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Summary
Resampling-based multiple testing methods that control the Familywise Error Rate in the strong
sense are presented. It is shown that no assumptions whatsoever on the data-generating process are
required to obtain a reasonably powerful and flexible class of multiple testing procedures.
Improvements are obtained with mild assumptions. The methods are applicable to gene expression
data in particular, but more generally to any multivariate, multiple group data that may be
character or numeric. The role of the disputed “subset pivotality” condition is clarified.
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1 Introduction
With the recent “-omics” revolution, there is great interest in high-dimensional multiple
testing, where the number of variables far exceeds the sample size. Gene expression is a
prototype application, but the applications are much broader. “Resampling” is a general term
that encompasses bootstrap, permutation, and parametric simulation-based analyses;
“resampling-based multiple testing” refers to the use of such methods in multiple testing
applications. Resampling methods have become popular for “-omics” because they (a)
require fewer assumptions (e.g. normality) about the data-generating process, thereby
yielding procedures that are more robust, (b) utilize data-based distributional characteristics,
e.g. discreteness and correlation structure, to make tests more powerful, and (c) scale up
reasonably well to high-dimensional settings, particularly with modern computing.

A lot has been made of the “subset pivotality condition” coined by Westfall and Young
(1993) for resampling-based multiple tests. It has been portrayed in the literature as too
stringent; for example, Romano, Shaikh, and Wolf (2007) state

“the … condition of subset pivotality … assumed in … Westfall and Young (1993)
… is quite restrictive.”

Our purposes are (a) to clarify the role of subset pivotality, (b) to show that it is hardly
restrictive, and (c) to clarify what is actually needed for validity of multiple testing. We will
show that resampling-based multiple testing procedures can be valid, powerful, and control
the familywise error rate (FWE) in the strong sense (Hochberg and Tamhane, 1987, define
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strong control of the FWE), with no assumptions whatsoever on the data-generating process,
yet where subset pivotality holds nevertheless. Slightly more power is available if one is
willing to make one simple assumption about the data-generating process, an assumption
distinct from, yet which is often confused with, subset pivotality.

Section 2 clarifies the role of the subset pivotality condition in multiple testing. Section 3
dispenses with assumptions altogether, notes that subset pivotality holds, and shows that
valid, powerful, flexible FWE-controlling procedures are available. Section 4 shows how
tests from Section 3 can be made more powerful, using a simple assumption that is not
directly related to subset pivotality. Concluding remarks are given in Section 5.

2 The Role of Subset Pivotality in Closed Testing
Before describing the subset pivotality condition and its purpose, it is necessary to discuss
the issues of choice of test statistic and computations. The reason is that the subset pivotality
condition is only needed to simplify computations for resampling-based closed testing
procedures.

2.1 Resampling-based multiple testing and closure
The closure principle of Marcus Peritz and Gabriel (1976) provides a unifying theory for
hypothesis testing to control the FWE in the strong sense. (Hereafter “FWE control” is
always assumed to mean “in the strong sense.”) Denoting the null hypotheses Hi, i = 1; … ;
m, a closed testing procedure (CTP) requires that all intersection hypotheses be tested.
Define intersection hypotheses HI = ∩i∈IHi, for I ⊆ S :={1; … ; m}. Let ℋ = {HI | I ⊆ S}
denote of the set distinct intersection hypotheses. Then a CTP is one in which H ∈ ℋ is
rejected iff g H− is rejected for every H− ∈ ℋ such that H− ⊆ H. When the tests of HI are α-
level (not multiplicity adjusted) tests, the CTP controls the FWE at level α

For the purposes of this paper, a “resampling-based multiple testing procedure” is defined as
one where each intersection HI is tested using a resampling-based test. Applications of
resampling not using closure exist, but the subset pivotality condition is best understood in
the context of closure.

2.2 Choice of test statistic
Closed testing is very flexible in that any test statistic may be used to test the intersections
HI. There are many choices, including F- and related tests, Fisher combination tests,
O'Brien-type tests, Simes-type tests, and weighted variants of all these tests. The choice of
test statistic to use should primarily be based on power considerations. Once a powerful test
statistic is chosen, resampling can be used to ensure that the test is robust to violations of
distributional and/or dependence assumptions. An example appears in Dmitrienko, Offen
and Westfall (2006), who show how to bootstrap the Simes test parametrically in a closed
testing framework to accommodate correlation structure.

2.3 Computational issues: the MaxT test and subset pivotality condition
While power is the main concern for choice of a test statistic, expediency becomes important
when m is large. There are O(2m) intersection hypotheses HI, and if m is large, it is
computationally impossible to test every single HI. However, the computational burden can
be eased dramatically if one is willing to

A: test each hypotheses HI using a “Max” statistic maxi∈I Ti, possibly sacrificing power,
and
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B: assume a model that implies “subset pivotality”, which states that the distributions of
maxi∈I Ti |HI and maxi∈I Ti | H{1;…;m} are identical, for all I ⊂ {1; …, m}.

If A and B are adopted, one need only test m hypotheses corresponding to the ordered ti
rather than all 2m intersections; further, resampling can be done simultaneously under a
global null H{1;…,m}, rather than separately for each intersection. Note that “Max”
subsumes “Min”, where the test statistic is −Ti; the Min P test is commonly used (Westfall
and Young, 1993).

To illustrate, suppose the observed test statistics are t1 ≥ … ≥ tm, corresponding to
hypotheses H1; …,Hm (ordered in this way without loss of generality), and that larger ti
suggest alternative hypotheses. Suppose a p-value for testing HI using the statistic maxi∈I Ti
is available, then

and HI is rejected at unadjusted level α if pI ≤ α. Applying closure, A, and B, we have the
following algorithm for rejecting H1,H2, … in sequence using what we call the “Main
Algorithm.”

Main Algorithm:

1. By closure,

But if I ⊇ {1}, then maxi∈I ti = t1, hence the rule is

Using subset pivotality (B), the rule becomes

Use of the “Max” statistic (A) implies

Hence, by subset pivotality and by use of the “Max” statistic, the rule by which we
reject H1 simplifies to this:

2. Again by closure and subset pivotality,
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If I ⊇ {1}, then maxi∈I ti = t1; else maxi∈I ti = t2. Partitioning the set {I : I ⊇ {2}} into
two sets,

we require

and

Since we are using the “Max” statistic, these conditions are equivalent to the following
rejection rule: reject H2 if

and

j.: Continuing in this fashion, the rule is reject Hj if

and

and … and
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One need not use resampling at all to apply the method. It is only called a “resampling-
based” procedure if one uses resampling to obtain the probabilities P(maxi∈{j,…,m) Ti ≥ tj |
H{1,…,m).

At step j the rule is equivalently stated in terms of p-values for the composite hypotheses as

hence the rule reduces to

where

is called the “adjusted p-value” (Westfall and Young, 1993).

In addition to subset pivotality and use of “Max” statistics, the additional assumption that
there are no “logical constraints” among hypotheses (see Westfall and Tobias, 2007) is
needed to assert that the algorithm is identical to closed testing using Max statistics. If there
are logical constraints, power can be improved by restricting attention only to admissible
subsets I, but in this case the computational shortcuts disappear, and one is back in the
position of having to evaluate the tests for all intersections. The algorithm above can still be
used, though, despite not being closed, as it provides a conservative procedure relative to the
full closure.

3 Dispensing with Assumptions Altogether
While the subset pivotality condition is easily satisfied in many cases, including the general
multivariate regression model with location-shift multivariate (possibly nonnormal)
distributions (Westfall and Young, 1993, p. 123), researchers have questioned the
assumption. In this section, we show how one can dispense with assumptions altogether, yet
subset pivotality remains valid, and a powerful and flexible class of multiple testing
procedures is obtained.

Let us clarify. By “dispensing with assumptions altogether,” we specifically mean
“dispensing with all assumptions about the data-generating mechanism.” We will not
assume the distributions lie in the location-shift family, or in any other family. We won't
even assume that the data necessarily arise from a random process. This framework is
similar to the simple falsification approach to non-multiplicity corrected hypothesis testing.
For example, to test H0 : μ = 0 using a t-test, the i.i.d. N(0; σ2) assumptions all form the null
hypothesis. No assumption is needed otherwise if you only want to control the type I error
rate. Rejection of H0 in this setting does not necessarily imply μ ≠ 0; rather, it implies
rejection of independence, identical distributions, normality, or μ = 0 (or, by the central limit
theorem, in large samples it approximately implies rejection of independence, identical
distributions, or μ = 0). The conclusion μ ≠ 0 follows only if one is willing to accept all the
other assumptions. The “other assumptions” are what we avoid altogether: everything will
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be embedded within the null hypotheses. We do this by using permutation tests, which
allows for elegant theory, but a similar theory might be developed using other tests.

This approach of embedding all assumptions into the null hypothesis may not be ideal, from
a research standpoint, because rejection of the null hypothesis may give the researcher little
information as to why the hypothesis was rejected. Nevertheless, a major contribution of this
paper is the development of this point of view in the multiple testing arena. We show,
despite the very minimal setup, that a reasonably powerful and flexible class of multiple
testing procedures is obtained.

We adopt the following framework for the data structure, hypotheses, and test statistics. The
first element of the framework is that we have multivariate G-sample data. Such data abound
in biometrical research, from adverse events data in clinical trials, to animal carcinogenicity
data, to gene expression data. The second element is that the hypotheses of interest are that
the treatments have no effect on the data, i.e., that the data are exchangeable, and the third
concerns the form of the test statistics.

In fairness, the elements of the “framework” are restrictive; for example, if the researcher is
only interested in location shift effects, then he or she is not interested in permutation tests.
However, as stated above, the elements of the “framework” are somewhat different from the
probabilistic assumptions that are usually made about data-generating processes. Specific
elements of the framework are as follows:

1. The data are multivariate m-dimensional data vectors from G groups, y11, …, y1n1,
…, yG1, …, yGnG. Each ygj vector is comprised of m elements, which may be
character, numeric, or mixed, hence missing values are allowed. The data need not
be generated by any random mechanism. For I ⊆ {1, …, m}, let yI

gj denote the
subvector of ygj whose components are the elements of I.

2. The hypotheses of interest are

Implicit in the hypothesis is an assumption of randomness; the hypothesis is
equivalent to the statement that the observed data values

are realizations from an exchangeable random process (Pesarin, 2001, p. 5).

3. Hi is tested using a real-valued test statistic that is a function only of the data in
variable i:

Without loss of generality, larger values of Ti suggest non-exhangeability.

With these elements, closed testing can be performed to control the FWE, entirely free of
probabilistic assumptions about the data-generating process, other than what is embedded in
the null hypotheses. Permutation testing is used. Let n = ∑ng, and suppose the data values
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are observed to be , irrespective of specific group labels (g = 1, …, G)
and replicate labels (j = 1, …, ng). Specifically, letting ℬ(y1, …, yn) denote the permutation
orbit of y,

the conditioning set is Y{i} ∈ ℬ(y{i}).

Given Hi and Y{i} ∈ ℬ(y{i}), all n! permutations of the data vector  are equally

likely. Let  denote a randomly selected permutation among

the n!, and define  by

if such a t exists, and  otherwise. The rejection rule is

Equivalently, since the permutation-based p-value is 
the rejection rule is

Conditional on Y{i} ∈ ℬ (y{i}), the rejection rule has Type I error rate ≤ α, with strict
inequality likely due to the discreteness of the distribution of

. Since the Type I error rate is ≤ α conditional on Y{i}

∈ ℬ(y{i}), it is also ≤ α unconditionally.

To test all hypotheses using closure entails testing subsets HI = ∩i∈IHi. Note that HI implies
marginal exchangeability of Y{i}, i ∈ I, but not of YI. A clarifying example is as follows: let
Y11, …, Y1n be i.i.d. bivariate normal with mean vector zero and identity covariance matrix,
and let Y21, …, Y2n be i.i.d. bivariate normal with mean vector zero and covariance matrix

The component distributions are exchangeable but the joint distribution is not, and this is an
example of a probability model in the set H{1,2}.
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Since the marginal models are specified but the joint models are not, the p-values
P(maxi∈I Ti ≥ max i∈I ti | HI) needed for testing the intersections are not easily determined.
However, a Bonferroni-like inequality can be used: let the critical value for testing HI at
level α be

if such a c exists, define  otherwise. Then the rule  provides an α-
level test for HI since

The p-value for this test is

note that  if and only if .

FWE-controlling tests for the Hi follow closure and the “Main algorithm” of Section 2.3,
with identical shortcuts resulting from use of “Max” tests and the resulting monotonicity of
p-values. As in Section 2.3, suppose the observed test statisticsare t1 ≥ ⋯ ≥ tm,
corresponding to hypotheses H1, …, Hm (again ordered in this way without loss of
generality). The main algorithm becomes, in this case,

1. Reject H1 if

2. Reject H2 if

and if

j.: Continuing in this fashion, the rule is reject Hj if
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and

and … and

As before, the adjusted p-values are .

This method is the “discrete Bonferroni method” described by Westfall and Wolfinger
(1997), which has been hard-coded in PROC MULTTEST of SAS/STAT since 1996. What
is unique about the above presentation is the generalization to arbitrary test statistics
(Westfall and Wolfinger's results arise when the −ti is a marginal p-value, either exact or
approximate). Use of p-values results in balance, where no particular hypotheses are
favored. However, the more general framework allows deliberate weighting to favor certain
hypotheses a priori. For example, if the supports of the permutation distributions of the Ti
are completely disjoint, the algorithm reduces to the “a priori ordered” testing procedure
described in, e.g., Maurer et al. (1995) and Kropf et al. (2004).

What is also unique about the above presentation is the assertion that absolutely no
assumptions are needed concerning the data-generating process, not even independence, and
certainly not subset pivotality. Curiously, even though subset pivotality is considered
“restrictive,” subset pivotality holds in this general case where no assumptions are made: the
joint distribution of the test statistics {Ti : i ∈ I} is the same under both HI and HS, following
specifically from element 3 of the framework described above in this section. Thus, subset
pivotality is hardly restrictive, since no assumptions, other than what is embedded in the null
hypotheses, are made. The only problem is that HI is not easily characterized, so that p-
values based on the joint distributions cannot be easily calculated without further
assumptions. Hence the assumption that is questionable is not subset pivotality, but the
assumption needed to calculate p-values under HI. That assumption will be given in Section
4. For now, we use the conservative Bonferroni-based approximation to the p-values based
on the joint distributions, as shown above.

Example Consider the adverse event data set provided by Westfall et al. (1999, p. 243).
There are G = 2 groups, control and treatment, with ng = 80 patients in each group, and m =
28 adverse event indicator variables per patient. Null hypotheses are that the adverse events
indicator data are exchangeable in the combined treatment control sample, tested using
Fisher exact upper tailed p-values, with smaller p-values indicating more adverse events in
the treatment group. Unadjusted and adjusted p-values for the five most significant adverse
events (AEs) are as follows:

Especially noteworthy is the adjusted p-value for the most extreme adverse event: since
0.0025 ≈ 3 × 0.0008, the effective number of tests is 3, not 28. The discrete Bonferroni
method is thus vastly superior to the ordinary Bonferroni method, for which the adjusted p-
value would have been 28 × 0.0008 = 0.0224. Again, this benefit comes at no expense of
extra assumptions, since no assumptions are made concerning the data generating process.

Westfall and Soper (2001) note that this method automatically adjusts for selection effects
concerning the observed variables. Here, the observed adverse events are self-reported, thus
there is concern about a possible selection effect concerning the particular 28 adverse events
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that were reported. This is not an issue though when one realizes that in the collection of
possible adverse events that could be reported, the total reports are 0 for all but the 28 in this
study. Specifically, suppose there are 100 possible reportable AEs, 72 of which produce no
reports. The permutation distributions for those 72 events with no reports place 100% of
their mass on the p-value 1.0, hence the discrete Bonferroni analysis of all 100 AEs is
identical to the analysis of the 28 where reports are received. However, the ordinary
Bonferroni correction would change from 28 × 0.0008 = 0.0224 to 100 × 0.0008 = 0.080.

4 Improving Power Using Joint Distributions
The method described in Section 3 does not utilize joint distribution information, and
therefore can be improved. To utilize this information, a joint exchangeability assumption is
needed, as noted by Westfall (2003), and Calian et al. (2008). Consider the same setup as the
previous section, with one assumption, rather than none, about the data-generating process.
This is the assumption that people often confuse, erroneously, with subset pivotality:

Assumption C If for I, J ⊆ {1, …, m} the distribution of  is

exchangeable in its n components, and the distribution of 
is exchangeable in its n components, then the distribution of

 is exchangeable in its n components.

In particular, the assumption implies that ∩i∈IHi = HI : {the distribution of

 is exchangeable}. Like all assumptions, this one is
questionable; a simple counter-example with two-group bivariate normal data is given in
Section 3. However, several points can be made concerning the palatability of the
assumption. First, the class of allowable models satisfying Assumption C is substantially
more general than the multivariate location-shift class of models, allowing non-normality;
while the multivariate location-shift class of models is very commonly used, often assuming
normality. Second, it is perhaps not unrealistic to assume that if there is no treatment effect
for each of variables 1, 2 individually, then the joint distribution of

 is exchangeable. Third, even if this is not a realistic
assumption, failure of the assumption might imply excess Type I errors. But if the treatment
really does affect the response, then the researcher might take comfort in conclusions of
statistical significance, while acknowledging that due to assumption failure, the effect might
be on correlation structure rather than on specific variables. Fourth, we reiterate that no
assumption of independence is needed.

The benefit of Assumption C is that the exact p-value for HI can be calculated: the
conditional p-value

is free of the HI-distribution of the data; pI is specifically equal to the proportion of the n!
permutations yielding
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Note also that , where  is defined in the previous section, hence incorporating
dependence information can provide greater power.

See Puri and Sen (1971) and Pesarin (2001) for further details on multivariate permutation
tests.

As in Section 3, subset pivotality holds, and use of the “Max” statistic imply that the main
algorithm can be used directly. In this case it becomes

1. Reject H1 if

2. Reject H2 if

and if

j.: Continuing in this fashion, the rule is reject Hj if

and

and … and

As before, the adjusted p-values are p̃j = max i≤jp{i, …, m}.

5 Concluding Remarks
Remark 1 Often, complete enumeration of the n! permutations is infeasible, so the p-values
are instead approximated by randomly sampling permutations:

1. Generate a resampled data set , a without replacement
sample from the observed vectors {y11, …, y1n1, …, yG1, …, yGnG}.

2. Compute the statistics  from the .

3. Check whether
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4. Repeat 1.–3. a large number B (in the millions preferably) of times. The exact
permutation p-value pI is approximately (within binomial simulation error) the
proportion of the B samples where .

This method has been hard-coded in PROC MULTTEST of SAS/STAT since the inception
of the PROC in 1992.

Consider the example in Section 3. The adjusted p-values using the joint distributions are
shown below, all of which are calculated using 5,000,000 draws from the multivariate
permutation distribution, along with the discrete Bonferroni adjustments from Section 3 for
comparison.

The specific benefit of making Assumption C is the ability to incorporate correlation
information; this benefit is shown by the smaller adjusted p-values. However, the main
benefit shown by the discrete Bonferroni method comes at the expense of no additional
assumptions whatsoever, and we reiterate that subset pivotality holds in that case, as
described in Section 3.

Remark 2 The “joint distribution” method is exact, in the sense that all composite
hypotheses in the closure are tested using exact, distribution-free permutation tests. The
method also incorporates all correlation information between variables. It is perhaps
surprising that exact, correlation-incorporating tests are possible, even when the multivariate
dimension m is much greater than the sample size n.

Remark 3 Assumption C is equivalent to that assumed by Korn et al. (2004) for control of
the False Discovery Proportion. Although the Korn et al. procedure is necessarily more
computationally challenging when allowing for some false discoveries, it has a similar
structure as the algorithm in Section 4, and it reduces to that algorithm when allowing no
false discoveries.

To conclude, subset pivotality is an assumption made strictly for the computational
convenience. It need not be restrictive: as shown in Section 3, subset pivotality holds in the
most minimal setup. The assumption that people seem to object to is not subset pivotality,
but the assumption that marginal exchangeability implies joint exchangeability, assumption
C. However, we noted (a) assumption C might not be objectionable, and (b) as the analysis
of the adverse events data show, even assumption C is not crucial. If objectionable, one can
revert to the discrete Bonferroni method, which makes no assumptions. In cases with
moderate dependence structure and highly discrete permutation distributions, the discrete
Bonferroni method can provide a more important benefit than the benefit obtained by
incorporating of joint distribution information, for which the potentially objectionable
assumption is needed.
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