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Spot Variation Fluorescence Correlation Spectroscopy Allows for
Superresolution Chronoscopy of Confinement Times in Membranes
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Méditerranée, Campus de Luminy, Marseille, France; §Institut National de la Santé et de la Recherche Médicale, Marseille, France;
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ABSTRACT Resolving the dynamical interplay of proteins and lipids in the live-cell plasma membrane represents a central
goal in current cell biology. Superresolution concepts have introduced a means of capturing spatial heterogeneity at a nano-
scopic length scale. Similar concepts for detecting dynamical transitions (superresolution chronoscopy) are still lacking.
Here, we show that recently introduced spot-variation fluorescence correlation spectroscopy allows for sensing transient
confinement times of membrane constituents at dramatically improved resolution. Using standard diffraction-limited optics,
spot-variation fluorescence correlation spectroscopy captures signatures of single retardation events far below the transit
time of the tracer through the focal spot. We provide an analytical description of special cases of transient binding of a tracer
to pointlike traps, or association of a tracer with nanodomains. The influence of trap mobility and the underlying binding kinetics
are quantified. Experimental approaches are suggested that allow for gaining quantitative mechanistic insights into the interac-
tion processes of membrane constituents.
INTRODUCTION
Most cellular signaling processes have their origin in the
plasma membrane. In particular, proximity or separation
of enzymes and substrates on the nanometer scale are
believed to regulate a variety of processes such as signal
initiation (1,2), cellular adhesion (3–6), or endocytic uptake
(7). Understanding the dynamic organization of the plasma
membrane requires methods of gaining information both at
the spatial and temporal levels (2,8–10). The lateral diffu-
sion of molecules within the membrane can report on tran-
sient confinements due to molecular interactions, local
heterogeneities, or corrals. Currently, two complementary
approaches are applied for the analysis of molecular
mobility: single particle tracking (SPT) determines the
time evolution of the spatial coordinates ~xðtÞ (11,12),
whereas fluorescence correlation spectroscopy (FCS) mea-
sures the spatial dependence of the transit time, t, of a mole-
cule through the focus of a laser beam (13). In recent years,
an enormous advancement in spatial resolution was
achieved with the emergence of a variety of superresolution
microscopy concepts (11,14), which yielded spatial hetero-
geneities in biological samples below the classical diffrac-
tion limit. Similar concepts for temporal superresolution
are still lacking.

In a conventional FCS experiment, the two-dimensional
diffusion time of a tracer through the focal spot is obtained
by fitting the autocorrelation curve (ACF) using
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The diffusion time, tD0 ¼ u2=4D, limits the time resolu-
tion for recovering changes in diffusion behavior (15). We
base our argument on the example of a tracer that alternates
between immobile trapped states (trapping times ttrap) and
periods of free diffusion tfree (see Table 1 for list of param-
eters). In the case of negligible diffusion times, tD0 � ttrap,
and rare trapping events n ¼ tD0=tfree � 1, the ACF shows
well separated shoulders that allow for direct extraction of
ttrap (see Fig. 1 a and Note 1 in the Supporting Material).
In this case, the two characteristic timescales tD0 and ttrap
and the proportion b ¼ ttrap/(ttrap þ tfree) can be easily ex-
tracted from the ACF for two-dimensional diffusion (15,16)

GðtÞ ¼ 1

N

2
64ð1� bÞ 1

1þ t

tD0

þ bexp

�
� t

ttrap

�375: (2)

As an example, we determined the ACFs by Monte Carlo
simulations using the parameters ttrap ¼ tfree ¼ 100 ms and
a diffusion constant, D ¼ 0.1 mm2/s, which are realistic
values for plasma membrane proteins (12,17,18) (Fig. 1 a).
For spot sizes well below the diffraction limit, u <
200 nm, we indeed see the separation in the ACF, allowing
for the direct extraction of ttrap.

However, closer inspection of the fit results revealed a
substantial bias in the obtained trapping times that increases
with increasing u (Fig. 1 b). Only for u % 40 nm is unbi-
ased fitting possible for these parameter settings (relative
errors in ttrap% 20%). Shorter trapping times further reduce
the required spot size accordingly. Yet, subdiffraction spot
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TABLE 1 List of parameters

u FCS beam waist

tD0 Free diffusion time through the FCS spot

tfree Average free diffusion time between trapping events

ttrap Mean time in the trapped state

b Fraction of trapped particles b ¼ ttrap/(ttrap þ tfree)

n Mean number of trapping events during the focal transit

D ¼ Dfree Free diffusion constant

Dtrap Trap mobility

Deff Effective mobility Deff ¼ Dfree(1�b)

t Overall diffusion time through the focal spot t ¼ t0 þ u2/(4Deff)

r Domain radius

Din Mobility inside domains

tresidence Residence time in domains

Dresidence Effective mobility inside domains Dresidence ¼ 2r2/4tresidence
fdistr Offset multiplication factor for different distributions

fdistr, free Distribution factor for free diffusion times

fdistr, trap Distribution factor for trapping times

fmobility Mobility reduction factor

t0 Offset in the FCS diffusion law t0 ¼ b � ttrap � fmobility � (fdistr,trap þ fdistr,free)
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sizes are difficult to achieve: Stimulated emission depletion-
(STED-) FCS requires the usage of special dyes and
high-power lasers (17), near-field methods require the
manufacturing and implementation of sub-wavelength aper-
tures (19, 20). The according time regime would therefore
be essentially inaccessible for conventional FCS analysis.
We can invert the calculation for estimating the time resolu-
tion to recover trapping times by conventional diffraction-
limited FCS. Assuming a spot size of u ¼ 200 nm, a limit
of ttrap R u2/(4Dfree � 0.04) ¼ 2.5 s can be specified.
Note that substantial bias for ttrap already appears in regions
with high goodness of fit. For example, the curve for u ¼
50 nm (Fig. 1 a) shows no apparent deviation from the
data, but yields a bias of 36%. In contrast, for high n, tracers
show frequent transitions between confined and free diffu-
sion during the transit through the focal area, and the ACF
approximates effective long-range diffusion described by
Eq. 1 (Fig. 1 a, green curves). Conventional FCS does not
provide access to kinetic parameters in this regime.

We show below that the recently introduced method of
spot-variation FCS (sv-FCS) allows access to this regime
by sensing trapping times at dramatically improved time
results for the trapping time ttrap obtained with Eq. 2. For beam waists of u >

fit appears to describe the data well. To test for dependencies on the proportion
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resolution. sv-FCS can be viewed as the perfect analogon
to SPT in the time domain: transit times are measured for
various focal areas, tD(u

2), where u denotes the radius of
the laser spot (Fig. 2 a) (21–23).With increasingu, the transit
times of many investigated membrane molecules were found
to follow the empirical function tD ¼ t0 þ u2/4Deff, which
shows a nonzero offset t0 in the limit of small focal areas,
and effective long-range diffusion with diffusion constant
Deff (24). The time-versus-area relationwas termed the diffu-
sion law. Experiments revealed that the offset t0 depends on
membrane properties like lipid composition or actin cyto-
skeleton organization, thereby providing biological insights
into the origin of the observed phenomenon (17,24–28).
Although the method is rather simple to apply, its full
strength can hardly be exploited, since the interrelation
between the recorded diffusion law and the diffusion
processes are not well understood. A full analytical treatment
is only available for particles diffusing in a periodic mesh-
work of barriers (29). In addition, Monte Carlo simulations
of a few special cases have been published (17,21), but
a general description of diffusion laws is still lacking (30).
In the following we show that the diffusion-law offset t0
FIGURE 1 Trapping-time resolution of conven-

tional FCS. (a) shows the results of Monte Carlo

simulations for stop-and-go diffusion, assuming

exponentially distributed transition times with

mean values of tfree ¼ ttrap ¼ 100 ms; simulations

were performed for the indicated beam waists, u.

We assumed immobile traps, and a free diffusion

constant Dfree¼ 0.1 mm2/s. Black lines indicate

the simulated autocorrelation functions. Red

dashed lines show fits using a two-component

model (Eq. 2), green dotted lines show fits using

the model for one-component two-dimensional

free diffusion (Eq. 1). For u < 150 nm, the one-

component free-diffusion model failed to describe

the data and was therefore not plotted. (b) Fit

30 nm, the determined ttrap gets biased toward larger values, although the

b we made simulations for tfree ¼ 50 ms, 100 ms, and 200 ms.



FIGURE 2 Diffusion law recorded with sv-FCS.

(a) By increasing the area of the excitation spot,

the transit times in the autocorrelation curves

increase accordingly. Fitting each ACF with an

effective two-dimensional diffusion yields

tD(u
2). From the y-intercept, the diffusion law

offset, t0, is obtained. (b) Full ACF Monte Carlo

simulations were performed for tracers that were

stochastically immobilized with exponentially

distributed transition kinetics. Simulation data

(symbols) follow the theoretical curves (lines). A

trapping time of ttrap ¼ 500 ms was adjusted.
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measured with sv-FCS senses confinement times, trap
mobility, and the stochastic distributions of on- and off-times.
METHODS

Monte Carlo simulations

Simulationswere performed inMATLAB(R2009a, TheMathWorks,Natick,

MA) and run on an eight-core standard PC with 8 GB RAM underWindows

XP-X64.We implemented simulations close to real FCSexperiments onfluid

membranes. Off-lattice randomwalks were generated for the special cases of

free diffusion, stop-and-go diffusion, and confined diffusion in fixed perme-

able domains. The total number of simulated steps/trajectory was typically

set to 1e6–1e7 for all simulations. Reflective boundary conditions were

applied at the border of the square simulation area, which was adapted to

the different spot sizes. We scaled all data to biologically relevant values:

laser spot sizeswere varied between 150 nm and 1.2mm (21,22,24), diffusion

constants between 0 and 1 mm2/s (31), and immobilization times between 20

and 500ms (21,24,25). The xy positions of the generated randomwalks were

used to calculate intensity values. For this purpose, a virtualGaussian-shaped

excitation beam with I(x,y) ¼ I0exp(�(x2 þ y2)/u2) was positioned in the

center of a square simulation area. The side length,L, of the square simulation

box was set to at least L ¼ 14u, so that the effect of limiting the excitation

profile becomes negligible. Simulationswere performedwith ameannumber

of 0.5 particles in the excitation spot. Autocorrelation functions were deter-

mined via theMATLAB procedure xcorr and fitted with the free two-dimen-

sional diffusion model (Eq. 1) (13). Simulations were performed at different

beam waists, and the diffusion law tD versus u2 was determined. Offset

values were obtained from a linear regression using four different beam

waists; typically 10–30 offset values were averaged.
Free diffusion and stop-and-go diffusion

For the trapping model, we consider a freely diffusing particle in a two-

dimensional plane with diffusion constant Dfree that immobilizes after an

average time tfree at arbitrary locations for a time ttrap. Initial conditions

in the simulation were chosen so that the random walker starts at a random

point of the simulation area in either a trapped or a free state according to

the time fraction b ¼ ttrap/(ttrap þ tfree). Trap mobility was varied in the

range 0 % Dtrap % Dfree for different simulations. The delay time tdel
between consecutive steps was kept at least 10 times smaller than the

maximum value of ttrap andtfree. At each time step, the particle performs

a jump, which is determined by a normally distributed length (m ¼ 0,

s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Dtdel

p
) for each dimension, where D denotes either Dtrap or Dfree.
Domain model

We used 30% surface coverage of fixed circular domains with radius r ¼
20 nm. Domains were placed at random positions in a nonoverlapping

way. Permeability of domains was adjusted by the probabilities of entering
or exiting, Pin or Pout, respectively. Whenever the molecule hits a domain

a number rand is generated at random between 0 and 1, and compared to

Pin or Pout. If the molecule is not allowed to pass the barrier, it remains

in the same position. Note that the confinement strength is a function of

Pout and the average diffusion step length. The delay time was set small

enough to assure that the mean diffusion step size is five times smaller

than the domain radius. Diffusion constants inside the domain, Din ¼
0.1 mm2/s, and outside the domain, Dout ¼ 0.2 mm2/s, were chosen.
First passage time model

For free lateral diffusion, the transit time calculated from the ACF is given

by tD
0 ¼ u2/4D. tD

0 is identical to the first passage time a freely diffusing

random walker needs to reach the boundary of a circle with radius u when

starting in the center. In the asymptotic case characterized by a transit time

of tD >> ttrap, stop-and-go diffusion approximates the free-diffusion case,

yet with altered time, tD s tD
0. This regime can therefore be adequately

described by the first-passage-time model. See Fig. 3 b, which compares

results from a first-passage-time model (circles) with those from a full-

ACF simulation (squares). All data are in perfect agreement. We therefore

derived all formulas assuming a first-passage-time model, and checked the

equations with Monte Carlo simulations using the full-ACF model.

We calculated mean first passage times of random walkers that were

placed in the center of a circular region of radius u and derived diffusion

laws for various circle radii. Particles started in a trapped or free state

according to the time fraction b. Step lengths were adjusted to u/5000.

Diffusion constants were set to Dfree ¼ 1 mm2/s and 0 % Dtrap % Dfree

for the estimation of an offset reduction by trap mobility. Free diffusion

times, tfree, and trapping times, ttrap, were exponentially distributed,

rendering start conditions for particles unproblematic.
RESULTS

We first consider a model in which a tracer becomes
stochastically immobilized. The transition times tfree and
ttrap specify the average duration of free diffusion and
immobilization, respectively, and are assumed to follow an
exponential distribution, as frequently observed in biolog-
ical systems. Between two stops, the tracer moves freely
with diffusion constant Dfree. On average, the particles are
thus immobilized for a time fraction b ¼ ttrap/(ttrap þ tfree).
In the subsection First-passage-time model of Methods, we
show that the diffusion time obtained via Eq. 1 is identical to
the first passage time a random walker needs to reach the
boundary of a circle with radius u when starting from the
center; we will use this equivalence for further derivations.
The first passage time is given by tD ¼ tD

0 þ nttrap, with
n specifying the average number of stops the tracer
Biophysical Journal 100(11) 2839–2845



FIGURE 3 (a) Dependence of the FCS diffusion law offset on the distri-

bution of the kinetic rate constants. We assumed here immobile traps

(Dtrap ¼ 0) and plotted t0=bttrap ¼ ½fdistr1 ;trap þ fdistr2;free� for various combi-

nations of distribution functions. Gamma and Weibull distributions were

parameterized by the shape factor, k. Lines show the results of the analytical

models (Table 2); symbols indicate results of Monte Carlo simulations of

the full ACFs. (b) The effect of trap mobility on the offset was calculated

by full-ACF Monte Carlo simulations (squares) or using the first-

passage-time model (circles). The color code is identical to Fig. 2. Full

lines indicate the empirical function of Eq. 4. We further tested gamma-

distributed trapping times for b ¼ 0.5 (black squares).
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experiences before it reaches the boundary and tD
0 the free

diffusion time through the spot. The problem can therefore
be reduced to a determination of the number of stops within
an interval tD

0; stops are generated by an underlying
stochastic process based on the distribution function of tfree.
We discriminate tracers starting with free diffusion (propor-
tion 1� b) from tracers starting in the trapped state (propor-
tion b). For tracers starting with free diffusion, a randomly
chosen interval tD

0 contains on average n ¼ tD
0/tfree stops.

Tracers starting in a trapped state first experience a time
penalty ttrap, whereas the rest of the process is identical to
that for the free tracer, yielding a total number n ¼ 1 þ
Biophysical Journal 100(11) 2839–2845
tD
0/tfree. Together, the average first passage time over both

fractions is given by tD ¼ bttrap þ u2

4Dfreeð1� bÞ. We thus

obtain a diffusion law with an effective mobility Deff ¼
Dfree(1 � b) and an offset

t0 ¼ bttrap: (3)

In Fig. 2 b, we showMonte Carlo simulations (symbols) of
thediffusion law for ttrap¼ 500msandvarious valuesofb that
perfectly agreewith our theoreticalmodel (see the Supporting
Material for details on the simulations and the models).
Increasing b results in a reduced effective mobility and thus
an increased slope; it is important to note that the offset t0
captures trapping times far below the transit times, tD.

As a generalization, we next considered alternative distri-
bution functions for the trapping times: gamma functions to
account for sequential unbinding processes (discussed in
relation to molecular interactions in the immune synapse,
for example (32)), and Weibull functions to account for
heavy-tail kinetics (frequently observed in mobility studies
on membrane constituents (33)). Indeed, we found that the
shape of the distributions affected the offset according to
t0 ¼ bttrapfdistr,trap, where fdistr,trap describes a distribution-
dependent constant (Note 2 in the Supporting Material,
and Fig. 3 a) given by

fdistr;trap ¼ 1

2

��
CV

�
ttrap

��2þ1
�
;

where CVðttrapÞ ¼ stdðttrapÞ
meanðttrapÞ denotes the coefficient of

variation. An exponential distribution yields fdistr,trap ¼ 1.

For stdðttrapÞ>
<
meanðttrapÞ, we obtain fdistr;trap

>

<
1. In other

words, a distribution yields an offset larger (smaller) than
an exponential distribution if its standard deviation is larger
(smaller) than its mean, i.e., the distribution is of high vari-
ance (low variance). A lower limit of fdistr,trap ¼ 0.5 is given
at zero variance.

We also considered nonexponential distributions of tfree,
which altered the offset to t0 ¼ bttrap½fdistr1;trap þ fdistr2;free�,
with fdistr1;free ¼ fdistr1;trap � 1 (Note 3 in the Supporting
Material and Fig. 3 a). The two indices shall indicate that
the two distributions may be chosen independently, since
the kinetics of binding and unbinding processes generally
originate from different mechanisms.

Plasmamembrane proteins or lipidsmaywell interactwith
traps that experience residual mobility Dtrap themselves; in
this case, the effective diffusion constant is given by Deff ¼
(1 � b)Dfree þ bDtrap. To estimate the effect on the offset,
we performed Monte Carlo simulations using the first-
passage-time model and full ACFs. Fig. 3 b shows a decrease
in the normalized diffusion-law offset, t0/(bttrapfdistr),
that can be well approximated by an exponential decay
according to



FIGURE 4 Histogram of domain entry and exit times. We estimated the

entry time (tfree) and exit time (tresidence) distribution for circular nonover-

lapping domains distributed randomly in the simulation area. Domains

covered an area fraction of 30%. By setting the permeability of the domain

boundary very low (Pout ¼ 0.01; Pin ¼ 0.02), we found that both transition

times follow exponential decays (blue, tfree; red, tresidence). For the simula-

tions, average time decays of tfree ¼ 30.1 ms and tresidence ¼ 36.4 ms were

adjusted.
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t0 ¼ bttrap fdistr fmobility with fmobilityzexp

�
� 4ffiffiffiffiffiffiffiffiffiffiffi

1� b
p Dtrap

Dfree

�
:

(4)

For immobile traps with exponential binding kinetics,
t0 ¼ bttrap (Eq. 3) is recovered. For vanishing mobility
difference (i.e., Dtrap/Dfree ¼ 1), the offset should approach
zero, which is well approximated by the above equation. We
further varied b, yielding a more pronounced effect of trap
mobility: the higher the bound fraction, the lower the offset.
It is interesting that since the system is sensitive to retarda-
tions, the offset is not symmetric with respect to Dfree and
Dtrap. In other words, the consequence of a short period of
rapid diffusion differs from that of a short period of slow
diffusion. Still, for the extreme limits b / 1and b / 0,
the offset vanishes as the system converges against single-
component diffusion. Table 2 gives an overview of the
derived equations.

In a cellmembrane, a tracermayexperience encounterswith
different traps of slow mobility Di ¼ Dfree (i.e., fmobility z 1),
which bind the tracer with different affinities, ttrap,i; on
average, the tracer will be bound to the ith trap for a time
fraction bi. For simplicity, we assume here exponential transi-
tion kinetics (i.e., fdistr ¼ 1). Then, the diffusion-law offset is
given by the weighted mean

t0 ¼
X
i

bittrap;i:

Essentially, slow traps with long interaction times domi-
nate the diffusion-law offset.

In the current literature, diffusion-lawoffsets are discussed
in the context of plasma membrane domains (17,21,24–
27,34). From the theoretical solution described in this
work, we can interpret domains as special cases of traps
with radius r at a fixed location on the timescale of the
measurement (see the Supporting Material for details on
the domain model). For strong confinement, the time a tracer
spends outside or inside a single domain is exponentially
distributed (Fig. 4), and the offset is set by themean residence
time tresidence according to t0 ¼ btresidence. However, the
domain size may further reduce the offset if the particle’s
effective mobility for crossing the domain, Dresidence ¼ 2r2/
4tresidence, gets close to Dfree; the factor fmobility can be
extracted from Fig. 3 b by replacing Dtrap with Dresidence. If
the domain permeability is increased, the distribution func-
TABLE 2 Factors influencing sv-FCS diffusion law offsets

Offset t0 ¼ b� ttrap � fmobility � ðfdistr1;trap þ fdistr2 ;freeÞ
b b ¼ ttrap/(ttrap þ tfree)

fdistr1 ;free fdistr1,trap � 1

fexp,trap 1

fconstant,trap 1/2

fgamma,trap 1/2 þ 1/(2k)

fweibull,trap 1/2(G(1 þ 2/k)/G(1 þ 1/k)2)

fmobility z expð�4=
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p � Dtrap=DfreeÞ
tions for both tfree and tresidence become short-tailed; in this
case, fdistr also needs to be considered, which further reduces
the diffusion-law offset. Note that even barrier-free domains
may yield a measurable offset, if the mobility inside the
domain, Din, is substantially smaller than Dfree. Also in that
case, the mobile trap approximation can be used now by
replacing Dtrap with Din.
DISCUSSION

We have shown here that sv-FCS allows for sensing retarda-
tions or immobilizations of two-dimensional tracers at
a time resolution way below the transit time through the
focal volume. Previously, corresponding offsets in the range
of a few milliseconds have been measured in various biolog-
ical contexts (17,21,22,24,25,34); such time resolution is
out of reach using standard FCS (15), and extremely diffi-
cult to reach using SPT (18,35,36). Until now, however,
data interpretation was hampered by the lack of precise
mathematical models describing the determinants of t0.
We found here that the trapping time influences not only
the obtained offset, but also the trap mobility, the time frac-
tion the tracer spends in the slowly diffusing state, and the
statistical distribution describing the transition kinetics.
Let us briefly discuss some implications of this study for
real-life experiments:

1. Positive diffusion-law offsets arise from any retardations
of the tracer during transit through the spot. Origins may
include transient immobilizations, transitions between
different diffusion regimes due to changes in the
membrane viscosity, or confinement to regions of
different lipid composition.

2. The diffusion-lawoffset can be used to determine trapping
times. Note that t0 is proportional—but not equal—to the
trapping time. Let us assume here for simplicity that the
Biophysical Journal 100(11) 2839–2845
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tracer binds to immobile traps (i.e., fmobility¼ 1) and tran-
sition kinetics are exponential (i.e., fdistr ¼ 1). Then,
a blocking experiment could be used to reveal directly
the trapping times.Without loss of generality, we consider
one trapped state only. By varying the degree of blockage,
one can vary b without affecting ttrap. A diffusion law is
recorded for each drug concentration, c, yielding
t0(c) ¼ b(c)ttrap and Deff(c) ¼ Dfree(1 � b(c)). Already
two drug concentrations allow for solving the equation
system. If b can be reduced to zero—i.e., the trap can be
completely blocked—this approach becomes very
simple: the block experiment directly reveals the
unknown Dfree from the diffusion law slope, which can
be used to determine b and ttrap directly.Alternatively,
one may use an analogous approach by influencing ttrap
without affecting tfree.

3. The diffusion law offset reveals insights into the interac-
tion mechanism. In cell biological studies it is common
practice to perform additional experiments on mutated
proteins for drawing conclusions on the interaction
mechanism. By using the strategy delineated in step 2,
one can determine b and ttrap for each mutant.

4. The broad sensitivity range makes attractive a screening
assay with low false negatives. We envision a screening
assay where the diffusion-law offset is used as a sensitive
and general readout parameter that senses the influence
of drugs on the local environment and interaction proper-
ties of the diffusing probe.

Note that in this study, all data were assumed to be re-
corded under optimal conditions, whereas in a real-life
experiment, there are multiple potential causes for noise,
as follows:

1. Only a limited number of traces can be recorded. Small
statistical samples only reduce the precision of the tD,
and thus t0 values obtained, without altering their abso-
lute values (37).

2. Photon emission is not continuous but shows antibunch-
ing or blinking due to transitions to a triplet state. These
processes are typically much faster than the observed
diffusion kinetics and can be accounted for by appro-
priate fit functions (38).

3. In cells, additional species may be present that are not
membrane-anchored, and different kinetics are observ-
able that can be accounted for (24).

4. The fluorophores may bleach during transit through the
excitation spot. This can be tested by determining the
offset as a function of the laser power.

5. Only a limited measurement window is available. In any
FCS experiment, the ACF has to be determined beyond
the value of tD to obtain stable, nonbiased results.

6. The spot profile may not be exactly Gaussian, and the
deviation may depend on the spot size. This can be ap-
proached by z-scan FCS, where the same excitation
profile is scanned through the membrane (22).
Biophysical Journal 100(11) 2839–2845
7. The exact spot size has to be determined. A calibration
via diffusion-law offsets using a freely diffusing probe
can be used to calculate the spot size.
CONCLUSIONS

In conclusion, sv-FCS is a fascinating new tool for studying
protein and lipid dynamics in the live-cell plasmamembrane.
Above all, compared to alternative methods, it demonstrates
an enormous gain in resolution for measuring the transient
confinement times of mobile tracers. The basic idea is very
similar to superresolution concepts applied currently in
microscopy, where single-molecule localization errors repre-
sent the ultimate limit to spatial resolution (11,14). In sv-FCS,
time resolution is limited only by measurement errors for the
diffusion time tD and the confocal spot size u, not by the
tracer’s diffusion time through the confocal spot as in conven-
tional FCS.Utilizing the full strength of themethod, however,
relies on understanding the relation between observables and
the underlyingphysical processes. For SPT,many interdepen-
dencies between the recorded single-molecule mobility and
system parameters like the diffusion constant, confinement
size and strength, local topology, and nature of the binding
processes have already been characterized (11). This article
describes a step toward putting sv-FCS on a similar analytical
basis, so that quantitative analysis of the biological results and
the full utilization of the time resolution become possible.
SUPPORTING MATERIAL
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