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ABSTRACT

Analysis of protein/small molecule interactions is crucial in the discovery of new drug
candidates and lead structure optimization. Small biomolecules (ligands) are highly flexible
and may adopt numerous conformations upon binding to the protein. Using computer
simulations instead of sophisticated laboratory procedures may significantly reduce cost of
some stages of drug development. Inspired by probabilistic path planning in robotics, sto-
chastic roadmap methodology can be regarded as a very interesting approach to effective
sampling of ligand conformational space around a protein molecule. Protein-ligand inter-
actions are divided into two parts: electrostatics, modeled by the Poisson-Boltzmann
equation, and van der Waals interactions, represented by the Lennard-Jones potential. The
results are promising; it can be shown that locations of binding sites predicted by the
simulation are in agreement with those revealed by experimental x-ray crystallography of
protein-ligand complexes. We wanted to extend our knowledge beyond the current molec-
ular modeling tools to arrive at a better understanding of the ligand-binding process. To this
end, we investigated a two-level model of protein-ligand interaction and sampling of ligand
conformational space covering the entire surface of protein target. Supplementary Material
is available at www.liebertonline.com/cmb.

Key words: binding site discovery, Poisson-Boltzmann equation, protein-ligand interaction,

Stochastic Roadmap Simulation.

1. INTRODUCTION

The identification of protein functional regions is an important first step in determination of its

molecular function. For small molecule drug design, the most crucial are the locations of prospective

binding sites, because a potential solution to the computer-aided rational drug design problem requires the

ligand to match (both geometrically and energetically) the protein-binding site. Many computational ap-

proaches based on the analysis of protein structure (Laskowski, 1995; Weisel et al., 2007), sequence (Capra

and Singh, 2007), or both (Capra et al., 2009) have been developed to predict ligand-binding sites (Laurie and

Jackson, 2006). In this article, we focus on using structural information accompanied by an energy model to

predict ligand-binding sites. Recent algorithms have focused on van der Waals interaction energy of a small,
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general probe used to build an interaction grid near the protein surface: PocketFinder uses an aliphatic carbon

as the probe (An et al., 2005), and Q-SiteFinder uses a methyl group (Laurie and Jackson, 2005). In contrast,

our approach uses directly the ligand of interest. However, the protein conformation may significantly change

upon ligand binding; in the most current methods, the protein is usually assumed to be rigid. The analysis of

changes in the protein conformation, especially these induced by interaction with a ligand, is still a chal-

lenging task. The latest review of methods used to account for protein flexibility can be found in the work by

B-Rao et al. (2009). A similar form of exploration of protein-ligand interaction, also known as blind docking,

was introduced for prediction of peptide-protein complexes by scanning the entire surface of protein (Hetenyi

and van der Spoel, 2002) and, more recently, for docking of drug-sized compounds to relatively small

proteins (Hetenyi and van der Spoel, 2006). This approach was further improved by focusing on predicted

binding sites (Ghersi and Sanchez, 2009). These solutions are based on the most often used docking software

AutoDock (Morris et al., 1998). We propose a different framework, based on the Stochastic Roadmap

Simulation (SRS) (Apaydin et al., 2002, 2003), a Monte Carlo (MC) type method derived from planning

methodology of robotic motion. The method consists of effective sampling of the combined transformational

and conformational space of the ligand. Unlike a classical MC approach, SRS enables one to sample from all

possible paths the ligand may choose moving around its protein target. The basic idea is to effectively scan

the entire surface of the protein, using the ligand as a probe, to obtain a distribution of energetically favorable

regions, which may be the potential binding sites. The original SRS approach is capable of detecting putative

binding sites or even distinguishing the catalytic binding site. Apaydin et al. (2002, 2003) propose the time to

escape from the so-called funnel of attraction as a measure of binding affinity. However, SRS does not

provide information about the nature of interactions between the ligand and the binding site (e.g., hydrogen

bonds), and it should be combined with a more direct model in order to analyze the bound state. We propose

using the LUDI model as a tool for visual inspection of qualitative and quantitative properties of the

interaction between the binding site of a protein and the bound ligand (Bohm, 1992).

2. METHODS

2.1. Test set

The test set was selected according to Paul and Rognan (2002). The set consists of 60 protein-ligand

complexes. Although enzyme-inhibitor complexes predominate, there are also examples of immunoglob-

ulins with haptens and some proteins involved in active transport of amino acids or fatty acids. Protein

structures deposited in the PDB database (Berman et al., 2000) often become a basis for structure-based

rational drug design. An example of a designed drug can be thrombin (protein responsible for blood

coagulation) inhibitor MQPA which, under the name argatroban, was accepted in 2002 by the Food and

Drug Administration as a commercial anticlotting agent.

2.2. Modeling the ligand

By a ligand, we understand a small molecule with a limited number of conformational degrees of

freedom (up to 50). First, we assign to one terminal atom (called the base) three cartesian coordinates (x, y,

z), which describe the location of the ligand in space, and two angles (a, b) describing the orientation of the

base bond. Second, we assign one dihedral angle for each non-terminal atom (conformational degrees of

freedom; Fig. 1). The structures of rings are assumed constant. Internal interactions between atoms are

divided into Coulombic and van der Waals interactions (Apaydin et al., 2002).

FIG. 1. Degrees of freedom of a hypothetical ligand.
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2.3. Force field around protein

The environment around a protein molecule is modeled by electrostatic and van der Waals interactions.

These interactions generate attractive and repulsive forces, which cause motion of molecules (Apaydin

et al., 2002). The electrostatic part is modeled by the Poisson-Boltzmann Equation (PBE) (Sharp and

Honig, 1990).

r[e(r)r/(r)]� e(r)k2 sinh [/(r)]þ 4pq(r)¼ 0 (1)

where e is dielectric constant, f is electrostatic potential, r is charge density, k is ionic strenght, and r is

location vector in three-dimensional (3D) space.

The model associated with PBE (1) is far more accurate in this case than simple Coulombic models and

incorporates features such as location-dependent dielectric constant (DC). DC varies in space: experi-

mentally determined DC of proteins equals approximately 2, whereas for water DC equals 80 (Sharp and

Honig, 1990). PBE also considers the contribution of mobile ions to the electrostatic potential (the natural

environment for proteins is usually a salty aquatic solution). Protein is considered a rigid body limited by

solvent accessible surface (Connolly, 1983). Analytical solution to the PBE is possible only for systems

with very simple geometries. Since the protein surface contains many clefts and cavities, we use a nu-

merical solution obtained using the finite difference methods. In order to solve PBE on a 3D grid, we use

two computer programs: DelPhi (Rocchia et al., 2001) and APBS (Holst and Saied, 1995).The software is

highly configurable with respect to simulation parameters as well as PBE solver parameters. Van der Walls

interactions are modeled using Lennard-Jones potential (2) calculated for the same 3D grid as for PBE:

Ev¼ e
r
r

� �12

� 2
r
r

� �� �
(2)

where s, collision diameter, is the distance r between atoms for which EvdW equals 0, and e is the depth of

the potential well.

2.4. Modeling the binding site

As a model for ligand-binding site interaction, we use the LUDI model first introduced by Böhm

(1992) and adopted to the form of interaction surfaces by Rarey et al. (1996). The model considers several

possible types of intramolecular interactions, mainly hydrogen bonds or specific hydrophobic contacts.

The interaction itself is modeled by an interaction center and interaction surface located on a sphere

with center in interaction center. The interaction to take place requires interaction center of the ligand

to lie on interaction surface of the protein and vice versa. An interaction surface is modeled as a discrete set

of points in 3D space. Such representation has an advantage of encoding a set of biochemical rules

governing intramolecular interactions in a compact geometric form easy to store and process (for a few

examples of molecular interaction surfaces, see Fig. 2). The data concerning other types of interaction

surfaces can be found in Rarey et al. (1996). We use our own implementation of LUDI and interaction

surfaces in Matlab 7.

2.5. Stochastic Roadmap Simulation

2.5.1. Roadmap construction. Apaydin et al. (2002, 2003) define a roadmap as a discrete repre-

sentation of molecular motion. In this case, each node of a roadmap represents one conformation of a

ligand. Formally, each conformation of n parameters is represented by a vector q. The set of all possible

conformations forms the conformational space C. SRS assumes that the interactions are described by an

energy function E(q), which depends only on the conformation q of the ligand. A pathway in C represents

motion of the ligand around protein. A roadmap may be considered a directed graph G encoding many

pathways in C. Each node of a roadmap is a randomly selected conformation q from C with associated

energy E(q). Each directed edge between two nodes vi and vj has associated weight Pij, which is equal to the

probability of transition between the two nodes. In order to construct a roadmap, the algorithm samples n

conformations, randomly and independently from C. Then for each node vi one finds k nearest neighbors of

that node according to selected metric (i.e., root mean squared deviation [RMSD] or Euclidean). After that,

a transition probability Pij is computed for every pair of neighboring nodes. Pij calculation is based on

difference of energy DEij¼E(vi)�E(vj) between nodes vi and vj according to the formula:
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Pij¼
1

Ni

e� (DEij=kBT), DEij 4 0 (3)

or

Pij¼
1

Ni

, DEij � 0 (4)

where kB is Boltzmann constant, T is system temperature, and Ni is number of neighbors of node. The self-

transition probability is defined as:

Pii¼ 1�
X
j 6¼i

Pij (5)

which ensures that the transition probabilities from any node sum up to 1 (Apaydin et al., 2002, 2003).

2.5.2. Simulation. Although it is possible to perform a simulation on a roadmap, which corresponds to a

discrete version of the standard Monte Carlo method (discretization is defined by a roadmap), Apaydin et al.

(2002) suggest that usually it is not needed to generate individual trajectories on a roadmap but rather to

evaluate a parameter of interest. Time to escape (expressed as a number of simulation steps) from the funnel of

attraction around the protein binding site is given as an example. Apaydin et al. (2002, 2003) propose the escape

time as a measure of affinity of a ligand to a putative binding site. The funnel of attraction Fi is defined as the

set of conformations within 10 Å RMSD of the bound conformation. Expected value of the time to escape can

be easily calculated using the first step analysis technique (Apaydin et al., 2002, 2003), from Markov chain

theory (Taylor and Karlin, 1998) by solving the following system of equations (Apaydin et al., 2002):

si¼ 1þ
X
vi2Fi

Pijsj (6)

where tI is time to escape starting from i–th node, Fi is funnel of attraction around i–th binding site, and vi is

i–th node.

2.5.3. Predicting the putative binding sites. The SRS method is used for prediction of putative

binding sites of a protein. The process consists of several consecutive steps. First, a large number (i.e., 105)

of nodes is sampled at random. Next, the resulting nodes are ordered by increasing energy; then a small part

of lowest energy nodes (in our case, 10 nodes) is selected for the next step, which consists of sampling of

additional nodes in the direct neighborhood of previously selected nodes. Finally, the resulting lowest

energy nodes are filtered by pairwise distance of 10 Å from each other, in order to avoid multiple

representations of the same putative binding site region, and by 5 Å distance from the protein surface

(assuming a binding site should be located close to the protein surface).

FIG. 2. Illustration of the idea of modeling molecular

interactions by interaction surfaces. Examples of inter-

action surfaces. An interaction takes place if an interac-

tion center of a ligand lies on the interaction surface of a

receptor and vice–versa (upper part). Oxygen atom

(lower left) plays the role of an acceptor, and oxygen and

nitrogen (lower right) of donors of hydrogen bond. In-

teraction surfaces are spherical sections with a 1.9 Å

radius.
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3. RESULTS AND DISCUSSION

3.1. Analysis of the results

As a measure of accuracy of a given methodology used for prediction of protein-ligand interactions, RMSD

from the ligand pose determined by x–ray crystallography is often used. By ligand pose, we understand its

conformation (internal degrees of freedom), location, and orientation in 3D space. A method that is able to

yield a solution which is closer than 2 Å RMSD from an experimentally determined pose is considered

FIG. 3. Centers of gravity of solutions obtained by the

simulation for 1tph. Both experimental binding sites

(ball and stick ligands) were predicted by the simula-

tion.

Table 1. Results for the Test Set

PDB ID RMSD 1 Rank RMSD 2 min E PDB ID RMSD 1 Rank RMSD 2 min E

1aaq 1.01 12 14.78 �44.03 1lst 0.88 137 10.86 �65.26

1acj 4.99 3 11.54 �18.11 1mdr 1.19 261 11.39 �17.59

1ack 4.67 60 7.10 �24.35 1mrg 0.70 400 13.02 �37.46

1aha 1.49 96 12.75 �21.77 1mrk 0.77 118 14.30 �39.64

1azm 1.32 91 17.31 �189.31 1mup 2.08 467 6.48 �11.13

1baf 5.41 99 16.72 �41.26 1pbd 2.11 751 11.45 �131.71

1cbs 1.18 55 11.20 �78.26 1poc 2.12 8 16.92 �46.69

1cbx 1.64 56 4.44 �84.30 1snc 1.60 103 15.93 �112.94

1cil 1.12 29 10.43 �214.63 1srj 0.47 226 14.73 �95.99

1coy 1.44 4 2.15 �27.46 1stp 1.55 95 17.37 �22.76

1cps 1.08 46 8.79 �39.46 1tdb 1.68 291 18.40 �164.09

1dbb 1.06 206 19.67 �40.33 1tng 1.25 69 17.23 �13.71

1dbj 1.05 54 16.14 �28.72 1tnl 0.75 157 17.37 �36.95

1dr1 1.03 122 12.26 �51.56 1tph 1.20 267 11.23 �150.81

1dwd 0.83 2 18.35 �24.83 1tpp 1.00 189 10.63 �98.97

1eap 1.81 46 14.86 �106.86 1ulb 0.87 662 11.33 �15.29

1eed 1.37 4 16.97 �27.07 1ukz 0.58 79 13.48 �161.94

1etr 0.66 71 14.95 �109.27 1xid 1.05 729 9.86 �32.43

1fkg 1.94 5 3.63 �30.39 1xie 1.32 205 12.62 �35.76

1fki 0.58 157 9.55 �71.19 2ak3 6.85 73 20.32 �163.77

1ghb 0.64 6 1.39 �20.98 2cgr 1.52 20 21.06 �46.91

1glq 4.19 22 18.92 �18.89 2cmd 0.99 192 18.30 �119.64

1hfc 2.63 730 13.68 �43.62 2ctc 1.32 309 6.98 �92.86

1hsl 1.22 324 11.80 �101.49 2gbp 0.81 146 9.64 �75.78

1hyt 0.98 171 13.49 �87.90 2phh 2.00 486 10.97 �96.61

1icn 1.61 116 15.20 �103.64 2sim 1.83 4 3.43 �48.85

1imb 0.87 629 12.31 �84.96 3cpa 1.49 70 10.86 �101.70

1lah 1.00 171 12.92 �115.91 3ptb 0.98 229 15.13 �20.34

1ldm 0.00 66 17.34 �16.23 3tpi 0.71 98 14.31 �101.80

1lmo 1.14 147 17.33 �27.12 4dfr 1.17 126 16.72 �86.10

RMSD1, a best (closest to experimental) pose RMSD; RMSD2, a lowest energy pose RMSD from the experimental pose; Rank, the

rank of best pose concerning its E (kcal/mol).
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accurate. The solutions obtained using the predictive capabilities of the SRS method in most cases are

concentrated in the parts of protein structure described by x–ray crystallography as the ligand-binding sites. In

51 out of 60 complexes, it was possible to obtain a solution closer than 2 Å RMSD to the experimental result.

Moreover, it was possible without any prior information about location of the binding site, whereas in most of

the current methods, some information about binding site location is always present and the search algorithm

is limited to this location only. The most promising is the fact that the proposed method was able to predict

dual binding sites shown by crystallography for the complexes 1fki, 1glq, 1hsl, 1imb, 1ldm, 1srj, and 1tph

(Fig. 3). Concerning the data presented in Table 1, it was possible to obtain solutions close enough to the

experimental ones, however these are not always the lowest energy solutions. The lowest energy solutions

close to the experimental results were obtained for complexes 1cbx, 1coy, 1fkg, 1ghb, 1mup, 2ctc, and 2sim,

but except for 1ghb they were located much farther than 2 Å RMSD from experimental ligand pose. The

analysis of energy profiles of solutions showed that solutions with very low energy make no more than 10%

of all the solutions, and the solution close to the experimental one must be looked for among solutions of

typical energy. Another observation was that, as expected, for the ligands with negative total charges,

solutions are concentrated in the regions of protein having positive electrostatic potential and vice–versa. An

example of an analysis of a ligand-binding site interaction is shown in Figures 4 and 5 (for a complete set of

figures, please see Supplementary Material, which is available at www.liebertonline.com/cmb). Figure 4

shows the model of the catalytic site of triosephosphate isomerase with a bound inhibitor, in this case

phosphoglycolohydroxamic acid (PGH). It can be seen that PGH forms at least two hydrogen bonds with the

protein (Gly233 and Ser211). However, for the lowest energy pose (Fig. 5), in spite of existing possibilities,

no significant interactions have been detected according to the model.

FIG. 4. Catalytic binding site of 1tph with the best

pose ligand.

FIG. 5. Putative binding site of 1tph with the lowest

energy ligand.
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4. CONCLUSION

The SRS methodology can be regarded as a promising new technique for exploration of protein–ligand

interactions, especially the interaction energy landscape. It was shown that a reasonable solution can be

obtained in most cases, but the underlying energy model must be further improved to serve the purpose of

discrimination among the best results (Table 1). The electrostatic part of the total potential comes from the

linearized PBE solved on a 3D grid using finite-difference method. The model treats solvent molecules

implicitly. The accuracy of such a solution is naturally limited by the resolution of the grid. In addition, the

most significant errors in solution to the PBE may occur at the boundary of regions of high and low

dielectric constant, close to the protein surface. The continuous approximation of the solution to the

linearized PBE, which does not suffer from resolution or boundary problems, can be the Generalized Born

(GB) model (Leach, 2001). Models like PBE or GB do not include the effects of solute-imposed constraints

on solvent molecules organization, better known as the hydrophobic interactions, which usually signifi-

cantly contribute to the binding process. The classical way to account for hydrophobic effect is to add to the

total potential a component dependent on solvent accessible surface area. Another candidate measure of

ligand-binding affinity can be the time to escape from the funnel of attraction. The presented approach uses

a grid representation of protein structure. We also discuss how the problem of flexibility of the protein can

be potentially addressed. By adjusting the maximum energy threshold, we allow for a slight overlap of the

protein and the ligand, which accounts for minor changes in protein conformation upon binding. Such a

procedure is often called the soft docking. Another straightforward solution may assume scanning multiple

grids representing multiple protein structures.
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