tractable it is
common to first perform a subject-level PCA dimension
reduction (Figure 1, Step 4).

Subject-specific PCA

Let Y�
i ¼ F�i Yi be the T1-by-V PCA-reduced data for sub-

ject i, where F�i ¼ FTi is the T1-by-T standardized reducing
matrix and T1 is the number of principal components
retained for each subject. Let

Y� � ½Y�T
1 ; : : : ;Y�T

M �T (2)

be the MT1-by-V time-concatenated aggregate data (Figure
1, Step 5). The predicted data after dimension reduction
are Y

^

i ¼ FiY
�
i ¼ FiF

�
i Yi ¼ PCðFiÞYi.

There are a number of methods for determining the
effective dimension of the data, among them are the infor-
mation theoretic approaches such as an information crite-
rion (AIC), Kullback information criterion (KIC), and the
minimum description length (MDL) [also called the Bayes-
ian information criterion (BIC)] [Li et al., 2007]. In (2) T1

could be determined for each F�i separately, but later in
the back-reconstruction of the subject-specific TCs and
SMs each individual will have the same number of compo-
nents dependent on the number of components in the
ICA. Therefore, it is preferred to use a common T1 for all
F�i , i ¼ 1,. . .,M, as in [Calhoun et al., 2001b, 2002]. Subject-
specific data reduction privileges differences among
subjects.

TABLE I. Summary of subject-level PCA and back-reconstruction method notation discussed here,

see Figure 1 for context

Figure 1, Step 4
Data Reduction Strategy

PCA Singular value decomposition (SVD) of covariance matrix
PPCA Factor analysis where noise covariance is r2 I

Figure 1, Step 4
Subject-level PCA Reduced data PCA Calculation

Subject-specific Y�
i ¼ F�i Yi F�i ¼ FTi from cov of Yi

Spatial-concatenation Y�
i ¼ F�0 Yi F�0 ¼ FT0 from cov of [Y1, ��� ,YM]

Group data mean Y�
i ¼ F�i F�0 Yi F�

0
¼ FT0 from cov of Y, and rotation F�i from cov of F�

0
Yi

Figure 1, Step 7
Source Separation Strategy

ICA Maximization of mutual independence among components
PICA Independent factor analysis with isotropic noise

Figure 1, Step 8 Let subject data be the product of TC and SM: Yi ¼ Ri Si þ Ei

Back-reconstruction Time course (TC) Spatial map (SM) Column space

GICA1 R̂i : Fi Gi Â Ŝi ¼ Â� G�
i FTi Yi Ŷi ¼ R̂i Ŝi ¼ PC(Fi Gi) Yi

First method, based on partitioning group PCA matrix G

GICA2 R̂i from GICA1 S̃i from GICA3 Not a projection
Mixture of GICA1 and GICA3

GICA3 R̃i : Fi (G
T
i )

2 Â S̃i ¼ Â� GT
i FTi Yi Ỹi : R̃i S̃i ¼ PC(Fi Gi) Yi

Introduced here, modification of GICA1 partitioning inverse of group PCA matrix G�, sum of estimated subject SMs is aggregate SM
(13), PCA-reduced data matches PCA-reduced product of estimated TCs and SMs (33)

STR _Ri ¼ Yi Ŝ
� _Si ¼ _R�

i Yi
_Yi ¼ _Ri

_Si ¼ PC(Yi Ŝ
�) Yi, complicated (35)

Uses least squares multiple regression to estimate subject-specific TCs from aggregate SM, then estimates subject-specific
SMs from TCs
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Subject spatially concatenated PCA

First, calculate F�0 ¼ FT0 , the T1-by-T standardized reduc-
ing matrix of the T-by-MV spatially concatenated aggre-
gate data [Y1,. . .,YM]. Second, temporally concatenate the
data in Y* as in (2) using the common reducing matrix so
F�i : F�0 , i ¼ 1,. . .,M [Beckmann et al., 2005]. The pre-
dicted data after dimension reduction is
Y
^

0i ¼ F0F
�
0 Yi ¼ PCðF0ÞYi. This strategy forces each subjects’

data in Y* to share a common column space. Spatial-con-
catenation privileges commonalities among subjects.

Group data mean PCA

First, calculate the subject mean dataset, Y ¼ M�1
PM

i¼1 Yi,
and perform PCA of Y to obtain F�1

0
¼ FT

0
, the T1-by-T stand-

ardized reducing matrix. Then, a second subject-level stand-
ard PCA is performed to rotate each of the F�1

0
Yi matrices to

be aligned with the principal directions of each subject-
reduced data to have the T1-by-T reduced data, F�i F

�
0 Yi, as

implemented in MELODIC 3.0 (Release 4.0, Aug 2007,
downloaded Dec 2009) [Beckmann and Smith, 2004].
The predicted data after dimension reduction is
Y
^

0i ¼ F0FiF
�
i F

�
0
Yi ¼ PCðF

0
ÞYi. By using the mean data matrix,

the PCA is performed on the mean of the random variables
instead of on the random variables themselves. This strategy
is similar to spatial-concatenation except rather than using
MV observations to estimate the covariance matrix for PCA,
it uses Vmean vectors over theM subjects. Group data mean
privileges commonalities among subjects.

Group-Level PCA

Let the T2-by-V PCA-reduced aggregate data be

X � G�Y� ¼ ½GT
1 ; : : : ;G

T
M�

F�1 Y1

..

.

F�MYM

2
64

3
75 ¼

XM
i¼1

GT
i F

T
i Yi ¼

XM
i¼1

Xi

(3)

where G2 is the T2-by-MT1 standardized reducing matrix
(Figure 1, Step 6). Ideally, T2 : C is selected to be the true
number of independent components (ICs) for all subjects,
and each subject has the same components. The predicted
subject-compressed data is

Y
^�

� GG�Y� ¼ PCðGÞY� ¼
G1

PM
i¼1

GT
i F

T
i Yi

..

.

GM

PM
i¼1

GT
i F

T
i Yi

2
666664

3
777775: (4)

The predicted subject data is

Y
^
^

i
� FiY

^�
i ¼ FiGiX ¼ FiGi

XM
j¼1

GT
j F

T
j Yj: (5)

In practice, for real fMRI data, subjects will each have their
own number of components. How to best choose the num-
ber of components at the group level to best represent the
subjects is a choice, and we use an implementation of
MDL [Li et al., 2007].

ICA

Following square noise-free spatial ICA estimation
[Hyvärinen et al., 2001], we can write

X ¼ ÂŜ (6)

where the generative linear latent variables Â and Ŝ are
the T2-by-T2 mixing matrix related to subject TCs and the
T2-by-V aggregate SM, respectively (Figure 1, Step 7). In
this form of spatial ICA, there is no aggregate or group-
level TC. Below we use multi-subject ICA methods to esti-
mate subject-specific TCs, Ri, and SMs, Si, i ¼ 1,. . .,M, con-
ditional on the ICA estimates and PCA reductions of the
data. Although a tensor approach to multi-subject ICA
provides an aggregate TC [Beckmann and Smith, 2005], it
is only sensible when the TCs are common for all subjects,
such as in a task.

Subject Back-Reconstruction Methods

We present four heuristic methods for estimating sub-
ject-specific TCs and SMs for fMRI data (Figure 1, Step 8).
The three GICA methods are based on PCA compression
and projection [Calhoun, 2004; Calhoun et al., 2001b,
2002]. Note that the GICA methods are numbered chrono-
logically but presented in an order for clear exposition.
The STR least squares method uses PCA compression indi-
rectly through the estimate of the aggregate SM [Beck-
mann et al., 2009; Calhoun et al., 2004b].

GICA3

Consider a heuristic method such that natural estimates
lead to certain desirable properties. For each subject, i ¼
1, : : : ,M, let the subject data Yi be the product of the sub-
ject-specific TC and SM, Ri and Si, plus error, Ei,

Yi ¼ RiSi þ Ei: (7)

In GICA3, assume that subject-specific TCs are the subject-
specific PCA back-projected mixing matrix,

Ri � FiðGT
i Þ�A ¼ FiGiðGT

i GiÞ�1A: (8)

Then for subject i, PCA compression of the data gives Y�
i

¼ FTi Yi, leading to the compressed data for each subject
relating to the common mixing matrix with a subject-spe-
cific SM,
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Xi ¼ GT
i Y

�
i ¼ GT

i F
T
i ðRiSi þ EiÞ ¼ ASi þ E�

i ; (9)

where A ¼ GT
i F

T
i Ri is the common mixing matrix and Si is

the subject-specific SM. Aggregating over subjects gives
the group reduced data related to the aggregate SM,

X ¼ GTY� ¼
XM
i¼1

GT
i F

T
i RiSi þ

XM
i¼1

E�
i

¼ A
XM
i¼1

Si þ E� � ASþ E�; ð10Þ

where the aggregate SM is the sum of the subject-specific
SMs, S �PM

i¼1 Si. In noise-free ICA we estimate the mix-
ing matrix and aggregate SM in (10),

X ¼
XM
i¼1

Xi ¼
XM
i¼1

GT
i F

T
i Yi ¼ Â

XM
i¼1

Si ¼ ÂŜ: (11)

From (11) the natural estimate of the subject-specific SM
substitutes our estimate of A into either defining relation-
ship (7) or by solving Xi ¼ GT

i F
T
i Yi ¼ ÂSi for Si,

~Si ¼ Â
�
GT

i F
T
i Yi: (12)

Note that we have exactly that the aggregate SM is the
sum of the subject-specific SMs,

Ŝ �
XM
i¼1

~Si: (13)

Further, from (8) the natural estimator of subject-specific
TC Ri substitutes the estimate of A to give

~Ri � FiðGT
i Þ�Â ¼ FiGiðGT

i GiÞ�1Â: (14)

Note that the key assumption and definition in this deriva-
tion are (8) and (12) leading to the following desirable
properties. The product of each subject-specific TC and
SM is a perpendicular projection of the data onto the PCA
column space, Ỹi : R̃iS̃i ¼ PC(FiGi)Yi [see (30)]. The PCA
compressed fitted values are exactly the PCA compressed
data X, that is, the fitted values and data agree in the PCA
space [see (31)]. The fitted compressed values, X̃i : ÂS̃i ¼
Xi, are a product of the subject-specific TC and SM [see
(32)], and similarly for the mean fitted compressed value,
~X �PM

i¼1
~Xi ¼ X [see (33)]. Thus, it is the amount of infor-

mation retained in the PCA steps that largely determines
the subject-specific TC and SM estimates.

GICA1

The group ICA (GICA) method provided the first
method based on ICA for estimating subject-specific TCs
and SMs [Calhoun et al., 2001b, 2002]. The differences in

GICA1 from GICA3 come from a different partitioning of
group-level PCA reducing matrix G. Following GICA3,
replace the assumption regarding subject-specific TCs in
(8) with

Ri � FiGiA (15)

and the definition of subject-specific SMs in (12) with

Ŝi ¼ Â
�
G�

i F
T
i Yi ¼ Â

�ðGT
i GiÞ�1GT

i F
T
i Yi: (16)

As such, the aggregate SM does not equal the sum of the
subject-specific SMs. Still, from (15) the natural estimator
of subject-specific TC Ri is

R̂i � FiGiÂ: (17)

Note that the assumption and definition in this derivation,
(15) and (16), leads to the following properties. The product
of each subject-specific TC and SM is a perpendicular projec-
tion of the data onto the PCA column space Ỹi ¼ R̃iS̃i ¼
PC(FiGi)Yi. The PCA compressed fitted values are exactly the
PCA compressed data X, that is, the fitted values and data
agree in the PCA space, similar to (31). However, the differ-
ence from GICA3 is that the fitted compressed values, X̂i,
are not a product of the subject-specific TC and SM,
X̂i � ÂŜi 6¼ Xi, thus also X̂ �PM

i¼1 X̂i 6¼ X. Note that the fit-
ted values as the product of the subject-specific TCs and
SMs for GICA1 and GICA3 are equivalent, R̂iŜi ¼ R̃iS̃i, both
being perpendicular projections of the data onto C(FiGi).

GICA2

Because GIFT software implemented GICA2 from ver-
sions v1.01b to v2.0c, we present this hybrid method [Cal-
houn, 2004]. Following GICA3, use the assumption
regarding subject-specific TCs as in GICA1 in (15) giving
the natural estimator for Ri as R̂i : FiGiÂ, but the defini-
tion of subject-specific SMs as in GICA3 in (12) giving the
estimator for Si as S̃i ¼ Â�GT

i F
T
i Yi. The subject-specific fit-

ted values are no longer a projection, because GT
i Gi = I,

since Gi is not orthonormal. Given these fitted values,
recompressing them with PCA does not give the same X
as compressing the original data. But, as in GICA3, the
sum of the subject-specific maps is the aggregate spatial
map Ŝ ¼PM

i¼1
~Si. As in GICA3, the fitted compressed val-

ues are a product of the subject-specific TCs and SMs and
therefore the mean fitted compressed value also matches
the mean compressed data.

STR (dual regression)

Spatio-temporal regression (STR), or dual regression, is
an indirect back-reconstruction approach using least
squares to estimate the subject-specific TCs and SMs
[Beckmann et al., 2009; Calhoun et al., 2004b]. Given ICA
results, as in (11) or PICA [Beckmann and Smith, 2004],
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STR first estimates subject-specific TCs, _Ri, then SMs, _Si,
via multiple regression. We note that because ICA limits
the amount of correlation between the aggregate SM com-
ponents (i.e., if two component TCs were highly correlated
they would have been grouped into the same component),
the concern of colinearity between the variables appears
mitigated, but as we later show, variation among subjects
may have subject-specific SMs that are a mixture of a few
aggregate SMs because of TCs that are more highly corre-
lated for some subjects. To motivate this method we begin
again by letting Yi ¼ RiSi þ Ei. The first assumption is that
all subjects share a common SM, Si : S, i ¼ 1, : : : ,M.
Then, from the ICA in (6), substitute Ŝ for S and take the
transpose of the equation for

YT
i ¼ Ŝ

T
RT

i þ ET
1i: (18)

Least squares estimation for TC RT
i gives _RT

i ¼ (ŜŜT)21ŜYT
i ,

or the transpose [Calhoun et al., 2004b],

_Ri ¼ YiŜ
� ¼ YiŜ

TðŜŜTÞ�1: (19)

As an aside, note that the transpose of the product of the
aggregate SM and subject-specific TC is a perpendicular
projection of the data onto C(ŜT), ŜT _RT

i ¼ ŜT(ŜŜT)21ŜYT
i ¼

PC(ŜT)Y
T
i . To estimate each subject-specific SM, Si, the origi-

nal assumption of common SMs is relaxed. Conditional on
the estimated subject-specific TC, _Ri, let

Yi ¼ _RiSi þ E2i (20)

with E[E2i] ¼ 0. Least squares estimation for Si gives

_Si ¼ ð _RT

i
_RiÞ�1 _R

T

i Yi ¼ _R
�
i Yi ¼ ðYiŜ

�Þ�Yi: (21)

The product of each subject-specific TC and SM gives

_Ri
_Si ¼ _Rið _RT

i
_RiÞ�1 _R

T

i Yi ¼ PCð _RiÞYi ¼ PCðYiŜ
�ÞYi; (22)

where PC( _Ri) ¼ PC(YiŜ
2
) is a PPO onto C(YiŜ

2) [see (34)].
This column space is much different from in GICA1 or
GICA3 where they depend only on the PCA reduction mat-
rices. This method indirectly uses compression through the
V-by-T2 dimensional Ŝ2, which was estimated through ICA
using the PCA compressed data. In contrast to (13) for
GICA3, the sum of the subject-specific SMs relate to the ag-
gregate SM in a way that is not clear how to interpret,

XM
i¼1

_Si ¼
XM
i¼1

ððŜ�ÞTYT
i YiŜ

�Þ�1ðŜ�ÞTYT
i Yi: (23)

These estimates of _Ri and _Si require contradictory assump-
tions regarding the SMs, where the SMs are assumed to be
the common aggregate map to estimate subject-specific
TCs, then distinct subject-specific SMs are estimated.

By personal communication (Stephen Smith), both
regressions are meant to include a column of ones in the
design matrix, leading to an estimate different from
GICA1, where (18) and (19) are replaced by

YT
i ¼ 1 Ŝ

T
h i

RT
i þ eT1i and _R

T

i ¼ 1 Ŝ
T

h i�T
YT
i (24)

and where (20) and (21) are replaced by

Yi ¼ 1 _Ri

� �
Siþe2i and _Si ¼ 1 _Ri

� ��
Yi ¼ 1 Yi 1 Ŝ

T
h i�h i�

Yi:

(25)

It is unclear what the ramifications are of including addi-
tional regressors, such as motion parameters, in the design
matrices and thus such practice requires careful examina-
tion before recommendation.

Probabilistic PCA and ICA

An alternative to the noise-free methods presented
above are so-called probabilistic methods (Figure 1, Steps
4, 6, and 7).

PPCA

Probabilistic PCA (PPCA) is related to factor analysis
[Bartholomew and Knott, 1987; Basilevsky, 1994] where
the noise covariance of PPCA is the more restrictive r2I
rather than in factor analysis as diag (r2

1,. . .,r
2
T) [Tipping

and Bishop, 1999]. The maximum likelihood estimate for
r2 is the average loss of variance (eigenvalues) over the
lost dimensions. As r2 ! 0, the PPCA represents the
orthogonal projection into the standard PCA space. With
r2[ 0, it is an oblique projection skewed toward the origin.

PICA

Probabilistic ICA (PICA), also known as noisy ICA or
independent factor analysis, attempts to generalize ICA to
include noise [Attias, 1999]. Although there are many algo-
rithms for PICA they all implicitly assume the identifiabil-
ity of the mixing matrix A and/or the noise covariance
Cnoise [Attias, 1999; De Lathauwer et al., 1996; Hyvärinen,
1999a,b; Moulines et al., 1997]. Although A is identifiable,
Cnoise is not uniquely identifiable, though the elements are
bounded, thus the primary criticism of PICA is the ambi-
guity in assigning variance between the independent com-
ponents and the noise process, introducing an ambiguity
into the results [Davies, 2004]. The strategy implemented
in FSL/MELODIC software [Beckmann and Smith, 2004]
to overcome the nonidentifiability issue is to assume that
the noise covariance is isotropic, Cnoise ¼ r2

noiseI, allowing
convergence of parameter estimates [Davies, 2004]. Even
with the isotropic assumption, the decomposition into in-
dependent components is unique only if no more source
signals are extracted from the data than exist, thus the
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algorithm may fail to converge if too many components
are specified.

These probabilistic versions of PCA and ICA have been
applied to fMRI data [Beckmann and Smith, 2004], and are
implemented in the FSL/MELODIC software. Therefore,
we have incorporated their PPCA and PICA code into
GIFT to investigate their properties compared to their
noise-free counterparts.

Experiments

Simulated data

A simulated fMRI-like dataset in Figure 2 representing
sources of interest and artifacts is used as the true com-
mon set of sources among subjects. Let R and S denote
the true group ‘‘mean’’ TC and SM matrices. Among the C
¼ 8 source SMs, one is task-related (1), two are transiently
task-related (2 and 6), and five are artifact-related (3, 4, 5,
7, and 8), where five are super-Gaussian (1, 2, 5, 6, and 8),
two are sub-Gaussian (3 and 7), and one is Gaussian (4).
Thirty-two, M ¼ 32, realizations of subject data are simu-
lated from the group ‘‘mean’’ by adding subject-specific
Gaussian noise to the TCs and SMs and by varying the
amplitude of the task-related TCs. Specifically, let rc be col-
umn c of R and let s0c be row c of s, then subject-specific
data with no noise (nn) are generated with

Ynn
i ¼

XC
c¼1

gicðrc þ /icÞðs0c þ h0icÞ ¼ RiSi; (26)

where fic � Normal (0,r2ric) for c ¼ 1,2,3,6 and equal to 0
otherwise, y0ic � Normal (0,r2sic) for c ¼ 1,2,3,5,6,7,8 and
equal to 0 otherwise, gic ¼ Uniform(0.25,1.75) for c ¼ 1,2,6
and equal to 1 otherwise, with r2ric and r2sic equal to the
signal variation for component c divided by (2, 4, 8, and
16) for subjects 1–8, 9–16, 17–24, and 25–32, respectively,
to provide between-subject differences. The remaining TCs
and SMs are already random between subjects. Also, three
subjects have different SMs for the task-related compo-
nent: subject 10 has no task-related TC or SM so has only
seven components, subject 20 has an additional disk of
activation on the task-related SM, and subject 30 has only
one of the two disks of activation on the task-related SM.

We add Rician noise to the simulated data to represent
a realistic SNR [Okada et al., 2005]. In our laboratory for
fMRI experiments at 3T with TR ¼ 2 s and TE ¼ 29 ms,
and a voxel size of 3.75 mm3 we typically observe a mean
SNR ¼ 90. The magnitude of our zero-mean data is esti-
mated by max

i
Ynn
i and the additive factor to scale the data

to 2% activation is calculated, A ¼ max
i

Ynn
i =0:02. In the

image background, with signal equal to zero, the noise
mean has a Raleigh distribution and is given by

lbackgroundnoise ¼ rnoise

ffiffiffiffiffiffiffiffi
p=2

p
and the SNR for an fMRI image

can be defined by SNR ¼ A/lbackgroundnoise . This implies that

rnoise ¼ A=ðSNR
ffiffiffiffiffiffiffiffi
p=2

p Þ ¼ 0:009A. For each element in Ynn
i

over time and voxels, Ynn
i (t,v), we add noise to obtain

Yiðt; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYnn

i ðt; vÞ þ Aþ m1Þ2 þ m22

q
, where m1 and m2 are

both distributed as Normal(0,r2
noise), giving us simulated

‘‘true’’ data Yi, i ¼ 1,. . .,M. Note that with high SNR,
Rician data is approximately Gaussian, and therefore this
simulation is consistent with the PICA model.

Auditory oddball task data

Twenty-eight healthy controls were scanned during an
auditory oddball task (AOD) consisting of detecting an
infrequent sound within a series of regular and different
sounds, previously published [Calhoun et al., 2008a]. The
participants were instructed to respond as quickly and as
accurately as possible with their right index finger every
time they heard the target stimulus and not to respond to
the nontarget stimuli or the novel stimuli. The stimulus
paradigm data acquisition techniques and previously
found stimulus-related activation are described more fully
elsewhere [Kiehl et al., 2001, 2005]. This data includes 249
time points over 63,533 voxels.

PCA comparisons

We compare the subject-level PCA dimension reduction
techniques by the similarity of the original data matrix Yi

Figure 2.

Simulated data time courses and spatial maps. Among the C ¼ 8

source SMs, one is task-related (1), two are transiently task-

related (2 and 6), and five are artifact-related (3, 4, 5, 7, and 8),

where five are super-Gaussian (1, 2, 5, 6, and 8), two are sub-

Gaussian (3 and 7), and one is Gaussian (4).
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with the PCA reduced then back-projected estimated data
matrix Y

^

i from near (2) using root mean squared error
(RMSE) calculated element-wise as

RMSEðY
^

i;YiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTVÞ�1SSEi

q
;

where SSEi ¼
XT
t¼1

XV
v¼1

ðYitv � Y
^

itvÞ2; ð27Þ

where smaller RMSE indicates more similarity. To com-
pare the amount of information lost in subject-level PCA
methods, in (27) Yi is the original data for subject i and
Y
^

i � FiF
�
i Yi, where F�i is either subject-specific reducing

matrix, the spatially concatenated PCA reducing matrix,
F�i : F�0 , i ¼ 1,. . .,M, or the group data mean reducing
matrix F�i F�

0
. To compare the information lost overall

with the subject-level and group-level PCA, we compare
the original data Y with the group-reduced predicted data
Y
^
^

from (5).

Group ICA comparisons

We compare estimates for the population mean and sub-
ject-specific TCs and SMs. We calculate the mean RMSE
over subjects between the estimated and true TCs and
SMs, RMSE(R̃ic,Ric) and RMSE(S̃ic,Sic). Time course
detrending often removes the mean, the slope, and period
p and 2p sines and cosines over the full time course,
though we only remove the mean from TCs and SMs in
our analyses of the simulated data and the AOD data, and
we do not scale by z-scoring. This preserves the character-
istics of the TC estimates.

For the AOD data, we do not know the true TCs and
SMs. Therefore, GICA3 and STR will be compared by the
difference in TC and SM for the subject most similarly esti-
mated (highest correlation) with the two methods and the
subject least similarly estimated (correlation closest to
zero).

Simulated resting-state data

We also simulated a resting-state paradigm analogous to
the task-related paradigm. Using the same SMs in Figure
2, TCs were simulated for Components 1, 2, and 6 having
0.3–0.4 Hz frequency range (assuming 2-s TR) and random
noise for the remaining components, where cycles differed
for each subject with respect to frequency, cycle onset, and
inter-cycle length, with random noise added. The goal is
to create time courses for components that are asynchro-
nous among subjects.

Simulated demographic data

For the three task-related Components (1, 2, and 6), we
specify spatial map intensity effects over a mask that
depend on a binary (B) covariate (such as gender), a con-
tinuous (C) covariate (such as age), and their interaction

(B�C). For each of M ¼ 100 subjects we manipulate inten-
sity gic in (26),

gic ¼ b0c þ b1cBic þ b2cCic þ b3cBicCic þ eic (28)

where Bic � Bernoulli(0.5), Cic � Normal(0,r2C), and eic �
Normal(0,r2ec). The beta vector for Component 1 is b1 ¼
[1,20.4,0.4,0], indicating binary and continuous covariates
but no interaction, applied to rectangular spatial mask
consisting of the lower spot. The beta vector for Component
2 is b2 ¼ [1,0,20.5,0.4] applied to rectangular spatial mask
consisting of the pair of oppositely signed spots. The beta
vector for Component 6 is b6 ¼ [1,0.4,0,20.4] applied to rec-
tangular spatial mask consisting of the upper spot. The
remaining components and unmasked regions effectively
have a beta of [1,0,0,0]. We set r2C ¼ 0.5 to allow gic to be
spread without becoming negative, and r2ec was 0.05, 0.02,
and 0.01 for Components 1, 2, and 6, respectively, for more
noise in the more distinct Components 1 and 2, and less
noise for Component 6. Finally, ‘‘true’’ t statistics are com-
puted from the true simulated SMs, then t statistics are com-
puted using GICA3 and STR and compared to the ‘‘true’’ t
statistics. GICA3 and STR are used after subject-specific sub-
ject-level PCA with 60 components, eight group-level PCA
components, and noise-free ICA with 10 runs of ICASSO.

RESULTS

Analysis of Simulated Data

Subject-level PCA and PPCA methods

For our simulated data, the number of components
selected by MDL for each subject was five or six. The in-
formation retained is compared for the three subject-level
PCA methods with different numbers of components at
each level. Let PCA1 and PCA2 refer to the number of
components retained for each subject in the subject-level
PCA and the concatenated data in the group-level PCA,
respectively. A range of components retained for PCA1
(60, 15, 8, 6, and 4) were paired with a range for PCA2
(30, 15, 8, 6, and 4) such that the number retained main-
tains PCA1 � PCA2. As an aside, for the temporally con-
catenated group data after the subject-level PCA with 60
components, MDL estimates four components after the
subject-specific and group data mean subject-level PCA,
whereas MDL estimates seven components after spatial-
concatenation subject-level PCA. This indicates a consis-
tency between subject-specific and group data mean in
terms of aligning the subject-level information, whereas
there is perhaps some misalignment from spatial-concate-
nation which requires more dimensions in the aggregate
to capture the dimensionality of the group data.

Figure 3a compares the subject-specific, spatial-concate-
nation, and group data mean approaches for subject-level
PCA plotting the mean of the RMSEðY

^

i;YiÞ over all 32 sub-
jects. Subject-specific reduction retains more information
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than spatial-concatenation and group data mean, with in-
formation retained decreasing as the number of compo-
nents decreases. At 60 components, subject-specific PCA
has RMSE of 0.147 [with standard deviation (SD) 0.011],
spatial-concatenation has 0.165 (0.012), and group data
mean has 0.175 (0.015).

Figure 3b compares the overall information reduction

from both steps, RMSEðY
^

;YÞ. For the true number of com-
ponents (eight) and higher, subject-specific PCA retains
more information than the other methods. But for the esti-
mated number of components (six) and lower, spatial-con-
catenation retains more information except for (6,6) where
subject-specific approach has lower RMSE. Four compo-
nents for the second PCA are too few to retain. For 60
components at the subject level and 6 at the group level
RMSE for subject-specific reduction is 0.689 (SD 0.055), for
spatial-concatenation is 0.617 (0.058), and group data mean
is 0.683 (0.055). These results suggest that retaining the
same number of components in the subject-level and
group-level PCAs retain the greatest information, and that
the overall information retained is similar between subject-
level reduction methods. However, later we show that for
the ICA it is better to retain more components in the sub-
ject-level reduction and close to the true number of com-
ponents at the group-level. Also, though these methods
retain similar amounts of information after the PCA, the
quality of the TCs and SMs differ substantially enough to
prefer the subject-specific or group data mean subject-level
PCA reduction.

The results between PCA and PPCA reduced data mat-
rices differ in RMSE by no more than 10�7 for any com-
parison of the simulated or real AOD data, suggesting the
results of these two approaches are not different for the
application of fMRI data, though there may be cases where
they do give different results.

ICA

ICASSO was used to analyze ten runs of the ICA and
PICA algorithms to check component stability and that the
clusters for both methods were compact [Himberg et al.,
2004]. Results of ICASSO suggest that convergence was
consistent among runs. We use the Infomax algorithm for
ICA because it has been shown to be more consistent than
FastICA in repeated runs [Fig. 3, Correa et al., 2007] and
does not constrain the demixing matrix to be orthogonal.
PICA uses FastICA.Figure 3.

(a) Mean of RMSEðY
^

i;YiÞ values for subject-level PCA/PPCA

reduction for a range of components retained using three meth-

ods: subject-specific (SS), spatial-concatenation (SC), and group

data mean (GM). (b) Mean of RMSEðY
^
^

i;YiÞ values for total

PCA reduction for a range of components retained at the sub-

ject-level and group-level. Smaller RMSE indicates more informa-

tion retained.

Figure 4.

Mean RMSE between estimated and true (a) TC and (b) SM

over subjects for the task-related component (1), RMSE(R̃ic,Ric)

and RMSE(S̃ic,Sic), comparing GICA3, GICA1, and STR multi-

subject ICA approaches using subject-specific (SS), spatial con-

catenation (SC), and group data mean (GM) subject-level PCA

methods with ICA and PICA. See Table II for more detail. Three

cells have been removed because of large values that distorted

the scale (TC/SC/ICA/GICA3/15,15; TC/SC/PICA/GICA3/8,8;

SM/SS/ICA/GICA1/15,15), other missing values noted with ‘‘*’’

indicate that PICA failed to converge.
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Subject-specific TC and SM estimation quality

We compare TC and SM quality by calculating the
mean RMSE over subjects. We find that the overall lowest
RMSE considering both TC and SM estimation is using
GICA3 with subject-specific subject-level PCA with ICA
for most choices of PCA components.

For TCs, Figure 4a shows that GICA3 has lower RMSE
than GICA1 and STR when using noise-free ICA with sub-
ject-specific and group data mean subject-level PCA for
nearly all combinations of PCA components. GICA3 has
lower RMSE for noise-free ICA than for PICA. GICA1 and
STR have roughly the same low RMSE over all conditions:
all subject-level PCA methods, ICA and PICA methods,
and the number of PCA components retained at subject-
and group-levels. STR and GICA1 appear robust to these
choices for TCs.

For spatial concatenation subject-level PCA, GICA3 has
larger RMSE because the method inflates the amplitude of
the TCs for certain subjects, see Figure 5 (but see Table II
for similarities if using correlation to evaluate accuracy).
For the standard deviation of the TCs, both subject-specific
and group data mean subject-level PCA methods perform
similarly and are close to the truth, whereas spatial concat-
enation is unpredictably different for each subject. If the
TCs are scaled, then the profile of the TCs compared with
the truth are similar among all three subject-level PCA
methods. Therefore to estimate the TC amplitude accu-
rately with GICA3, spatial concatenation subject-level PCA
should be avoided.

For SMs, Figure 4b shows that GICA3 has lower RMSE
over all subject-level PCA methods, ICA and PICA, and
all combinations of PCA components. GICA1 and STR
have lower RMSE for PICA than ICA. GICA3 appears ro-
bust to these choices for SMs.

ICA always converged whereas PICA sometimes failed
to converge when the requested number of components
was much greater (15) than the true number of compo-
nents (8), see Figure 4.

To discuss these results at a finer level, recall that PCA1
is the number of components retained at the subject-level,

Figure 5.

For GICA3 with ICA, the task-related TC is plotted for the 31

subjects with that component present. The five subplots are the

true TCs, the TCs estimated using subject-level PCA subject-

specific, spatial concatenation, and group data mean, and finally

the standard deviation of the TCs for each individual for the

first four subplots.

TABLE II. Comparisons of the mean RMSE values in Figure 4, and mean correlation, for PCA reduction with 60

subject-level components and six group-level components for GICA3 and STR, ICA and PICA, and subject-specific,

spatial concatenation, and group data mean subject-level PCA

ICA Method

TC SM

GICA3 STR GICA3 STR

RMSE
Subject-specific ICA 0.492 (0.119) 0.986 (0.506) 0.062 (0.015) 4.697 (0.752)

PICA 2.465 (0.785) 0.923 (0.471) 0.073 (0.009) 1.217 (0.254)
Spatial concatenation ICA 1.933 (1.842) 0.984 (0.505) 0.118 (0.089) 4.225 (0.629)

PICA 6.692 (6.492) 0.925 (0.470) 0.080 (0.017) 1.184 (0.203)
Group data mean ICA 0.528 (0.147) 0.986 (0.506) 0.062 (0.015) 4.629 (0.694)

PICA 2.420 (0.775) 0.923 (0.471) 0.073 (0.009) 1.190 (0.222)
Correlation
Subject-specific ICA 0.843 (0.104) 0.827 (0.159) 0.927 (0.073) 0.903 (0.100)

PICA 0.800 (0.121) 0.787 (0.176) 0.862 (0.075) 0.825 (0.116)
Spatial concatenation ICA 0.880 (0.055) 0.806 (0.173) 0.790 (0.184) 0.926 (0.082)

PICA 0.843 (0.067) 0.753 (0.194) 0.703 (0.202) 0.848 (0.085)
Group data mean ICA 0.826 (0.099) 0.831 (0.157) 0.925 (0.074) 0.911 (0.093)

PICA 0.781 (0.117) 0.788 (0.176) 0.860 (0.075) 0.839 (0.106)

Smaller RMSE and larger correlation is better. Values are mean (sd).
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and PCA2 is for the group-level. For TCs, GICA3 has low-
est RMSE when PCA2 is consistent with MDL (six compo-
nents), and RMSE increases when PCA1 has very few
components, in particular when PCA1 ¼ PCA2 or when
PCA1 and PCA2 have too few components. For TCs, STR
has lowest RMSE when PCA2 is consistent with MDL (six
components), and RMSE increases as PCA2 deviates from
the correct number of components. For TCs, GICA1 is sim-
ilar to STR except, like GICA3, RMSE increases when
PCA1 is no more than the number of components that
MDL estimates.

Table II provides additional detail for PCA reduction
with 60 subject-level components and six group-level com-
ponents for GICA3 and STR for subject-specific, spatial
concatenation, and group data mean subject-level PCA.
Comparisons using mean RMSE reveal that GICA3 has
lower RMSE for ICA over PICA for TCs and SMs, except
for spatial concatenation SMs. STR has lower RMSE for
PICA over ICA for all. GICA3 has lower RMSE than STR
for TCs and SMs using ICA, and for SMs using PICA.
Overall, GICA3 has lowest RMSE with subject-specific
using ICA. Considering correlation, rather than RMSE,
ICA always provides larger correlations than PICA, and
GICA3 has larger correlations than STR for subject-specific
and group data mean.

Subject-specific PCA method effects on TCs and SMs

Though the overall RMSEðY
^

i;YiÞ is lower for spatial-
concatenation after group PCA reduction than subject-spe-
cific or group data mean for 60 and six components (see
Figure 3b), the quality from the subject-specific PCA is
higher for both the ICA estimation (see Figure 4) and the
visual quality of the TC and SM (Figure 6, below).

Figure 6a shows the true TC and SM for a subject (12)
chosen at random, Figure 6b shows the z-scored scaled
estimated TC and SM and the difference between the esti-
mated and true TC and SM using ICA with the three sub-
ject-level PCA methods, and Figure 6c shows the same
using PICA. For TCs, differences from the true TCs are
smaller for noise-free ICA than PICA, and GICA3 has
smaller differences than STR. For SMs, noise-free ICA has
fewer artifacts than PICA, and GICA3 has fewer artifacts
than STR.

ICA and back-reconstruction method effects

on TCs and SMs

Figure 7 compares GICA3 and STR using the simulated
data for the task-related component (1) presenting unthre-
sholded SMs for two subjects selected from the simulated
data. Inter-method spatial correlation between GICA3 with
ICA and STR with PICA was used to choose the best-
matching subject (27) and the worst-matching subject (26).
For the most similar subject (27), the SM for GICA3 with
ICA and STR with ICA looks very clean for the task-
related component (1), while for STR with PICA there is

Figure 6.

Comparison of TC and SM estimation for the simulated data

task-related component (1) for a subject (12) chosen at random,

using subject-specific (SS), spatial concatenation (SC), and group

data mean (GM) subject-level PCA, (b) noise-free ICA and (c)

PICA, and GICA3 and STR. The true TC and SM for the subject

is shown in (a). For the TCs and SMs, the left plot is the esti-

mated value and the right plot is the difference with the true

TC (SM) which ideally is flat at zero for both the TC and SM.
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an artifact of Component 2. Although the TCs look similar
between methods, the difference between GICA3 with ICA
and STR with PICA reveals the TC for Component 2 asso-
ciated with the spatial artifact in the SM for STR. For the
least similar subject (26) there is stronger task-related com-
ponent (1) activation shown in the SM for GICA3 with
ICA than for STR with ICA or PICA, and STR with ICA or
PICA has an artifact from a different component (4). In the
difference SMs, the artifactual component is clear as well
as the higher task-related component activation by GICA3.
The GICA3 TC shows stronger task-related pattern than
STR with ICA or PICA and the difference reveals the task-
related component that is stronger for GICA3 and a sug-
gestion of the step-change artifact from Component 4.
Thus, the SMs estimated by GICA3 are in close agreement
with the truth and the difference with STR reveals artifacts
from the STR method, consistent with previous results in,
Table II, Figure 6b, Figure 8, and Figure 9.

Comparisons with good PCA component selection

We make additional comparisons over all combinations
of the three task-related Components (1, 2, and 6), the

back-reconstruction methods (GICA3, GICA1, and STR),
and subject-level PCA methods, while choosing to retain
60 components for the subject-level PCA and 6 for the
group-level PCA since that provides good estimation for
the TCs and SMs (see Figure 4).

For comparisons of the subject-specific TCs and SMs we
calculate the mean RMSE over subjects between the esti-
mated and true subject-specific TCs and SMs. In Figure 8,
the means are displayed with nonparametric bootstrap
standard errors (NPBS SEs). For TCs, GICA3 has much
lower RMSE with ICA than with PICA. GICA1 and STR are
effectively equivalent and the ICA/PICA choice is not im-
portant. With ICA, the TC quality does not greatly differ
among GICA3, GICA1, and STR for the subject-specific and
group data mean subject-level PCA strategies, whereas we
have previously observed that spatial-concatenation loses
amplitude information with GICA3. For SMs, GICA3 has
extremely low RMSE compared with GICA1 and STR, and
for GICA1 and STR PICA has much lower RMSE than using
ICA. These results are consistent with Figure 4.

For comparisons of the mean TC and SM over subjects
we calculate the RMSE between the mean of the estimates
and the true mean TC and SM, RMSEð~Rc;RcÞ and

Figure 7.

Estimated TCs, SMs, and differences between them for GICA3 with ICA and STR with ICA and

PICA for simulated data for the most (27) and least (26) spatially correlated subjects.
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RMSEð~Sc;ScÞ, for GICA3 for example. In Figure 9, we
observe similar trends as in Figure 8 with GICA1 and STR
matching almost exactly for mean TC and SM.

For comparisons of the sum of the subject-specific SMs
equating to the aggregate SM in (13) we calculate the
RMSE between the sum of the subject-specific SMs and

the ICA aggregate SM, RMSEðPM
i¼1

~Si; ŜÞ, for GICA3 for
example. Figure 10 indicates that GICA3 matches almost
exactly whereas GICA1 and STR, which are not required
to fulfill this condition, are far from it.

Iterating STR until convergence

One could consider iterating STR until a convergence
criterion is met for the subject-specific TCs or SMs. That is,
we start with (19) to solve for _Ri given Yi and Ŝ�, then use
(21) to solve for _Si given Yi and _R�

i , then repeat by substi-
tuting _Si for Ŝ in (19), stopping when sequential solutions
of either _Ri or _Si do not differ much. This strategy could
distance the results from the contradictory assumptions of
common and subject-specific SM, but the convergence
properties of such a solution are currently not well under-
stood and beyond the scope of this article. In Figure 11 we
use the same subject (12) from Figure 6 (SS ICA STR) but
iterate STR until convergence. After 19 iterations the TCs
and SMs converge and both are different from using a sin-
gle iteration. For this subject, the RMSE of the TC changed
little, 0.4116 for one iteration versus 0.4122 at convergence,
whereas the RMSE increased for the SM, 5.2801 versus
5.3591. Figure 12 summarizes the results of STR iteration
over all 31 subjects with the task-related component (1).
RMSE for TCs effectively don’t change, whereas RMSE for
SMs tend to increase. Convergence is usually attained in
fewer than 20 iterations, but can sometimes take several

Figure 8.

Comparisons of the subject-specific TC and SM using mean

(with NPBS 95% CI) for RMSE(R̃ic,Ric) and RMSE(S̃ic,Sic) for TCs

and SMs (notation for GICA3), closer to zero is better. Solid

circles are ICA and open circles are PICA, and G3, G1, and SR

are GICA3, GICA1, and STR, respectively.

Figure 9.

Comparisons of the RMSE between the mean true and mean

estimated TC and SM, RMSEð�~Rc; �RcÞ and RMSEð�~Sc; �ScÞ (nota-

tion for GICA3), closer to zero is better. Solid circles are ICA

and open circles are PICA.

Figure 10.

Comparison of desired property of the sum of the subject-spe-

cific SMs equaling the ICA aggregate SM, RMSEðPM
i¼1

~Si; ŜÞ
(notation for GICA3), closer to zero is better. Solid circles are

ICA and open circles are PICA.
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times that. Therefore, while iteration may help resolve the
contradictory assumptions, it may not improve estimation,
and will likely still have the artifacts observed with single-
iterate STR (see Figure 6 and Figure 9).

Auditory Oddball Task Data

GICA3 and STR method comparisons for real data is
qualitative because we do not know the true TCs and SMs
for the subjects. Analysis decisions and comparisons are
guided by the results of the simulated data above. We
select the default mode network (DMN) component
because it a clear and prominent component previously
identified [Calhoun et al., 2008a]. The subject-level PCA
reduces the data from 249 time points to T1 ¼ 45 dimen-
sions. We assume the estimation of the number of compo-
nents by MDL is roughly correct, where the 28 subjects
have a range from 11 to 26 estimated components with an
average of 19, therefore we use T2 ¼ 19 components for
the group-level PCA. Because subject-specific and group
data mean subject-level PCA give very similar and good
results, we choose subject-specific to simplify the compari-
sons, and comparing the results from these two subject-
level PCA methods revealed minor differences that do not
affect the results below. As suggested by the TC and SM
estimation results in Figure 8, Figure 9, Figure 10, and Ta-
ble II, ICA is better for GICA3 and PICA is better for STR,
so we use these combinations so each method is at its
best. Because we are using spatial ICA, we are more inter-
ested in differences in SMs than TCs between the GICA3
and STR methods.

For the AOD analysis, first we compare mean results for
GICA3 and STR in Figure 13. Event-related TC averages to
the target stimulus for a task-related (targets) component
and the default mode network show that both GICA3 and
STR provide similar results. In addition, the t statistics of
the SMs for the default mode network appear similar for
GICA3 and STR, apart from minor differences.

For each subject, we calculate the Pearson correlation
between the estimated SMs with GICA3 and STR and
select the subjects with the highest and lowest correlations,
representing the subjects estimated most similarly and
most differently between the GICA3 and STR methods.
We then z-score and plot the TCs and SMs for these sub-
jects for the two methods, as well as the differences in z-
score between the two methods. Note that the GICA3 and
STR method correlation of a subject-specific SM does not
predict the correlation of the associated TC (not shown).

Figure 14 compares GICA3 and STR using the AOD
data for the default mode network component in a similar
format to Figure 7. Results for the subject-specific TCs and
SMs for two subjects are z-scored and displayed in nine
equally spaced axial slices from 60 mm to �20 mm, the
SMs thresholded at 1.0 and the difference SMs thresholded
at 0.5. Because the TCs are more complex for the real data,
we concentrate on the SMs. We observe similar artifacts as
in the simulated data from STR compared to GICA3. For
the subject (24) with the highest inter-method spatial cor-
relation, the difference SM reveals bright red in slices 50
and �10 where STR has negative activation not appearing

Figure 12.

Iterating STR until convergence differences in RMSE with truth

with iteration and with single iteration for TCs and SMs and

number of iterations until convergence.

Figure 11.

Iterating STR until convergence changes the estimated TCs and

SMs from the single-iterate version. (a) The difference between

the initial STR iterate and the resulting TC and SM upon conver-

gence. (b) The difference of the converged TC and SM and the

truth, compare to Figure 6b (SS ICA STR).
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in GICA3. For the subject (21) with the lowest correlation,
the difference SM reveals two important differences. First,
GICA3 indicates more DMN activation with the red blobs
in slices 50 through 20. Second, STR has a number of
potential artifacts, spots of positive activation in slices 10
to �20 appearing as bright blue blobs in the difference
map. Therefore, as in the simulated data, GICA3 suggests
cleaner SMs with more activation where it is expected
while STR includes more hypothesized artifacts.

Simulated Resting-State Data

For the resting-state simulation we wished to determine
the degree to which the PCA results in Figure 3 and the
ICA back-reconstruction results in Figure 4 were condi-
tional on the task paradigm in Figure 2. Results (not
shown) are qualitatively similar to what is observed in
Figure 3 and Figure 4 suggesting our results are generaliz-
able to many paradigms.

Simulated Demographic Data

We compared the ability of GICA3 and STR to detect
spatial map intensities that depend on a covariate. Fig-

ure 15 shows the t statistics over the 100 subjects for test-
ing whether the mean is zero for the three components
with a covariate mask. Component 1 had binary and con-
tinuous masks around the left blob, Component 2 had con-
tinuous and interaction masks around the two upper
blobs, and Component 3 had binary and interaction masks
around the right blob. The Simulation rows are calculated
from the ‘‘true’’ simulated SMs. The GICA3 and STR rows
are calculated on the estimated SMs. GICA3 closely
matches the Simulation while STR has many artifacts, ei-
ther from the remaining component incorrectly appearing
with the mask region or component mixing.

Using the ‘‘true’’ simulated t statistics significant at an
uncorrected 0.05 significance level as a mask, Table III
compares the proportion of significant t statistics com-
puted from GICA3 and STR agreeing with the ‘‘true’’ t sta-
tistics. The label ‘‘inside mask’’ is used to indicate the
‘‘true’’ t statistic was significant at a 0.05 significance level,
and ‘‘outside mask’’ indicates insignificance. For the three
effects (binary, continuous, and interaction) for the three
components of interest when they had a simulated mask
(Sim ¼ Y), GICA3 usually has a greater proportion of vox-
els in agreement with the simulated t statistics than STR
both inside and outside the mask. For the remaining com-
ponents STR agrees more with the mask, but this is effec-
tively agreement with random noise.

DISCUSSION

A detailed discussion follows a summary of the recom-
mendations based on the mathematical results, model
interpretations, and the PCA and ICA results. We recom-
mend using standard PCA and noise-free ICA because
PPCA provides the same results as PCA and because
PICA introduces artifacts into the estimated SM compared
to ICA. We recommend using subject-specific or group
data mean subject-level PCA because both provide similar
TCs and SMs with accurate amplitude (see Table II, Figure
5 and Figure 6). We recommend retaining more compo-
nents in the subject-level PCA than in the group-level
PCA because back-reconstruction results are better (see
Figure 4). We recommend using GICA3 as the back-recon-
struction method because it is robust to the number of
components retained for the group-level PCA, because it
provides the most accurately estimated TCs and SMs,
because it has the desired interpretation of the product of
TC and SM equal to the data to the accuracy of the PCA
reduction, and because the aggregate SM is the sum of the
well-estimated subject-specific SMs. The highly similar
results for the simulations and real data suggest these rec-
ommendations apply for a wide variety of data.

PCA

We have shown that the subject-specific and group data
mean subject-level PCA are preferred over spatial-

Figure 13.

(a) AOD event-related TC averages for the task-related compo-

nent and default mode network for GICA3 and STR. (b) Default

mode network group t statistic SM for GICA3 and STR thresh-

olded at uncorrected p-value ¼ 0.05.
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concatenation for a task-paradigm data because the esti-
mated TCs and SMs are less noisy and because TC scaling
is poor with spatial concatenation (Table II, Figure 4,
Figure 5, Figure 6 and Figure 8). We recommend using
subject-specific PCA because group data mean is computa-
tionally intensive and because it gives similar results. We
recommend retaining more components in the subject-
level PCA than at the group level, and preferably at least
the maximum number of estimated components over all
subjects, since this improves TC and SM estimation (see
Figure 4). Subject-specific PCA privileges subject differen-
ces at the subject-level, while the group-level PCA favors
subject commonalities. Thus, the group-level PCA is well
informed by the full extent of variability in the subjects,
and the subject-specific information improves back-recon-
struction. As a practical note, we do acknowledge memory
considerations can be a factor in justifying reducing the
first level data as much as possible, however as we have
shown that the trade-off is slightly less accurate results.

The subject-level PCA reduces the dimension of the
problem to reduce computation memory and time. Addi-

tionally, the PCA rotation and dimension reduction often
improves convergence of the ICA algorithm.

Subject Back-Reconstruction Methods

The four methods (GICA1, GICA2, GICA3, and STR) are
equivalent with no PCA reduction at the level of a single
subject. The key difference between GICA3 and GICA1 is
the partitioning of the group PCA matrix G, and GICA3 is
preferred because it provides a natural interpretation for
the subject-specific TC and SM pairs. GICA2 does not use
TCs and SMs from the same model (TC from GICA1 and
SM from GICA3) which makes the fitted values not a pro-
jection, so GICA2 is not a preferred method. The GICA3
subject-specific TCs and SMs all derive directly from the
PCA and ICA, while STR uses only the aggregate SM
from the ICA and relies on the contradictory assumptions
of a common SM and then distinct subject-specific SMs in
the two least-squares regression steps.

GICA3 has two desirable properties. First, the product
of the subject-specific TCs and SMs predict the subject
data to the accuracy of information retained from PCA,

Figure 14.

GICA3 and STR estimated z-scored TCs, SMs, and differences for the most (24) and least (21)

spatially correlated subjects between the two methods for AOD fMRI data, DMN component.

SMs thresholded at 1.0 and the difference SMs thresholded at 0.5 displayed in nine equally

spaced axial slices from 60 mm to �20 mm. Units are in standard deviations.
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Y
^
^

i ¼ FiðGT
i Þ�Â~Si. Second, the sum of the subject-specific

SMs is the aggregate ICA SM, which is analogous to a ran-
dom effects model where the subject-specific effects are
zero-mean distributed deviations from the group mean
effect. Additionally, because subject-specific SMs are more
accurately estimated by GICA3 than STR, inference of
group spatial activation differences, for example, are also
expected to be more accurate using GICA3.

STR is similar to GICA1 to the level of PCA reduction.
The first regression using the STR method from (19) gives
_Ri ¼ YiŜ

�, and GICA1 from (17) gives R̂i ¼ FiGiÂ 	 YiŜ
�.

Thus _Ri 	 R̂i, the subject-specific TC from STR and GICA1
are similar, with similarity increasing with the information

retained by the PCA steps Fi and G, and equivalent with
no PCA reduction. The second regression using the STR
method from (21) gives _Si ¼ _R�

i Yi, and substituting the
equivalent estimate from GICA1, we have _Si ¼ _R�

i Yi 	
R̂�

i Yi. Thus _Si 	 Ŝi, the subject-specific SM using STR and
GICA1 are similar, and equivalent with no PCA reduction
(see Figure 4 and Figure 8–Figure 10).

Three criticisms of STR follow. STR initially assumes a
common SM for all individuals to estimate subject-specific
TCs in (19), then estimates subject-specific SMs given the
TCs in (21), thus the original common SM assumption and
the later estimated SMs present a contradiction. From (21)
it is unclear how to interpret the subject-specific SMs since
they are the product of the aggregate SM and a rank-defi-
cient approximation to an identity matrix based on the
subject data. The relationship between the subject SMs and
aggregate SM in (23) is difficult to interpret, that is, it is
not straightforward as in GICA3 near (12).

In the poster introduction of STR [Beckmann et al., 2009],
a number of claims were made which this article clearly
refutes by a comprehensive study. First, regarding the claim
that when using GICA methodology the ‘‘final statistical
comparison on the back-projected maps can lead to signifi-
cant inaccuracies,’’ we have shown that the most accurate
SMs are those provided by GICA3 (see Figure 8–Figure 10).
Second, in [Beckmann et al., 2009], there is a comparison of
STR and GICA2 where, though 10 components were simu-
lated, only five components were purposefully retained for
analysis. In this case, as stated by the same authors in a pre-
vious article, ‘‘underestimation of the dimensionality will
discard valuable information and result in suboptimal sig-
nal extraction’’ [Beckmann and Smith, 2004]. The correct
number of components should be retained, or at least an
estimate of the correct number of components, though in
practice one does not know what that number is and it may
differ between subjects. Third, there is a claim that STR can
estimate global amplitude differences while GICA cannot.
In fact, it is the spatial concatenation subject-level PCA
[Beckmann et al., 2005] that can influence amplitude, not
the back-reconstruction methods which all retain amplitude
information. As an aside, GIFT software, has a ‘‘calibrate’’
option to scale to percent signal change that works with the
GICA methods and STR.

Finally, one can think about predicting subject data
based on a fitted model to the aggregate SM. Both GICA1
and GICA3 predict the subject data as the product of the
TC and SM, Ŷi ¼ R̂iŜi ¼ R̃iS̃i ¼ PC(FiGi)Yi. From ICA (6) we
have X ¼ ÂŜ, and we can use the aggregate SM Ŝ to fit
the subject-specific data. Using GICA1 we have
^̂
Yi ¼ FiGiX ¼ FiGiÂŜ ¼ R̂iŜ, and GICA3 in (30) we have
~~Yi ¼ FiðGT

i Þ�X ¼ FiðGT
i Þ�ÂŜ ¼ ~RiŜ, where both fitted val-

ues are the same,
^̂
Yi ¼ ~~Yi, so both are in C(FiGi). For

GICA1 (or GICA3) the columns of R̂i (or R̃i) define a basis
for C(FiGi) and Ŝi (or S̃i) provide the coordinates of
^̂
Yi ¼ ~~Yi in that basis. The observed data Yi, the GICA1 (or
GICA3) fitted value Ŷi (or Ỹi), and the aggregate fitted
value

^̂
Yi (or

~~Yi) relate to each other,

Figure 15.

Unthresholded t statistics for ‘‘true’’ simulated SMs of demo-

graphic effects and GICA3 and STR t statistics to compare.

More similar to the simulation is better.
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ðYi � ^̂
YiÞTðYi � ^̂

YiÞ ¼ ðYi � ŶiÞTðYi � ŶiÞ þ ðŶi � ^̂
YiÞTðŶi � ^̂

YiÞ:
(29)

The first term on the right-hand side, (Yi 2 Ŷi)
T(YI 2 Ŷi),

is the residual sum of squares between the data and the
GICA1 (or GICA3) fitted value with (Yi 2 Ŷi) [ C(FiGi)

?,
the orthogonal complement of C(FiGi). The second term on
the right-hand side, ðŶi � ^̂

YiÞTðŶi � ^̂
YiÞ ¼ ðŜi � ŜiÞT

R̂T
i ðŜi � ŜÞ, is the between-subject sum of squares, with

ðŶi � ^̂
YiÞ 2 CðFiGiÞ. Thus, the ‘‘closer’’ Ŷi is to

^̂
Yi, the

‘‘closer’’ Ŝi is to Ŝ. Hence, one can think of GICA1 (or
GICA3) as finding an optimal Ŝi (or S̃i) such that Ŷi (or Ỹi)
lies in the same subspace as

^̂
Yi (or

~~Yi).

CONCLUSION

Multi-subject ICA approaches are becoming more
widely used, but they can vary in how the data reduction
and ICA steps are implemented. There has been little
work done to carefully evaluate the properties of these dif-
ferent approaches and the impact on the results. In this
work, we performed extensive analyses on simulated and
real data to provide guidelines regarding the various
approaches. Of the methods we evaluated, evidence sug-
gests that noise-free PCA with noise-free ICA with back-
reconstruction method GICA3 provides the most robust
results with the most intuitive/natural interpretation.
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APPENDIX

This appendix derives or illustrates the relationships
mentioned in the text.

Subject Back-Reconstruction Methods

GICA3

The product of each subject-specific TC and SM is a per-
pendicular projection of the data onto the PCA column
space,
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The fitted compressed values, ~Xi � Â~Si ¼ Xi, are a product
of the subject-specific TC and SM,

~Xi � Â~Si ¼ ÂÂ
�1
GT

i F
T
i Yi ¼ GT

i F
T
i Yi ¼ Xi; (32)

and similarly for the mean fitted compressed value,

~X �
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~Si ¼ Â
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Â
�1
GT

i F
T
i Yi ¼
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GT
i F

T
i Yi ¼ X:

(33)

STR

The product of each subject-specific TC and SM gives
_Ri
_Si ¼ _Ri( _R

T
i
_Ri)

21 _RT
i Yi ¼ PC( _Ri)Yi ¼ PC(YiŜ

2)Yi where PC( _Ri)

¼ PC(YiŜ
2
) is a PPO onto C(YiŜ

2), which is not an intuitive

column space,

CðYiŜ
TðŜŜTÞ�1Þ ¼ C Yi
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i¼1

YT
i FiGi

 !
ðÂ�1ÞT

 

3 Â
�1 XM

i¼1

GT
i F

T
i Yi

 ! XM
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YT
i FiGi

 !
ðÂ�1ÞT

( )�1
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