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Abstract
Amyloid-beta (Aβ) deposition is a defining feature of Alzheimer’s disease (AD). The toxicity of
Aβ aggregation is thought to contribute to clinical deficits including progressive memory loss and
cognitive dysfunction. Therefore, Aβ peptide has become the focus of many therapeutic
approaches for the treatment of AD due to its central role in the development of neuropathology of
AD. In the past decade, taking the advantage of multiphoton microscopy and molecular probes for
amyloid peptide labeling, the dynamic progression of Aβ aggregation in amyloid plaques and
cerebral amyloid angiopathy has been monitored in real time in transgenic mouse models of AD.
Moreover, amyloid plaque-associated alterations in the brain including dendritic and synaptic
abnormalities, changes of neuronal and astrocytic calcium homeostasis, microglial activation and
recruitment in the plaque location have been extensively studied. These studies provide
remarkable insight to understand the pathogenesis and pathogenicity of amyloid plaques in the
context of AD. The ability to longitudinally image plaques and related structures facilitates the
evaluation of therapeutic approaches targeting toward the clearance of plaques.
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1. Introduction
The definitive diagnosis of Alzheimer’s disease (AD) largely depends on
neuropsychological assessments, which indicate the patients’ clinical symptoms, such as
impairments in memory and cognition as well as post-mortem examination of brain tissue.
Postmortem tissue from afflicted patients exhibits extensive neurofibrillary tangles and Aβ
plaques. Therefore, plaque pathology remains of intrinsic diagnostic importance. Previously,
identification of Aβ, the major component of senile plaques, in brain tissue was limited to
static histological approaches. In the past decade, great efforts have being made to develop
new imaging technologies that are sensitive for in vivo detection of amyloid plaques in the
intact brain. These techniques have revolutionized our understanding of the structure and
function of the living brain and will be extremely valuable for minimally invasive early
diagnosis of AD. The imaging techniques developed to identify AD-associated pathological
structures in the brain include positron emission tomography (PET) (Nordberg, 2008; Noble
and Scarmeas, 2009; Ono, 2009), single photon emission computed tomography (SPECT)
(Friedland et al., 1997; Kung et al., 2002; Ono, 2009), magnetic resonance imaging (MRI)
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(Killiany et al., 2000; Benveniste and Blackband, 2002; Poduslo et al., 2002; Jack et al.,
2005, 2007; Higuchi et al., 2005; Benveniste et al., 2007; Dimou et al., 2009), near-infrared
fluorescence imaging (NIR) (Hintersteiner et al., 2005; Ran et al., 2009; Raymond et al.,
2008), and multiphoton microscopy (Klunk et al., 2002; Bacskai and Hyman, 2002; Bacskai
et al., 2003; Skoch et al., 2005, 2006). The comparison of above techniques for in vivo
imaging of AD-related pathology has been discussed in previous reviews (Bacskai et al.,
2002b; Garcia-Alloza and Bacskai, 2004) and summarized in Table 1.

Among these imaging techniques, multiphoton microscopy has been widely used in pre-
clinical studies in animal models of AD, because it is minimally invasive, provides high
resolution and can be performed repeatedly in the same animal. Multiphoton imaging is
especially suitable for chronic observation of Aβ deposits and surrounding brain structures
in the intact brain of living animals. In this review, we will focus on the use of multiphoton
microscopy for in vivo imaging of mouse models of AD, and the most recent progress made
by using this technique in the field. We will discuss the events correlated with amyloid
deposition including the dendritic and spine abnormalities, alterations of neuronal and
astrocytic calcium homeostasis, microglial recruitment in transgenic models of AD, and how
these studies facilitate the evaluation of efficacy of potential therapeutics.

1.1. Longitudinal imaging of amyloid plaques in intact brain with multiphoton microscopy
Multiphoton microscopy has become a powerful tool for imaging the structure and function
of brain cells in living animals. Imaging studies over intervals ranging from seconds to
months provide significant insights into the structural plasticity of synapses in the intact
brain (Pan and Gan, 2008) and reveal how neuronal connections are altered in animal
models of neurodegeneration, acute brain injury, and cerebrovascular disease.

Multiphoton microscopy, a descendent of confocal microscopy, uses the raster scanning of a
point source of laser excitation to excite fluorescent molecules. In contrast to confocal
microscopy, which uses continuous wave laser excitation, multiphoton microscopy uses
pulsed laser excitation to deliver high photon fluxes, which enable the simultaneous
absorption of two long wavelength low energy photons. With this strategy many advantages
are achieved over confocal microscopy and single photon excitation. Perhaps most
important is that only fluorochromes at the focal point receive sufficient energy for two
photon excitation. In this manner fluorochromes outside of the focal plane are not excited
and therefore are not subject to photobleaching and associated cellular photodamage.
Because low energy photons are delivered multiphoton microscopy is associated with less
tissue damage, and because near-infrared excitation is delivered it is possible to image
relatively deeper in the brain in comparison with single photon excitation. Of course in
contrast to PET or MRI imaging, multiphoton microscopy still detects fluorescence
relatively superficially within about 800 μm of the cortical surface. However, associated
with this imaging is extremely high resolution of ~ 1 μm. Consequently, multiphoton
microscopy is able to reliably image dendritic spines, the postsynaptic apparatus of
excitatory synapses, dynamic processes such as Ca2+ transients as well as the appearance
and growth of amyloid plaques.

Although amyloid deposits can exhibit intrinsic auto-fluorescence, high-resolution imaging
is facilitated by the addition of amyloid specific fluorescent labels. Compounds that bind to
amyloid deposits with high specificity have been modified to be suitable for in vivo imaging.
The properties of such agents include high specificity for amyloid and their ability to cross
the blood brain barrier (BBB). Comparison of agents used for in vivo imaging is described in
Table 2 (Vassar and Culling, 1959; Elghetany and Saleem, 1988; Duyckaerts et al., 2009).
Among these compounds, methoxy-X04, which is a Congo-red derivative, has been widely
used for in vivo imaging of amyloid plaques due to its high affinity and specificity for the
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amyloid protein and ability to cross the BBB (Klunk et al., 2002). The specificity of
methoxy-X04 labeling of dense-core plaques has been evaluated using counterstaining of
thioflavine-S and immunohistochemistry with an anti-Aβ antibody (Klunk et al., 2002).
Post-mortem histochemistry has shown a one-to-one correspondence between fluorescent
structures stained by systemically administered methoxy-X04 and structures labeled with
thioflavine-S. Immunohisochemistry with an anti-Aβ antibody (BAM10) has also confirmed
that methoxy-X04 stained immunoreactive plaques and amyloid angiopathy throughout the
brain. The methoxy-X04 fluorescence is detectable for up to 3 days after a single
administration (Bacskai et al., 2002b), and can be reapplied for serial imaging studies. Using
multiphoton microscopy, methoxy-X04-labeled plaques can be visualized in four
dimensions, by volume and over time in transgenic mouse models of AD. One of the
strengths of multiphoton microscopy is the ability to repeatedly image the same brain region
in the same animal. To facilitate the ability to identify the same three-dimensional voxel
(volumetric pixel), one can use a second label which identifies the vasculature thereby
providing landmark for reference. To achieve this objective a fluorescent dye conjugated to
dextran is injected into the tail vein. Fig. 1 presents a representative image of methoxy-X04-
labeled plaques and rhodamine-dextran labeled vasculature.

Because multiphoton microscopy can be used to simultaneously detect multiple fluorescent
probes, it is feasible to track neuronal and glial structures together with plaques. For
example, by using viral-mediated green fluorescent protein (GFP) expression in cortical
neurons in a transgenic model of AD (Spires et al., 2005) or by crossing a transgenic model
of AD with another mouse lines containing fluorescent reporter (Tsai et al., 2004; Meyer-
Luehmann et al., 2008; Bolmont et al., 2008), it is possible to image dendrites and spines as
well as microglia and plaques. The thy1-YFP trans-genic mouse expresses yellow
fluorescent protein (YFP) at high levels in the dendritic and axonal structures in motor and
sensory neurons, as well as in subsets of central neurons, for instance, layer 5 pyramidal
neurons in the cortex. Crossing thy1-YFP mice with transgenic model of AD enables
monitoring morphological alternations of axon and dendrite in the context of AD (Tsai et al.,
2004). Transgenic mice with fluorescently labeled microglia have been generated by
expressing GFP in microglia under the control of different genetic loci specific to microglia
such as Iba-1 and Cx3cr1 (encoding the chemokine-fractalkine receptor). Crossing
transgenic Iba1-GFP mouse (Bolmont et al., 2008) or Cx3cr1GFP+/− mouse (Davalos et al.,
2005; Koenigsknecht-Talboo et al., 2008) with mouse model of AD enables high-resolution
visualization and longitudinal assessment of dynamic interaction of microglia and amyloid
plaques.

1.2. Using multiphoton microscopy to characterize kinetics of cerebral amyloid angiopathy
(CAA) and senile plaque progression in transgenic mouse model of AD

Extracellular aggregation of Aβ peptide results in widespread individual amyloid plaques
and cerebral amyloid angiopathy (CAA). Amyloid plaques have been reported to be toxic to
dendrites and disrupt synaptic transmission underlying neuronal dysfunction in the brain of
AD (Knowles et al., 1999; Lacor et al., 2007; Meyer-Luehmann et al., 2008). CAA is
defined as the aggregation of Aβ peptide in cerebral vessel walls and has deleterious effects
causing loss of smooth muscle cells (Mandybur, 1975; Vinters, 1987), disruption of vessels
(Greenberg, 2002), and eventually parenchymal hemorrhage (Kalyan-Raman and Kalyan-
Raman, 1984; Gilles et al., 1984; Mott and Hulette, 2005). Transgenic mouse models of AD
develop both plaques and CAA in a progressive and age-dependent manner Fig. 2.
Traditional studies that examine the amyloid deposition have focused on the examination of
histological sections from the animals at a single age. This approach has been limited by an
inability to monitor the sequential events during the development of amyloid plaques and
CAA, therefore little is known about when and how aggregation initiates and the factors that
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influence the dynamics of their formation and growth in vivo. Multiphoton imaging provides
the opportunity to define the subtleties of the initiation and progression of amyloid
accumulation in the intact brain in living animals.

A recent study using serial in vivo imaging through a thinned-skull cranial window has
characterized the appearance and growth of amyloid plaques in APP/PS1 transgenic mice
over intervals ranging from one week to 3 months (Yan et al., 2009). Although repeated
identification of the same three-dimensional location in the brain can be difficult, this
approach has shown that APP/PS1 strain exhibits faster growth of plaques in 6-month-old
compared with 10-month-old mice. The growth rate of existing plaques is size-related;
smaller plaques exhibit a more rapid growth relative to larger plaques. In a separate study
Meyer-Luehmann et al. (2008) have reported the rapid formation of new amyloid plaques
within 24 h. Once a plaque was formed they then observed limited further growth. It is
important to note that different procedures were used in these two studies. Because of the
limited depth resolution of multiphoton microscopy it is necessary to reduce the pathlength
between the microscope objective and the cortical region that is to be imaged. Two
approaches are used: either a region of skull is removed and replaced with a glass coverslip
window, or the skull is thinned to about 25 μm at which point it acts as a window into the
cortex. Clearly there are concerns with each approach: in one the skull is removed but in the
other great care has to be taken to prevent heating of the cortex during the process of skull
thinning. This issue has been recently addressed by assessing the cellular ultrastructure using
electron micrographs and quantifying the expression levels of markers of injury/
inflammation between operated and non-operated hemispheres in perfusion-fixed brains
(Holtmaat et al., 2009). Although Xu et al. reported that open-skull window preparations led
to extensive glial activation, significantly higher turnover of dendritic spines and substantial
loss of dendritic spines (Xu et al., 2007), more evidences have shown indistinguishable
structural plasticity with the two types of preparation and that upregulation of glial cell
protein markers under cranial windows is mild and transient.

Using fixed intact whole brains, the spatial and temporal distribution of CAA in
leptomeningeal vessels has been studied in multiple transgenic models including Tg2576,
PS1/Tg2576, PDAPP and TgCRND8, suggesting a consistent and stereotyped age-
dependent spatial distribution of CAA (Domnitz et al., 2005). With multiphoton imaging via
cranial windows, this study has been extended through serial observations over several
weeks of individual leptomeningeal arterial segments in living Tg2576 mice (Robbins et al.,
2006). The earliest appearance of CAA in leptomeningeal arteries typically begins by 9
month of age and process eventually saturated in mice older than 16 months, in which the
CAA burden reached upwards of 75% of vasculature. The initial CAA exhibits band-like
amyloid deposits and then it starts propagating primarily from existing deposits, rather than
through initiation of new deposits on the vessel, which is a distinct pattern of kinetics from
that of accumulation of amyloid plaques. CAA progression in APPswe/PS1dE9 mice has the
same propagation model as described in Tg2576 but the overall rate of progression is slower
(Garcia-Alloza et al., 2006).

1.3. Using multiphoton microscopy to study the local toxicity of amyloid plaques
1.3.1. Dendritic and spine abnormalities nearby amyloid plaques—Dendritic
spines are essential for excitatory synaptic transmission and spine remodeling is thought to
contribute to synaptic plasticity and represent the sub-cellular basis for learning and memory
(Bhatt et al., 2009). Thus a disturbance of synaptic signaling and loss or alteration of
dendritic spines may contribute to significant disruption of neuronal circuits, which
eventually results in severe impairment in cognition and memory. In fact, a loss of spines
has been described in patients with AD (Scheff and Price, 1993) and post-mortem
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examination also suggests that the extent of spine loss is strongly correlated with the degree
of clinical impairment in the brain of AD (Dekosky and Scheff, 1990; Terry et al., 1991;
Selkoe, 2002).

In transgenic animal models of AD, similar dendritic abnormalities including loss of spines,
branch disruption, dendritic curvature, and varicosity formation, have also been observed
(Grutzendler et al., 2007; Spires et al., 2005). It has been suggested that amyloid deposits
and their surrounding microenviroment are toxic to dendrites and lead to the loss and
alteration of spines and deficits in synaptic function. Such alteration is thought to be
responsible for cognitive deficits in AD pathogenesis before or even in the absence of
neuronal loss (Tsai et al., 2004).

Gan and coworkers, using time-lapse in vivo imaging in PSAPP/YFP mice, have revealed
extensive formation and elimination of dendritic spines in the vicinity of amyloid deposits
over days to weeks, suggesting amyloid deposits induce progressive remodeling of dendritic
structures (Tsai et al., 2004). Dendrites passing through or nearby amyloid deposits develop
prominent varicosities and eventually exhibit a net loss of spines due to the imbalance rate
of spine formation and elimination (Fig. 3). Similar spine dynamics has also been observed
in Tg2576 mice, in which neuronal dendrites are visualized with virus derived GFP and
exhibit increased elimination but unchanged spine formation after extensive plaque
deposition (Spires-Jones et al., 2007). In addition, it has been suggested that distance from
the plaque correlates with increasing spine density (Spires et al., 2005). Dendrites within 15
μm of the plaque edge had significantly lower spine density than those farther away and a
profound decrement in spine density extends about 20 μm from plaques edges, indicating a
local synaptotoxic effect of amyloid plaques (Fig. 4). Dendrites surrounding amyloid
deposits also exhibit curved trajectories and a smaller dendritic diameter (Spires-Jones et al.,
2007; Tsai et al., 2004).

The above in vivo observations of plaque-related spine loss have also been verified recently
using an advanced histological preparation called array tomography, a technique that
combines ultrathin sectioning of tissue with immunofluorescence (Koffie et al., 2009). Array
tomography circumvents the limit of the z-resolution of multiphoton microscopy and allows
the detection of synaptic elements and quantitative assessment of plaques-associated
excitatory synapse loss. This study has shown that dense-core plaques are surrounded by a
halo of oliogmeric Aβ which interacts with a subset of postsynaptic densities. Moreover, it
has been found that the density of postsynaptic densities (PSDs) decreases significantly in
the halo of oligomeric abeta surrounding plaques and correlates negatively with the
proportion of oliogmeric Aβ-positive PSDs, suggesting that oligomeric Aβ surrounding
plaques contributes to synapse loss in a mouse model of AD.

Recently, sequentially in vivo imaging on APPswe/PS1d9YFP transgenic mice provides
insights into the temporal relation between plaque formation and the changes in local
neuritic morphology and determines the effects of newly formed dense-core plaques on the
microarchitecture of the brain (Meyer-Luehmann et al., 2008). This study, which shows that
plaques can form extremely rapidly, also showed that dendrites that were morphologically
normal the day prior to amyloid plaque formation exhibited rapid alterations on the day of
appearance of a new plaque indicating that dendritic deformation is a secondaryeffect of
plaque development. This supports the hypothesis that amyloid deposits precede and leads to
neuronal dysfunction causing cognitive and memory deficits in AD.

1.3.2. In vivo calcium imaging in mouse models of AD—Calcium signaling is
known to be important for multiple neuronal functions including neuronal excitability,
synaptic plasticity and cell survival (Berridge et al., 2003; Mattson and Chan, 2003a).
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Alterations in calcium homeostasis have been reported to be one of the earliest molecular
changes that occur in AD patients (Khachaturian, 1994). Animal studies have also shown
that Aβ can disrupt neuronal Ca2+ homeostasis (Mattson et al., 1992, 1993) and affect
astrocytic calcium signaling (Mattson and Chan, 2003b; Takano et al., 2007), for instance,
Aβ-associated excitotoxicity by inducing influx of extracellular Ca2+ into the neuronal
cytoplasm (Mattson et al., 1992). This view has been further supported by the observations
that Aβ peptides impair membrane ATPase activities leading to Ca2+ destabilization (Mark
et al., 1995) and that Aβ-mediated disruption of lipid membranes might increase membrane
Ca2+ permeability (Kayed et al., 2004; Sokolov et al., 2006).

Two recent studies using multiphoton imaging to monitor neuronal calcium homeostasis in
AD transgenic models have also supported the view that Aβ-induced calcium dysfunction
may contribute to neuropathologic features of AD. By combining genetically-encoded
calcium indicator and multiphoton imaging, one study measured neuronal calcium in
individual neurites and spines in APP mice. This study shows overloaded calcium in
neurites in the presence of amyloid plaques and suggests that amyloid plaques impair
neuritic calcium homeostasis in vivo, leading to structural and functional disruption of the
neuronal network (Kuchibhotla et al., 2008). Another recent study, using in vivo calcium
imaging in APP23 × PS45 mice, has shown a redistribution of silent and hyperactive
neurons in the cortex of AD brain, in which hyperactive neurons are exclusively near the
amyloid plaques and display enhanced frequency of spontaneous calcium transient (Busche
et al., 2008). Authors suggested that this hyperactivity is caused by impaired synaptic
inhibition, rather than intracellular Ca2+ release from store signaling or intrinsic firing.

Recent studies have provided compelling evidence that astrocytes are vital for brain
functions. In AD astrocytes become reactive and surround plaques and might play a role in
Aβ deposition and clearance (Wegiel et al., 2001; Nagele et al., 2004). Given the significant
impact of Aβ deposits on nearby neuronal calcium homeostasis, it is possible that astrocytic
calcium signaling would also be perturbed and might contribute to neuronal dysfunction. In
the context of AD, there are indications that astrocytic Ca2+ homeostasis is disturbed by the
presence of Aβ peptide. For example, the administration of Aβ peptides to co-culture of
hippocampal neurons and astrocytes causes abnormal Ca2+ transients and mitochondrial
depolarization in astrocytes before any impairment is visible in neurons (Abramov et al.,
2004a, 2004b).

Astrocytic calcium signaling which plays an important role in regulating vascular tone
(Takano et al., 2006; Zonta et al., 2003; Mulligan and MacVicar, 2004) is perturbed in
mouse models of AD. Multiphoton imaging has demonstrated an increased frequency of
spontaneous astrocytic Ca2+ associated with oscillatory changes in arteriole diameter and
limited vasodilatation in early stages of AD (Takano et al., 2007), suggesting that abnormal
astrocytic calcium signaling may contribute to vascular instability in AD. A recent study in
APPswe/PS1E9 mice has shown synchronized astrocytic intracellular calcium waves which
initiate from astrocytes near amyloid plaque and spread radially (Kuchibhotla et al., 2009).
Sustained astrocytic Ca2+ oscillations following status epilepticus lead to neuronal death
(Ding et al., 2007) raising the possibility that synchronous astrocytic calcium signals
triggered near amyloid plaques may be deleterious to neuronal function.

1.3.3. In vivo imaging of microglia surrounding amyloid plaque—Microglial
activation in the vicinity of the amyloid plaques is an important pathogenic component in
AD and may exhibit both neurotoxic and neuroprotective actions including the phagocytosis
and clearance of amyloid deposits (D’Andrea et al., 2004). Microglial activation is dynamic
and context-dependent. Time-lapse multiphoton imaging provides a minimally invasive tool
to study the biology of this important glial cell in vivo. In the brain of normal mouse, resting
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microglial processes can extend and retract rapidly (Nimmerjahn et al., 2005) and exhibit
directed extension to regions of cellular damage and in response to gradients of ATP, which
is presumably released from damaged cells (Davalos et al., 2005). Using AD transgenic
mice with GFP-labeled microglia enables longitudinal assessment of microglial recruitment
to regions of amyloid plaques and investigation of microglia–amyloid interactions in vivo.
Longitudinal imaging has shown that amyloid plaques develop surprisingly rapidly and
microglia become reactive and are attracted to the sites of plaque formation within 24 h
(Meyer-Luehmann et al., 2008).

Similar experiments were conducted by Bolmont et al. using APP/PS1 mice expressing GFP
at Iba-1 locus (a calcium binding protein expressed in microglia). In vivo imaging confirmed
that microglia responded rapidly to plaque formation by extending processes and migrating
toward plaques (Bolmont et al., 2008). The number of microglia associated with each plaque
increased at a rate of three per month independent of the size of the plaques. Interestingly,
the size of the plaque influenced the volume of each microglial cell, with larger plaques
associated with larger microglial cells. Further, the authors observed that the amyloid
binding dye often exhibited a punctuate pattern within plaque-associated microglia in vivo
that co-localized in post-mortem tissues with Aβ and microglial lysozymes, suggesting an
ability of microglial cells to phagocytose Aβ in vivo (Bolmont et al., 2008).

1.4. Facilitate evaluation of the efficacy of therapeutics aimed at removing amyloid plaque
One therapeutic approach that has attracted significant attention is anti-Aβ immunotherapy.
Immunization with Aβ (active immunization) or treatment with anti-Aβ antibodies (passive
immunization) have been demonstrated to effectively reduce amyloid burden in transgenic
AD mouse models (Schenk et al., 1999) and improve leaning and memory (Morgan et al.,
2000; Janus et al., 2000). In contrast with active immunization, passive immunization by
direct injection of anti-Aβ antibodies bypasses the requirement for an immune response to
generate the antibodies (Bard et al., 2000). In the past ten years, the therapeutic effect of
direct application of anti-Aβ antibodies to the brain in plaque clearance and other aspects of
neuropathology such as neuritic abnormality and spine plasticity have been extensively
studied, especially using multiphoton microscopy on transgenic animal models.

The first effective passive immunization in mouse model of AD was reported in 2000, in
which peripheral administrations of 3D6 (IgG2bAβ1–15) or 10D5 (IgG1Aβ3–7) antibodies
significantly reduce amyloid deposits in PDAPP mice (Bard et al., 2000). Following this
study, taking advantage of multiphoton in vivo imaging, a remarkable clearance of
thioflavine-S stained amyloid deposits were visualized within 3 days after direct application
of antibodies through the craniotomy window (Bacskai et al., 2001). Furthermore, using the
same technique it has been reported that topical applications of 10D5 or 3D6 to the brain of
aged Tg2576 or PDAPP clear half of the diffuse amyloid deposits and reduce the size of
dense-core deposits by 30% within 3 days (Bacskai et al., 2002a). In addition to amyloid
plaques, cerebral amyloid angiopathy (CAA), an accumulation of Aβ peptide in the vessel
wall of arteries, has also been shown to be effectively cleared with chronic administration of
antibodies over two weeks using quantitative in vivo imaging (Prada et al., 2007).

It has been suggested that one of the beneficial actions of antibody administration is that
neutralizing synaptotoxic soluble Aβ can prevent Aβ-related inhibition of LTP, which is
directly associated with learning and memory (Klyubin et al., 2005). Therefore it is
extremely intriguing to know the effect of antibody treatment on the dendritic morphology
and plasticity in the AD brain. In vivo imaging of PDAPP/Thy1-YFP mice has shown the
morphological recovery of amyloid-associated neuritic dystrophy 3 days after anti-Aβ
antibody (10D5) treatment (Brendza et al., 2005). More recently, the acute effects of
immunotherapy on neurite morphology have been also studied with in vivo imaging. This
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study suggests a rapid therapeutic effect on dendritic spine plasticity within 1 h of 3D6
antibody treatment, which is characterized by a small but significant increase in dendritic
spine formation distant from plaques (Spires-Jones et al., 2009).

2. Summary
The use of multiphoton in vivo imaging has become an invaluable tool not only to
investigate amyloid dynamics in AD but also to study cellular interactions with amyloid
aggregation, which may help us understand this disease and facilitate the development of
new therapeutic approaches.
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Fig. 1.
Methoxy-X04 labeled amyloid plaques and cerebral angiopathy in the barrel cortex of a
PS1/APP mouse. Representative Z-series maximum intensity projection of methoxy-X04
labeled amyloid plaques and cerebral amyloid angiopathy in low (a) and high (b)
magnification images. Amyloid deposits are labeled with methoxy-X04 (green) and cerebral
vasculatures are labeled with rhodamine-dextran (red).
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Fig. 2.
Age-dependent aggregation of CAA in a vessel segment. Repeated In vivo imaging of a PS1/
APP mouse at two weeks intervals from 2 to 6-months of age. Serial imaging of the same
volume in barrel cortex exhibited a progressive increase in cerebral amyloid angiopathy
(labeled with methoxy-X04, green) in a typical vessel segment which was identified with
rhodamine-dextran (red).
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Fig. 3.
Axon and dendritic abnormalities near amyloid plaques. In vivo time-lapse imaging showed
GFP-labeled cortical dendrites and axons near an amyloid plaque in the cortex of a PSAPP/
YFP mouse at 6 month of age. Although the majority of spines (arrowheads) and varicosities
(asterisks) were stable over 3 days, some structural changes (such as spine loss (arrows) and
varicosity formation (double arrows)) did occur. (This figure is reproduced with permission
from Tsai et al., 2004).
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Fig. 4.
Amyloid plaques alter the morphology and trajectory of neurites in vivo. (a and b) Low
magnification images exhibit an overview GFP-AAV injection site containing GFP-filled
neurites (green), Texas red-labeled vasculature (red), and methoxy-X04 labeled amyloid
deposition (blue). (c and d) In higher magnification images, arrows indicate amyloid-
associated dystrophic neurites, showing trajectory curves around plaques. (e and f) Three-
dimensional reconstructions of plaques and neurites clearly show this curvature around
plaques and highlight dystrophies near plaques (arrows). (This figure is reproduced with
permission from Spires et al., 2005).
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Table 2

Agents for multiphoton in vivo imaging of amyloid.

Probes Binding site Cross BBB Administration Labeling

Thioflavin–S Pleated beta-sheet protein
structure

No Topically Dense core and CAA (Vassar and Culling, 1959;
Elghetany and Saleem, 1988)

Thiazine red Pleated beta-sheet protein
structure

No Topically Dense core and CAA (Bacskai et al., 2003)

Methoxy-XO4 Pleated beta-sheet protein
structure

Yes i.p. and i.v. Dense core and CAA (Klunk et al., 2002)

Pittsburg Compound
B (PIB)

Pleated beta-sheet protein
structure

Yes i.p. and i.v. Dense core and CAA (Bacskai et al., 2003)

Antibodies Epitope No Topically Dense core, CAA and diffuse plaques (Elghetany
and Saleem, 1988; Duyckaerts et al., 2009)
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