Corrections

Purushottam D. Dixit and D. Asthagiri*

*Correspondence: dilipa@jhu.edu

2011. The role of bulk protein in local models of ion-binding to proteins: Comparative study of KcsA, its semisynthetic analog with a locked-in binding site, and valinomycin. *Biophys. J.* 100:1542–1549.

In Tables 1 and 3, we incorrectly noted three energy values. We rectify those errors here. The changes are small and do not affect the conclusions in the article.

In Table 1 for wild-type KcsA in column A₃, $\Delta \langle \varepsilon_{\text{local}} \rangle$ is -21.0 not -19.6.

In Table 3 for wild-type KcsA, the ion site interactions, $\Delta \langle \varepsilon_{\text{local}} \rangle$ is -21.0 not -19.6.

In Table 3 for wild-type KcsA, the ion-medium interactions, $\Delta \langle \varepsilon_m \rangle$ is 2.2 not 0.8.

In Table 3 for wild-type KcsA, the local entropy change, $T\Delta s_{local}^{ex}$ is 2.1 not 3.5.

We reproduce Tables 1 and 3 here for completeness. The updated values are noted in bold.

TABLE 1 F	ree energy and binding energy for KcsA, KcsA-
G77A _D , and	valinomycin according to three different methods
of assessing	ion-protein interactions (see Methods)

	A ₁	A ₂	A ₃
KcsA			
$\Delta \mu^{\rm ex}({ m S})/\Delta W_{ m local}$	-14.7	-15.7	-15.8
$\Delta \langle \varepsilon_{ m local} \rangle$	-20.9	-18.8	-21.0
KcsA-G77A _D			
$\Delta \mu^{\rm ex}({ m S})/\Delta W_{\rm local}$	-9.0	-10.0	-9.9
$\Delta \langle \varepsilon_{ m local} angle$	-28.3	-19.3	0.8
Valinomycin			
$\Delta \mu^{\rm ex}({ m S})/\Delta W_{\rm local}$	-11.3		-11.0
$\Delta \langle \varepsilon_{ m local} \rangle$	-17.7		-9.4

 ΔW_{local} is insensitive to these choices and is sufficiently close to the actual free energy change, $\Delta \mu^{ex}(S)$. The local model adequately captures binding energetics in KcsA but not in KcsA-G77A_D and valinomycin. For the latter two systems, Na⁺ is stabilized by interactions with medium outside the binding site. Statistical uncertainties in energy values are ~0.8 kcal/mol.

TABLE 3	Energetic decomposition for KcsA and KcsA-G77A _D
---------	---

	•		
		KcsA	KcsA-G77A _D
	$\Delta \mu^{ m ex}({ m S}) \ \Delta W_{ m local}$	-15.7 -15.8	$-10.0 \\ -9.9$
	$T\Delta s^{ex}$ $T\Delta s^{ex}_{local}$	1.3 2.1	-1.1 4.7
Ion-site Ion-medium	$\Delta \langle arepsilon_{ m local} angle \ \Delta \langle arepsilon_{ m m} angle$	-21.0 2.2	0.8 -20.1
Site-site Site-medium Medium-medium	$\Delta \langle U_{ m S} angle \ \Delta \langle U_{ m S-M} angle \ \Delta \langle U_{ m M} angle$	7.3 -2.9 0.0	-6.0 14.5 -0.3

Eight carbonyl ligands comprise the local site. We consider the water molecules in the S_1 and S_3 sites adjoining the S_2 site as the medium. Similar to valinomycin, the change in ion-medium interactions is inversely related to the change in site-medium interactions. All values are in kcal/mol.

doi: 10.1016/j.bpj.2011.05.016

L. B. Dyksterhuis,* J. F. White, M. Hickey, N. Kirby, S. Mudie, A. Hawley, A. Vashi, J. Nigro, J. A. Werkmeister, and J. A. M. Ramshaw

*Correspondence: leanne.dyksterhuis@monash.edu

2011. Impact of heparan sulfate chains and sulfur-mediated bonds on the mechanical properties of bovine lens capsule. *Biophys. J.* 100:2077–2083.

Author L. B. Dyksterhuis' middle initial is incorrect in the published article and is corrected here.