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Abstract
Global quantitative analysis of genetic interactions is a powerful approach for deciphering the
roles of genes and mapping functional relationships among pathways. Using colony size as a
proxy for fitness, we developed a method for measuring fitness-based genetic interactions from
high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis.
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We identified several experimental sources of systematic variation and developed normalization
strategies to obtain accurate single- and double-mutant fitness measurements, which rival the
accuracy of other high-resolution studies. We applied the SGA score to examine the relationship
between physical and genetic interaction networks, and we found that positive genetic interactions
connect across functionally distinct protein complexes revealing a network of genetic suppression
among loss-of-function alleles.

Synthetic genetic array (SGA) analysis is an automated form of yeast genetics that combines
arrays of mutant strains with robotic manipulations for high-throughput double-mutant
construction1. Genetic interactions are identified as unexpected phenotypes arising from the
combination of two or more genetic variants and include two broad categories: ‘positive’
and ‘negative’2. Negative genetic interactions refer to a more severe fitness defect than
expected, with an extreme case being synthetic lethality; positive genetic interactions refer
to double mutants with a less severe fitness defect than expected. Quantitative assessment of
fitness-based genetic interactions requires measurements of single-mutant fitness, an
estimate of the expected double-mutant fitness, which is typically modeled as a
multiplicative combination of the single-mutant phenotypes, and measurement of the
observed double-mutant fitness, such that the difference between the observed and expected
double-mutant fitness can be calculated2.

Genetic interactions previously have been quantified from SGA experiments of functionally
biased subsets of a yeast deletion mutant collection using an interaction score (S score)3.
This approach relies on colony-size measurements obtained from digital images to
determine a composite score derived from both the magnitude and reproducibility of genetic
interactions3. The S score is an estimate of the confidence with which genetic interactions
can be assigned but does not reflect single- or double-mutant fitness4, which are critical for
detailed interpretation of interactions and the resultant network5,6. Furthermore,
quantification of colony size measurements using the S score is not as precise as that
achieved by higher-accuracy, albeit lower-throughput, methods4. Finally, mapping genome-
wide, fitness-based genetic interactions requires normalization of several parameters
associated with colony-based interaction assays (Supplementary Table 1), as these can
produce unreliable interactions when applied to whole-genome screens.

We developed the SGA score, which relates mutant colony size to fitness and enables
identification of quantitative genetic interactions from high-throughput, genome-scale SGA
screens. To do so, we identified several systematic biases associated with genome-scale
SGA analysis and developed normalization methods to remove these biases. This led to
single- and double-mutant fitness measurements of comparable precision to those obtained
using other high-resolution methodologies. We applied the SGA score to a genome-scale
collection of SGA screens to quantify genetic interactions among ~5.4 million gene pairs7.
Here we describe the SGA score and accompanying normalization strategies, and report the
results of a global comparative analysis between the genetic network deduced from this
analysis and the yeast physical interaction network. We found that positive genetic
interactions connected functionally distinct protein complexes more frequently than
described previously.

RESULTS
Quantitative, fitness-based model for genetic interactions

The requirement for accurate phenotypic measurements has imposed constraints on the scale
and functional scope of quantitative genetic interaction studies4,5,8. Genome-scale surveys
require experimental designs to optimize throughput and thus often sacrifice accuracy. We
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developed a strategy for deriving quantitative genetic interactions from arrays of double-
mutant yeast colonies applicable to genome-scale SGA screens, such that all possible
Saccharomyces cerevisiae digenic interactions could be examined in an accurate and
unbiased manner.

SGA methodology enables rapid and systematic construction of yeast double mutants by
mating a strain harboring a ‘query’ mutation of interest to input arrays of strains carrying
different ‘array’ mutations, which are composed either of nonessential deletion mutants or
conditional alleles of essential genes1,9 (Fig. 1a). After several robot-facilitated selection
steps, the final output arrays consisting of haploid double-mutant colonies are imaged at a
single time point1,9 (Fig. 1a). We developed a model for relating the area of a double-mutant
colony image to the fitness of the constituent single mutants by assuming that, in the
absence of genetic interactions, double-mutant fitness is a multiplicative combination of
single-mutant fitness and experimental factors (Supplementary Note 1). Then we measured
genetic interactions as deviations from the expected double-mutant fitness.

Similar to other high-throughput technologies (Supplementary Note 2), genetic-interaction
screens using ordered mutant arrays are susceptible to experimental factors that introduce
systematic variation in colony size (Fig. 1b and Supplementary Note 1). Contributing factors
include subtle differences in growth conditions, such as duration of incubation, from one
array plate to the next3 (Fig. 1b and Supplementary Fig. 1a) as well as factors that influence
local nutrient availability and affect growth of different subsets of colonies on the same
plate. These include plate location, gradients in growth medium volume caused by uneven
preparation surfaces and neighboring mutant-strain fitness (Fig. 1b and Supplementary Fig.
1b–d). Each factor had a noticeable impact on colony size (Fig. 1b,c and Supplementary Fig.
1f). For example, mutant strains located in the outermost rows and columns were on average
40% larger than centrally located mutants (Supplementary Fig. 1b). Strains next to less-fit
mutants, including those showing negative genetic interactions, were also larger, suggesting
that local competition for nutrients should be considered carefully, especially when
measuring positive genetic interactions (Supplementary Fig. 1d).

The most problematic source of systematic variability was ‘batch effect’ (batch is defined as
a set of screens conducted in series using the same robotic instrument; Fig. 1b and
Supplementary Fig. 1e,f). Because screens conducted in a batch are influenced by common
experimental factors, double mutants in a batch often exhibit similar trends in colony-size
variation irrespective of the identity of the query strain (Supplementary Fig. 1e). Colony-
size variation owing to batch effects was often similar in magnitude to the genetic
interactions we aimed to measure; without accounting for the batch effect, the similarity of
the interaction profile of functionally unrelated genes was often as strong as that between
known complexed protein pairs (Supplementary Fig. 1e). Given the importance of
correlation-based approaches for genetic-interaction analyses9, strategies for normalizing
batch signatures are critical for harnessing the full potential of large-scale genetic-interaction
data.

We developed normalization procedures that estimate and remove systematic biases in
colony size arising from experimental factors (Supplementary Note 1). We applied statistical
techniques including spatial smoothing, quantile normalization and linear discriminant
analysis to substantially reduce colony size variability and improve correlation between
independent colony size measurements obtained for the same mutant strain located in
different array positions (Fig. 1c, Supplementary Figs. 1f and 2 and Supplementary Note 1).
After removal of experimental artifacts, we fit a model estimating fitness and genetic
interactions for each double mutant to the normalized colony sizes (Fig. 1c and
Supplementary Note 1). The resulting measure, termed SGA score, captures single- and
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double-mutant fitness measurements and provides a quantitative, genome-wide assessment
of genetic interactions.

A high-resolution catalog of yeast fitness
We measured colony sizes for 4,635 viable deletion mutants and 1,388 temperature-sensitive
or hypomorphic alleles of essential genes after SGA analysis using a neutral (control) query
mutation (Fig. 1, Supplementary Table 2 and Supplementary Note 1). Using image-analysis
software, we obtained colony areas from images (Online Methods) and processed them
using the SGA score to systematically analyze yeast single-mutant fitness based on colony
size (Supplementary Data 1). Comparison to previously published fitness or relative growth
rate studies revealed that, together with barcode-based fitness measurements of single-
deletion strains10, our colony size-based fitness measures had the highest average cross-
study correlation (Fig. 2a), suggesting that large-scale colony size measurements capture
fitness as well or better than available methodologies. The range of single-mutant growth
defects detectable by our method substantially exceeded that of most other studies. For
example, even though growth competition assays assessed a similar number of strains4,10,
they had not reported fitness for mutants with relative growth <50% that of a wild-type
strain (Fig. 2b).

Our colony size–based measurements of double-mutant fitness were highly reproducible as
determined by comparative analysis of 211 genome-wide replicate screens (Fig. 2c).
Therefore, the accuracy afforded by colony size–based single- and double-mutant
measurements should provide a basis for quantitative, fitness-based assessment of genetic
interactions.

Evaluating genetic-interaction measurements
We used multiple approaches to evaluate the quantitative nature of genetic interactions
identified using the SGA score. First, genetic interactions measured from independent
experiments performed in duplicate were highly reproducible (Fig. 3a). Second, we assessed
the reproducibility of interactions identified among reciprocal gene pairs (query mutant A
and array mutant B versus query mutant B and array mutant A). Query mutants, which are
mutants crossed into the deletion mutant array, and the corresponding array mutants are
subject to different experimental conditions that affect their colony growth differently in the
SGA assay. In particular, query mutants with larger fitness defects are allowed to grow
longer, resulting in greater resolution for detecting genetic interactions (Supplementary Note
3). Despite these differences, we observed reasonable agreement among reciprocal genetic
interaction pairs (Fig. 3b) and this correlation increased when we restricted comparisons to
more confident interactions (Fig. 3b). Notably, agreement between reciprocal interactions
improved ~50–60% when we normalized experimental factors responsible for systematic
colony-size variation (Supplementary Fig. 3).

Finally, we compared SGA scores for 239 genetic interactions7 that overlapped with a
smaller-scale, high-resolution liquid growth study5. We observed substantial quantitative
agreement between genetic interactions identified in both studies (Fig. 3c). This was not
simply attributable to extreme interactions because we also observed high correlation even
for modest genetic interactions (r = 0.73; SGA score absolute value, |ε| < 0.4). We also
found high agreement when we compared our identified interactions to a set of manually
confirmed synthetic lethal or sick interactions9 (Supplementary Fig. 4) as well as to a larger
set of binary genetic interactions in the Biological General Repository for Interaction
Datasets (BioGRID)11 (Supplementary Note 4 and Supplementary Table 3).
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Functional impact of systematic effects
We scored ~1,700 genome-wide SGA screens1,7 (Supplementary Note 1) to determine the
effects of systematic experimental variation on reliable identification of fitness-based
genetic interactions. We evaluated the functional utility of resultant positive and negative
genetic interactions against common functional benchmarks: annotation to the same Gene
Ontology (GO) biological process term or protein-protein interactions (Fig. 4a and
Supplementary Fig. 5a). Although genetic interactions are not always expected to connect
functionally related genes, they tend to be enriched among genes in the same biological
process, thus annotation to the same GO terms serves as an objective metric for quantifying
the functional utility of a given dataset12. Both negative and positive SGA score interactions
overlapped with co-annotated gene pairs more frequently than interactions derived from a
version of the SGA score without the normalization methods applied (Fig. 4a). At 30%
precision, negative SGA scores recovered over fourfold more co-annotated gene pairs (Fig.
4a), suggesting that experimental variability contributes substantially to the false positive
rate of large-scale SGA screens. The SGA score had similar improvement over genome-
wide screens processed using the S score3, which does not account for many of the
systematic effects we identified (Fig. 4a, Supplementary Fig. 5a and Online Methods).
Despite capturing the most extreme genetic interactions, the S score appears to call false
positives when applied to whole-genome screens because it does not account for batch
effects (Supplementary Figs. 5c and 6 and Supplementary Table 1).

Accounting for systematic error in genome-wide genetic-interaction profiles yielded several-
fold more functionally informative profiles than those obtained from nonnormalized data
(~3,000 functionally related gene pairs at 30% precision using SGA score–derived profiles
versus <10 functionally related gene pairs using nonnormalized colony size measurements;
Fig. 4b). As observed for individual interactions, the batch effect was the main contributor to
improved genetic-interaction profiles (Fig. 4b and Supplementary Figs. 5c and 6).

Relating genetic interactions to protein complexes
We reexamined the relationship between quantitative genetic interactions identified using
the SGA score and physical association data for proteins. We focused on genetic interactions
among 161 annotated protein complexes (Supplementary Note 5) for which more than one
protein pair had been screened for genetic interactions7 and measured the frequency of
positive and negative interactions in each complex (Fig. 5a, Supplementary Fig. 7 and
Supplementary Data 2). Consistent with smaller-scale studies13, a large portion (92/161) of
these complexes were significantly enriched for genetic interactions (P < 0.05,
hypergeometric test). In the enriched complexes, the majority of genes were linked to one
another either by pure positive (46%) or pure negative (37%) genetic interactions (Fig. 5a),
confirming previous theoretical observations14.

Virtually all (94%) complexes characterized by negative genetic interactions had at least one
essential gene (Fig. 5a), which is much higher than appreciated previously13. This
observation suggests that essential complexes may contain internal redundancy, allowing the
cell to tolerate loss of a single nonessential component of the complex (most interactions in
our dataset were between nonessential genes), whereas additional perturbation often resulted
in loss of complex function and impaired cell growth. In contrast, only a relatively small
fraction of all protein complexes associated with only positively interacting gene pairs
contained an essential gene (Fig. 5a). Complexes with mixed interactions (both positive and
negative; 17.5%) also tended to be essential. For example, the highly organized conserved
oligomeric Golgi (COG) complex, consisting of an essential and nonessential lobe15 had
negative and positive intra-complex interactions, respectively. This demonstrates the
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resolution of the SGA score for capturing interactions that previously had been identified
only by high-resolution competitive-growth assays4.

In addition to essentiality, the presence of a direct physical interaction identified in a yeast
two-hybrid assay also influenced the type of genetic interaction observed in a protein
complex. Proteins in a complex that physically interacted directly were nearly threefold
more likely to have positive genetic interactions whereas complex members with no
evidence of a direct physical interaction showed a modest preference toward negative
genetic interactions (Supplementary Fig. 7d). The predominant type of genetic interaction
we observed in a protein complex was predictive of its frequency of interaction with genes
in other complexes (Supplementary Note 5). Nonessential genes in complexes connected by
positive interactions had an average of twofold more genetic interactions compared to
nonessential genes within complexes connected by negative genetic interactions (Fig. 5b).
The fewer genetic interactions for essential complexes may reflect the inherent redundancy
within these complexes; a single perturbation is less likely to compromise complex activity,
and thus, these nonessential genes exhibit fewer genetic interactions. Conversely, deletion of
a nonessential gene in a positively connected complex may have a more severe impact on
complex activity and, consequently, exhibited relatively more genetic interactions with the
rest of the genome.

Defining positive interaction subclasses
Even though both positive and negative genetic interactions are enriched in physical
complexes, the large majority of genetic interactions did not overlap with physical
interactions from high-throughput assays16–19. We found 1,182 pairs of protein complexes
that showed a substantial enrichment for positive interactions connecting them (false
discovery rate of 5%; Supplementary Note 5). The numerous positive genetic interactions
that do not overlap with protein-protein interactions may reflect functional rather than
physical relationships between complexes (Fig. 6a).

Single- and double-mutant phenotypes have been compared in small-scale studies to identify
specific classes of positive interactions, including genetic suppression5,8. We used the SGA
score to examine the potential for genetic suppression between protein complexes on a
global scale (Supplementary Note 6 and Supplementary Data 3). We observed a surprising
number of suppression interactions across complex pairs, which suggest instances in which
loss-of-function mutations in one complex rescue growth defects associated with loss-of-
function mutations in a second complex. We constructed a network providing a global view
of suppression interactions between protein complexes (Fig. 6a).

In addition to a cross-complex suppression interaction identified previously in a high-
resolution growth competition assay4, we validated several new suppression interactions in
our network (Fig. 6a and Supplementary Fig. 8). We confirmed loss-of-function suppression
interactions involving the Rim101 signaling pathway genes RIM8, RIM9 or DFG16,
multivesicular body sorting proteins encoded by DID4 and VPS24, which comprise an
ESCRT-III subcomplex, and the AAA-type ATPase gene, VPS4 (Fig. 6a,b and
Supplementary Fig. 9a,b). A functional relationship between Rim101 signaling and
multivesicular body sorting has been established previously20,21. RIM101 encodes a
transcription factor activated in response to alkaline growth conditions via proteolytic
cleavage at endosomal membranes (Fig. 6c). Our suppression network highlighted that
deletion of genes encoding upstream signaling components of the Rim101 pathway
suppressed fitness defects associated with deletion of DID4, VPS24 or VPS4; this may occur
because a defect in upstream signaling prevents constitutive activation caused by loss of
function of downstream negative regulators. We confirmed that did4Δ, vps24Δ and vps4Δ
mutants were sensitive to RIM101 overexpression, and this sensitivity was rescued by
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deletion of RIM8 (Fig. 6d), a putative upstream component of the Rim101 pathway21 (Fig.
6c). Under conditions in which the Rim101 pathway is activated and required for viability,
in the presence of lithium chloride (LiCl), suppression is observed in the opposite
direction21. These observations highlight the importance of considering condition-specificity
when inferring pathway architecture based on genetic interactions6. In addition to
characterized pathway components, our genetic interaction analysis placed DFG16, an
uncharacterized gene associated with Rim101 signaling22, upstream in the pathway along
with RIM8 and RIM9. Another gene previously implicated in the Rim101 signaling,
YGR122W23, likely functions further downstream and closer to the Rim13 protease (Fig. 6c
and Supplementary Fig. 9a–c).

Disruption of the FAR complex, originally implicated in cell-cycle control24, rescued
growth defects associated with TORC2 kinase complex mutant alleles, tor2-29 and tsc11-1
(Fig. 6a,e and Supplementary Fig. 10a,b). Moreover, FAR11 deletion suppressed actin
polarization defects of a tsc11-1 mutant in a nonpermissive condition (37 °C; Supplementary
Fig. 10c). These results suggest that the FAR complex may function downstream to
negatively regulate TORC2 function in actin organization. Similar to TORC2, FAR complex
members are conserved from yeast to humans, and mammalian Far protein orthologs belong
to a multiprotein complex that contains the PP2A phosphatase25. Suppression of TORC2
growth and actin polarity defects was also achieved by loss of PPG1 (Supplementary Fig.
10a–c), which encodes a PP2A-related phosphatase26. Thus, it is possible that the FAR
complex mediates its function by working with Ppg1 to dephosphorylate and inactivate
proteins that normally control actin-based cell polarity.

Genes involved in chromatin and secretory functions act as hubs in the global genetic
interaction map7 and our suppression network exhibited a similar topology (Fig. 6a).
Specifically, protein complexes involved in chromatin modification or secretion suppressed
growth defects associated with disruption of several different pathways and/or complexes.
One such interaction involved suppression of DNA polymerase delta (Polδ) mutants by
COG complex disruption (Fig. 6a and Supplementary Fig. 11). Unlike Polδ, which functions
in the nucleus, the COG complex is important for establishment and maintenance of Golgi
apparatus structure and function15. To explore this genetic relationship, we investigated
whether cogΔ deletion mutants also rescued the UV light–sensitivity of a strain lacking a
nonessential Polδ gene, POL32 (Fig. 6f). The cog7Δpol32Δ and cog8Δpol32Δ double
mutants grew as well as cog7Δ and cog8Δ strains after UV-light exposure, confirming the
COG-Polδ suppression interactions and the ability of positive interactions to capture broad
connections between functionally diverse genes.

DISCUSSION
Several studies have highlighted the importance of quantitative fitness analysis for
dissecting pathways and complexes4,5,8,27. Although our primary goal was to develop a
scoring system for extracting accurate fitness estimates and genetic interactions from
genome-scale screens in budding yeast, our methodology can be applied to map genetic
interactions in other organisms, including different yeast species28,29 and bacteria30, for
which colony-based assays for genetic interactions exist. Furthermore, our methodology can
be extended beyond genetic interactions to different array-based interaction mapping
technologies such as yeast two-hybrid16 or protein-fragment complementation assay17,
which rely on colony growth to identify genes encoding physically interacting proteins.

Normalization of experimental factors affecting colony growth and experimental grouping
of screens was key to extracting fitness- based genetic interactions. Because SGA
experiments are manipulated robotically, these experimental factors were surprisingly
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reproducible and, thus, amenable to estimation and normalization, which enhanced the
measurement precision without sacrificing throughput. Not surprisingly, given its impact in
other genome-wide studies31, batch effect presented a major challenge. Proper experimental
design, including randomization of query gene screening order, especially with respect to
their functional roles, was critical to distinguish between biological and experimental factors
unique to screens belonging to a common batch. Batch effect correction may present a
greater challenge for smaller-scale and functionally biased studies in which true genetic
interactions and colony variance owing to batch effects are not easily distinguished.
Repeating screens independently or pairing them with control screens for detailed
comparison may highlight batch-specific effects. Furthermore, randomizing positions of
array strain replicates may also minimize other sources of experimental error associated with
plate, spatial and competition effects.

Our global genetic interaction map7 revealed that, contrary to previous understanding, both
negative and positive genetic interactions tend to occur between, rather than within,
complexes and pathways. Moreover, suppression interactions observed between complexes
in distinct subcellular compartments highlighted the potential for genetic interactions to
uncover important and unexpected functional relationships. Consistent with our findings, an
in silico study found that negative interactions occur more frequently between genes with
overlapping function whereas positive interactions are observed between functionally
distinct metabolic pathways32. However, unlike our genome-wide survey indicating an
increased prevalence of negative genetic interactions7, this theoretical analysis suggests that
positive interactions are surprisingly more abundant than negative interactions in S.
cerevisiae and Escherichia coli metabolic networks32. Whether this is a specific
characteristic of metabolic networks or a more global network property related to gene
essentiality remains to be explored.

Genome-wide application of our method is an important step toward moving beyond
abstract gene function predictions toward a specific, mechanistic wiring diagram of the cell.
Continued quantitative analysis of SGA experiments should enable measurement of all
possible yeast double-mutant combinations, and our analysis suggests the resolution of SGA
scored interactions may, in some cases, even be sufficient for inferring pathway architecture
(Fig. 6b,d). Furthermore, strategies for normalizing experimental factors will become more
critical as we expand genetic interaction maps to different conditions, organisms and
complex relationships involving more than two genes. This enormous interaction space
emphasizes the need for highly scalable approaches and tools capable of high-resolution
measurement of single and combined mutant phenotypes.

METHODS
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/naturemethods/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank R. Mani, F. Roth, B. Papp, T. Maeda and T. Hays for helpful discussions and critical comments. This
work was supported by Genome Canada through the Ontario Genomics Institute (2004-OGI-3-01), the Canadian
Institutes of Health Research (GSP-415-67; C.B. and B.A.) (MOP-79368; G.W.B.), the US National Institutes of
Health (1R01HG005084-01A1; C.L.M., Y.K. and S.B.) and the National Science Foundation (DBI 0953881, MCB

Baryshnikova et al. Page 8

Nat Methods. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nature.com/naturemethods/


0918908; C.L.M. and Y.K.) and partially supported by a seed grant from the Minnesota Supercomputing Institute
(C.L.M. and Y.K.).

References
1. Baryshnikova A, et al. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and

Schizosaccharomyces pombe. Methods Enzymol. 2010; 470:146–180.
2. Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C. Systematic mapping of genetic

interaction networks. Annu Rev Genet. 2009; 470:145–179.
3. Collins SR, Schuldiner M, Krogan NJ, Weissman JS. A strategy for extracting and analyzing large-

scale quantitative epistatic interaction data. Genome Biol. 2006; 7:R63. [PubMed: 16859555]
4. Breslow DK, et al. A comprehensive strategy enabling high-resolution functional analysis of the

yeast genome. Nat Methods. 2008; 5:711–718. [PubMed: 18622397]
5. St Onge RP, et al. Systematic pathway analysis using high-resolution fitness profiling of

combinatorial gene deletions. Nat Genet. 2007; 39:199–206. [PubMed: 17206143]
6. Avery L, Wasserman S. Ordering gene function: the interpretation of epistasis in regulatory

hierarchies. Trends Genet. 1992; 8:312–316. [PubMed: 1365397]
7. Costanzo M, et al. The genetic landscape of a cell. Science. 2010; 327:425–431. [PubMed:

20093466]
8. Drees BL, et al. Derivation of genetic interaction networks from quantitative phenotype data.

Genome Biol. 2005; 6:R38. [PubMed: 15833125]
9. Tong AH, et al. Global mapping of the yeast genetic interaction network. Science. 2004; 303:808–

813. [PubMed: 14764870]
10. Deutschbauer AM, et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in

yeast. Genetics. 2005; 169:1915–1925. [PubMed: 15716499]
11. Breitkreutz BJ, et al. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 2008;

36:D637–D640. [PubMed: 18000002]
12. Myers CL, Barrett DR, Hibbs MA, Huttenhower C, Troyanskaya OG. Finding function: evaluation

methods for functional genomic data. BMC Genomics. 2006; 7:187. [PubMed: 16869964]
13. Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T. Functional maps of protein complexes from

quantitative genetic interaction data. PLOS Comput Biol. 2008; 4:e1000065. [PubMed: 18421374]
14. Segre D, Deluna A, Church GM, Kishony R. Modular epistasis in yeast metabolism. Nat Genet.

2005; 37:77–83. [PubMed: 15592468]
15. Ungar D, Oka T, Krieger M, Hughson FM. Retrograde transport on the COG railway. Trends Cell

Biol. 2006; 16:113–120. [PubMed: 16406524]
16. Yu H, et al. High-quality binary protein interaction map of the yeast interactome network. Science.

2008; 322:104–110. [PubMed: 18719252]
17. Tarassov K, et al. An in vivo map of the yeast protein interactome. Science. 2008; 320:1465–1470.

[PubMed: 18467557]
18. Gavin AC, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;

440:631–636. [PubMed: 16429126]
19. Krogan NJ, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.

Nature. 2006; 440:637–643. [PubMed: 16554755]
20. Mitchell APA. VAST staging area for regulatory proteins. Proc Natl Acad Sci USA. 2008;

105:7111–7112. [PubMed: 18474868]
21. Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. Constitutive activation of the pH-responsive

Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell
Biol. 2005; 25:9478–9490. [PubMed: 16227598]

22. Barwell KJ, Boysen JH, Xu W, Mitchell AP. Relationship of DFG16 to the Rim101p pH response
pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell. 2005; 4:890–899.
[PubMed: 15879523]

23. Rothfels K, et al. Components of the ESCRT pathway, DFG16, and YGR122w are required for
Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of
Saccharomyces cerevisiae. Mol Cell Biol. 2005; 25:6772–6788. [PubMed: 16024810]

Baryshnikova et al. Page 9

Nat Methods. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



24. Kemp HA, Sprague GF Jr. Far3 and five interacting proteins prevent premature recovery from
pheromone arrest in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol. 2003; 23:1750–
1763. [PubMed: 12588993]

25. Goudreault M, et al. A PP2A phosphatase high density interaction network identifies a novel
striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation
3 (CCM3) protein. Mol Cell Proteomics. 2009; 8:157–171. [PubMed: 18782753]

26. Posas F, et al. The gene PPG encodes a novel yeast protein phosphatase involved in glycogen
accumulation. J Biol Chem. 1993; 268:1349–1354. [PubMed: 7678255]

27. Van Driessche N, et al. Epistasis analysis with global transcriptional phenotypes. Nat Genet. 2005;
37:471–477. [PubMed: 15821735]

28. Dixon SJ, et al. Significant conservation of synthetic lethal genetic interaction networks between
distantly related eukaryotes. Proc Natl Acad Sci USA. 2008; 105:16653–16658. [PubMed:
18931302]

29. Roguev A, et al. Conservation and rewiring of functional modules revealed by an epistasis map in
fission yeast. Science. 2008; 322:405–410. [PubMed: 18818364]

30. Babu M, et al. Systems-level approaches for identifying and analyzing genetic interaction networks
in Escherichia coli and extensions to other prokaryotes. Mol Biosyst. 2009; 5:1439–1455.
[PubMed: 19763343]

31. Leek JT, et al. Tackling the widespread and critical impact of batch effects in high-throughput data.
Nat Rev Genet. 2010; 11:733–739. [PubMed: 20838408]

32. He X, Qian W, Wang Z, Li Y, Zhang J. Prevalent positive epistasis in Escherichia coli and
Saccharomyces cerevisiae metabolic networks. Nat Genet. 2010; 42:272–276. [PubMed:
20101242]

33. Hughes TR, et al. Functional discovery via a compendium of expression profiles. Cell. 2000;
102:109–126. [PubMed: 10929718]

34. Jasnos L, Korona R. Epistatic buffering of fitness loss in yeast double deletion strains. Nat Genet.
2007; 39:550–554. [PubMed: 17322879]

35. Warringer J, Ericson E, Fernandez L, Nerman O, Blomberg A. High-resolution yeast phenomics
resolves different physiological features in the saline response. Proc Natl Acad Sci USA. 2003;
100:15724–15729. [PubMed: 14676322]

36. Brauer MJ, et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in
yeast. Mol Biol Cell. 2008; 19:352–367. [PubMed: 17959824]

37. Hartman, JLt; Tippery, NP. Systematic quantification of gene interactions by phenotypic array
analysis. Genome Biol. 2004; 5:R49. [PubMed: 15239834]

Baryshnikova et al. Page 10

Nat Methods. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The SGA score for measuring quantitative genetic interactions. (a) An SGA experiment
crossing a strain carrying a query mutation to an input array of single mutants, each of which
carries a wild-type copy of the query gene and a unique array strain mutation. A final output
array of double mutants is generated after several SGA selection steps, photographed and
processed using software that measures colony areas in terms of pixels. Relative colony size,
determined by measuring deviation of individual colonies from the median size for the same
colony across 1,712 different experiments7, is shown. (b) Schematic depiction of the five
factors that contribute to experimental variance of colony size. (c) Relative colony size after
normalization. Single-mutant fitness (WA, WB) and double-mutant fitness (WAB) derived
from normalized colony size measurements were used to identify and measure genetic
interactions (SGA score; ε).
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Figure 2.
Evaluation of single-mutant fitness measures. (a) Comparison of single-mutant fitness or
relative growth measurements for nonessential gene deletions derived from eight
independent approaches: colony size measurements (this study), competitive growth
analyzed by barcode hybridization10, flow cytometry4 or gene expression profiles33, gene-
expression microarrays36, liquid growth profiling34,35 and a spot assay on solid growth
medium (phenotypic array)37. (b) Distribution of single-mutant fitness measures reported by
the studies described in a reporting fitness or relative growth rate. (c) Correlation of double-
mutant fitness measures obtained from two independent replicates of a representative
genome-wide SGA screen. Red line, y = x. Inset, distribution of correlations between
double-mutant fitness measures obtained from 211 genome-wide SGA screens conducted in
duplicate.
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Figure 3.
Evaluation of quantitative genetic interactions. (a) Scatter plots of genetic interactions
derived from 211 genome-wide SGA screens conducted in duplicate. Pearson correlation
coefficients were computed after applying a lenient (P < 0.05) or intermediate (SGA score
absolute value, |ε| > 0.08; P < 0.05) confidence threshold on the SGA score. (b) Scatter plots
of genetic interaction measures between reciprocally tested gene pairs. Pearson correlation
coefficients were computed after applying a lenient (P < 0.05) or intermediate (|ε| > 0.08, P
< 0.05) confidence threshold on the SGA score. (c) A scatter plot illustrating the overlap
between genetic interaction scores for 239 unique gene pairs extracted from a large-scale
SGA dataset7 and a small-scale, high-resolution liquid growth profiling study5. Data in c
were adapted from reference 7.
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Figure 4.
Evaluation of functional information derived from genetic interactions. (a) Plots of precision
versus recall (number of true positives (TP)) for negative and positive genetic interactions,
as determined by the SGA score or the S score. An SGA score without normalization
methods applied is also plotted. True positive interactions were defined as those involving
both genes annotated to the same GO gold standard set of terms12. Precision and recall were
calculated as described previously12. FP, false positive. (b) Plots of precision versus recall
(number of TP) for genetic interaction profile similarities computed using the SGA score or
the S score. An SGA score without normalization methods applied is also plotted. Pearson
correlation was used to compute profile similarity for every pair of array mutant strains
across profiles consisting of interactions with the 1,712 query mutant strains. True positive
pairs were those for which both genes were annotated to the same GO gold standard set of
terms (GO annotation)12 or pairs encoding physically interacting proteins (physical
interaction standard). Precision and recall were calculated as described previously12.
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Figure 5.
Analysis of genetic interactions within and between protein complexes. (a) For 92
complexes enriched for negative and/or positive genetic interactions that we assembled,
nonessential genes are represented as circles and essential genes as diamonds. Complexes
connected by purely positive or negative genetic interactions are indicated by yellow and
blue, respectively; gray denotes complexes connected by a mixture of positive and negative
genetic interactions. (b) Degree analysis of the complex-complex genetic interaction
network in which node color reflects the prevalence of positive (yellow) or negative (blue)
genetic interactions in a complex. Gray nodes denote complexes for which too few gene
pairs were screened to assess within-complex interactions. Node size indicates the number
of proteins associated with the complex. Positive and negative degree are the number of
positive and negative genetic interactions, respectively, for a given complex. Inset, number
of between-complex interactions was measured for complexes connected by purely negative
and purely positive genetic interactions. Error bars, s.e.m. (n = 37, positive and n = 25,
negative; *P < 0.002 by a rank-sum test).
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Figure 6.
Cross-complex genetic suppression network revealed by quantitative genetic interaction
analysis. (a) A network illustrating suppression interactions between protein complexes
(nodes). Edges indicate positive SGA interactions classified as suppression; arrows point to
the complex whose fitness defect was suppressed. (b) Colony size–derived single- and
double-mutant fitness plotted for the indicated strains (top). Error bars for single mutants,
s.e.m. derived from bootstrapping (n = 800); error bars for double mutant, s.d. (n = 4).
Liquid growth profiling5 of the same strains (bottom). (c) Schematic showing activation of
the Rim101 pathway in response to alkaline stress. (d) Growth of the indicated strains on
glucose and galactose, with plated strains indicated (left). WT, wild type. (e,f) Serial dilution
growth assays of the indicated yeast strains at the indicated temperatures (e) and after
exposure to UV light.
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