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Abstract
We consider the recent history functional linear models, relating a longitudinal response to a
longitudinal predictor where the predictor process only in a sliding window into the recent past has
an effect on the response value at the current time. We propose an estimation procedure for recent
history functional linear models that is geared towards sparse longitudinal data, where the
observation times across subjects are irregular and total number of measurements per subject is
small. The proposed estimation procedure builds upon recent developments in literature for
estimation of functional linear models with sparse data and utilizes connections between the recent
history functional linear models and varying coefficient models. We establish uniform consistency
of the proposed estimators, propose prediction of the response trajectories and derive their
asymptotic distribution leading to asymptotic point-wise confidence bands. We include a real data
application and simulation studies to demonstrate the efficacy of the proposed methodology.
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1. Introduction
We address estimation in regression modeling of sparse longitudinal data. Sparse designs
where the repeated measurements taken on each subject are irregular and the number of
repetitions per subject is small, is encountered commonly in applications. An example is the
longitudinal primary biliary liver cirrhosis data collected by the Mayo Clinic (see Appendix
D of Fleming and Harrington, 1991). Due to missed visits the data is sparse and highly
irregular where each patient visited the clinic at different times. We consider estimation in
regression models where the sparse longitudinal predictor process only from the recent past
has an effect on the sparse response trajectory.

Consider the commonly used functional linear model to relate a response trajectory to a
predictor trajectory

(1)

first introduced by Ramsay and Dalzell (1991). For excellent reviews of functional data
analysis, see Ramsay and Silverman (2002; 2005), Rice (2004) and Müller (2005). In (1),
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X(s) is the random predictor process, Y(t) is the random response process, and ε(t) is the
mean zero error process with covariance function Γε(t, t′), t, t′ ∈ [0, T]. When the predictor
and response processes are observed over the same time interval, i.e. Ωt = [0, T], the entire
predictor trajectory is assumed to affect the current value of the response process at time t in
the functional linear model. This assumption may not be feasible in many applications and
variations of the functional linear model have been considered corresponding to different
choices of the support Ωt. A more suitable choice of Ωt for predictions was proposed by
Malfait and Ramsay (2003) for their recently proposed historical functional linear model,
where only the past of the predictor process is involved in predicting the current response.
Another special case which had wide applications over the past fifteen years is the varying
coefficient model (Cleveland et al., 1992; Hastie and Tibshirani, 1993) with point-wise
support where only the current value of the predictor process is assumed to have an effect on
the current value of the response process.

An intermediate model considered in this paper between the functional linear model with
global support and the varying coefficient model with point-wise support is the recent
history functional linear model of Kim et al. (2009)

(2)

where the two dimensional regression function β(s, t) of the functional linear model is

approximated by the product form  of one dimensional functions. In (2), the
predictor process from the recent past in a sliding window is assumed to affect the current
response value, i.e. Ωt = [t−δ1, t−δ2] for 0 < δ2 < δ1 < T. The two delay parameters help
define the sliding window support where δ2 denotes the delay for the predictor process to
start affecting the response, and δ1 is the delay beyond which the predictor process has no
effect. Other regression models have also been proposed with a sliding window support such
as the generalized varying coefficient model of Şentürk and Müller (2008) and the
functional varying coefficient model of Şentürk and Müller (2010), where authors argue that
the sliding support is useful in many applications where the response is affected by recent
trends in the predictor process. Kim et al. (2009) consider the regression of river flow on
rainfall as a motivating example where the river flow level would depend on the recent
rainfall but not current rainfall or rainfall from distant past.

Kim et al. (2009) propose an estimation procedure for the recent history functional linear
model for densely recorded functional data. In this paper, we propose a new estimation
procedure for the recent history functional linear model specifically tailored for sparse
longitudinal data. Sparsity is a real challenge in modeling longitudinal data, since
nonparametric methods cannot feasibly explain a single trajectory for sparse designs. In
addition, while standard semiparametric estimation approaches to longitudinal data have
been studied extensively for irregular designs, they are not particularly designed to address
sparsity issues and can yield inconsistent results for sparse noise contaminated longitudinal
data.

Most recently there have been a number of proposals in the literature to broaden the reach of
functional data analysis in general and functional linear models in specific, to include
sparsely observed longitudinal data. Shi et al. (1996) proposed fixed and random effects
which are linear combinations of B-splines, James et al. (2000) proposed an estimation
method based on reduced rank mixed-effect model emphasizing the sparse data case among
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others. Yao et al. (2005a) proposed an estimation procedure for the functional linear model
with Ωt = [0, T], which is applicable to sparse longitudinal data based on functional principal
component analysis. The main idea is that information across all the subjects can still be
pooled effectively even for sparse data in the estimation of mean functions and covariance
surfaces of the random processes, which are needed for functional principle components
analysis.

The challenge of estimation based on sparse longitudinal data is intensified when one
considers sliding window supports for the regression function such as the support [t − δ1, t −
δ2] of the recent history functional linear model. That is even if the entire observed process
is not very sparse, observations in the sliding window can easily get sparse fast as the
window size decreases. We address this challenge by drawing connections between the
proposed recent history functional linear model and the varying coefficient model and
basing the estimation algorithm mainly on the estimation of auto-and cross-covariances
following the proposals of Yao et al. (2005a). More specifically, note that for a set of K
predetermined basis functions φk(s), the recent history functional linear model in (2) reduces
to a multiple varying coefficient model with K induced predictors ∫Ωt X(s)φk(s)ds. The
unknown varying coefficient functions bk(t) are then targeted based on a set of covariance
representations which can be estimated efficiently based on sparse longitudinal data, pooling
information across subjects.

The paper is organized as follows. In Section 2, we introduce the recent history functional
linear model. The proposed estimation method is outlined and uniform consistency of the
proposed estimators are established in Section 3. The prediction of the response trajectories
is also proposed in Section 3 utilizing Gaussian assumptions, where asymptotic distributions
are derived leading to point-wise asymptotic confidence bands. In Section 4, we discuss
numerical issues in implementation along with the choice of model parameters. We study
the finite sample properties of the proposed estimators through simulations given in Section
5. We apply the proposed method to a primary biliary liver cirrhosis longitudinal data in
Section 6, to study the dynamic relationship between serum albumin concentration and
prothrombin time. Concluding remarks are given in Section 7 and technical details are
assembled in an Appendix.

2. Data and model
Taking a functional approach we view the observed longitudinal data as noise contaminated
realizations of a random process that produces smooth trajectories. We will reflect sparsity
in the following representation through random number of repeated measurements per each
subject at random time points. Let (Xi, Yi), i = 1, …, n, be the pairs of square integrable
predictor and response trajectories, which are realizations of the smooth random processes
(X, Y), defined on a finite and closed interval,  = [0, T]. The smooth random processes
have unknown smooth mean functions μX(t) = EX(t) and μY(t) = EY(t), and auto-covariance
functions GX(s, t) = cov{X(s), X(t)} and GY(s, t) = cov{Y(s), Y(t)}. Throughout this paper, s
and t refer to time indices defined on . The observed trajectories of the ith subject, Xij =
X(Tij) + εij, Yij = Y(Tij) + eij, j = 1, …, Ni are noise contaminated realizations of the random
processes X and Y measured at i.i.d. random time points, Tij. Here, εij and eij denote the
additive i.i.d. zero mean finite variance measurement errors of the predictor and the response
trajectories, respectively. The number of random time points per subject, Ni, are i.i.d.
realizations of the random variable N where P(N > 1) > 0.

Under mild conditions, auto-covariance functions defined above have orthogonal expansions
in terms of eigenfunctions ψm(·) and ϕp(·) with nonincreasing eigenvalues γm and ηp,
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(3)

Then, based on Karhunen-Loéve expansion (Ash and Gardner, 1975), the observations Xij
and Yij can be represented as

(4)

where ζim and ξik denote the mean zero functional principal component scores with the

second moments equal to the corresponding eigenvalues γm and ηp for  and

.

Let Δt denote the interval, [t − δ1, t − δ2], where 0 < δ2 < δ1 < T, t ∈ [δ1, T], and let Δ denote
the interval [0, δ1 − δ2]. Note that the first lag δ1 is the time point beyond which the
predictor function does not have an effect on the response function and the second lag δ2
allows a delay for the predictor function to start having an effect on the response function.

The recent history functional linear model where , can be
given as

(5)

for K predetermined basis functions φk(t) defined on Δ. In (5) X̃k(t) = ∫Δt X(s)φk(s − t +
δ1)ds, k = 1, …, K, are the induced covariates and bk(t), k = 1, …, K, are the unknown time
varying coefficient functions of interest. Defining X̃(t) = [X̃1(t), …, X̃K(t)]T and b(t) = [b1(t),
…, bK(t)]T, the model in (5) can be rewritten in vector form as E{Y(t)|X(s), s ∈ Δt} = α(t) +
bT(t)X̃(t).

In (5), K controls the resolution of the fit and should be chosen based on the data. Depending
on the specific features of the regression function, various basis functions such as Fourier,
truncated power, eigen and B-spline basis can be used in (5). Because of their fast
computation and good properties, we will use B-spline basis in the following calculations.
For more discussions on the B-spline basis, see Fan and Gijbels (1996) and Ramsay and
Silverman (2005).

3. Estimation and asymptotic properties
3.1. Proposed estimation algorithm

In the proposed estimation procedure, we utilize connections of the proposed model to
varying coefficient models. There are three main estimation methods for varying coefficient
models proposed in the literature: local polynomial smoothing (Wu et al., 1998; Hoover et
al., 1998; Fan and Zhang, 2000; 2008; Kauermann and Tut, 1999), polynomial spline
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(Huang et al., 2002; 2004; Huang and Shen, 2004) and smoothing spline (Hastie and Tib-
shirani, 1993; Hoover et al., 1998; Chiang et al., 2001).

Note that the previously proposed methods cannot be directly employed here, since the
induced covariates, X̃k(t)’s in (5) cannot be estimated well for sparse designs due to the
difficulty in numerically approximating the integral in their definition. In fact, the induced
covariates may not be well approximated not only in sparse designs but also in longitudinal
data in general, since the integration involved is over a narrow window into the past, where
there may not be enough points. We propose to base the estimation on the covariance
structure to address this difficulty, which will be shown to adjust for measurement error in
predictors as well.

Let X̃ik(t) denote observation of the kth covariate in (5) for the ith subject taken at time point
t, i.e., X̃ik(t) = ∫Δt Xi(s)φk(s)ds, and X̃i(t) = [X̃i1(t), …, X̃iK(t)]T. The proposed estimation rests
on the following equality that follows from (5)

(6)

where θ(t) is the K × 1 vector with the kth element equal to cov{X̃k(t), Y(t)}, ν(t) is the K × K
matrix with the (k, ℓ)th element equal to cov{X̃k(t), X̃ℓ(t)} and b(t) is the K × 1 vector of K
varying coefficient functions. The elements νkℓ(t) and θk(t) can be given in terms of auto-
and cross-covariance functions of the predictor and response processes as

(7)

and

(8)

where GXY(s, t) = cov{X(s), Y(t)}. The estimation of the components given in (7) and (8)
begins with estimation of the mean functions, μX(t) and μY(t), via locally smoothing the
aggregated data (Tij, Xij) and (Tij, Yij), i = 1, …, n, j = 1, …, Ni. For the estimation of the
auto- and cross-covariance functions, we apply two-dimensional local linear smoothing to
the raw auto-and cross-covariances defined as GX,i(Tij, Tij′) = {Xij − μ̂X(Tij)}{Xij′ − μ̂X(Tij′)},
GXY,i(Tij, Tij′) = {Xij− μ̂X(Tij)}{Yij′ − μ̂Y(Tij′)}, i = 1, …, n, j, j′ = 1, …, Ni, respectively. To
obtain smooth estimates, the raw covariances are fed into a two dimensional local smoothing
algorithm where special care needs to be taken in estimating the auto-covariance surface.
Since the only terms in the raw auto-covaraince matrix that are perturbed by the additive
measurement error on the predictors are along the diagonal, we remove the diagonal before
the application of two dimensional smoothing, following (Yao et al., 2005a). Explicit forms
of mean and covariance function estimators are given in Appendix C. The smoothing
parameters used in the one and two dimensional smoothing procedures for the estimation of
the mean functions and covariance surfaces respectively, can be chosen with respect to one-
curve-leave-out cross-validation (Rice and Silverman, 1991). For computational efficiency
we utilize generalized cross-validation (Liu and Müller, 2008) in simulation studies and data
analysis. Plugging the covariance function estimators into equations (7) and (8), and
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performing numerical integrations, we can obtain the estimators of θ(t) and ν(t), μ̂(t) and ν̂
(t), respectively. Then the estimator for varying coefficient vector, b(t), is defined as

leading to the final estimator  for the regression surface

.

There are two major advantages of the proposed estimation procedure. The first advantage is
that, since it depends on estimation of the mean functions and covariance surfaces which are
estimated from the entire data, it enables us to surmount the sparsity of the design by
pooling information. The second is that it naturally adjusts for measurement error in the
predictor process by considering the covariance structure and removing the diagonal terms
before smoothing. In addition note that we can get estimates of the covariance surfaces on a
fine set of grid points through smoothing, which allows precise numerical integration
approximations in the estimation of θ(t) and ν(t).

For a given number of components, K, uniform consistency of the proposed estimator is
established by the below Theorem.

Theorem 1—Under Assumptions (A.1)–(A.5) given in Appendix A,

Here, hX is the bandwidth used in obtaining the smooth auto-covariance surface of the
predictor process and, h1 and h2 are used in obtaining the cross-covariance surface between
the response and predictor processes. The set of bandwidths depend on n and are all required
to converge to 0 as n → ∞, for further details see Appendix A.

3.2. Prediction of response trajectories
We will establish the prediction of a new response trajectory, Y*, based on the sparse
predictor trajectory X*. In what follows, let us define

, where ψm(s) are the eigen-functions of
the auto-covariance of the predictor process defined in (3). From the functional
representation of the predictor trajectory given in (4), the predicted response trajectory can
be given as

(9)

where  is the mth functional principal component score of the
predictor function X*. For estimation of (9), μY(t) can be estimated from aggregated data as
described above and estimators of the eigenfunctions, ψm(t), can be obtained from the eigen-
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decomposition of the estimated auto-covariance surface. Details on these estimation
procedures are given in Appendix C. For estimation of  in sparse designs, we invoke
Gaussian assumptions following Yao et al. (2005b).

Let us define the collection of N* error contaminated observations from the predictor

trajectory as , where  is the ℓth measurement observed at time point .
We assume that ( ), for ℓ = 1, …, N*, are jointly Gaussian. Further define

 and

. Under the Gaussian assumption, the best linear predictor for  given X′*,
N* and T* is obtained by

(10)

where  with IN* denoting the N* × N* identity
matrix and  denoting the variance of the measurement error on the predictor
process. Defining  and  to be the estimators of  and  respectively, the estimator of

 can be given as

where the (i, j)th element of Σ̂X′* is defined as  where  is the
estimator of the measurement error variance and δij = 1 for i = j and δij = 0 otherwise.
Explicit form of  is deferred to Appendix C. Hence the predicted response trajectory is
obtained by

(11)

where . The number M of
eigenfunctions used in the decomposition of the predictor auto-covariance surface, given in
(11) can be selected by leave-one-curve-out cross validation, generalized cross validation
(GCV), or the Akiake information criterion (AIC). For more details on the selection of M,
see Yao et al. (2005a). A consistency result of the predicted trajectory for the target

trajectory  is established in Theorem 2.

Theorem 2—Under (A1)–(A5), (B1)–(B3) of Appendix A, given T* and N*, for all t ∈ [δ1,
T], the predicted trajectories satisfy
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Note that, the number M of eigenfunctions used in the eigen-decomposistion of the predictor
process is a function of n and tends to infinity as n → ∞.

3.3. Asymptotic confidence bands for the predicted response trajectories
In this section, we construct point-wise asymptotic confidence intervals for the predicted

response trajectory, . For M ≥ 1, let us define ,

where  is as defined in (10). Note that . Defining the M × N* matrix

, covariance matrix of ζ̃*M can be given in terms

of H as . Observing that

, we have cov(ζ̃*M − ζ*M|T*, N*) =
cov(ζ̃*M|T*, N*) + cov(ζ*M|T*, N*) − 2cov(ζ̃*M, ζ*M|T*, N*) = cov(ζ*M|T*, N*) − cov(ζ̃*M|T*,
N*) ≡ ΩM, where ΩM = D − HΣX′* HT with D = diag{γ1, …, γM}. Hence, under the Gaussian
assumption, conditioning on T* and N*, ζ̃*M − ζ*M is distributed as N(0, ΩM).

Let  and , where D ̂ = diag{γ ̂1, …, γ ̂M } and

. Defining P̂(t) = {P̂1(t), …, P̂M(t)}T, Theorem 3 gives the asymptotic

distribution of the predicted response trajectory .

Theorem 3—Under (A1)–(A5), (B1)–(B3), and (C1) of Appendix A, given N* and T*, for
all t ∈ [δ1, T ] and x ∈ ℝ,

(12)

where ωM(t, t) = PT(t)ΩM P(t), ω ̂M(t, t) = P̂T(t)Ω ̂M P ̂(t) and Φ denotes the Gaussian cdf.

From Theorem 3, it follows that ignoring the bias from the truncation in  at M eigen-
components, the (1 − α)100(%) asymptotic pointwise confidence interval for E{Y*(t)|X*(s), s
∈ Δt} is

4. Numerical issues in implementation and parameter selection
An important issue in the implementation of the proposed estimation algorithm is the
inversion of the matrix ν̂(t) in equation (6). To obtain stable estimators for β, penalized
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solutions have been studied in literature (Cardot et al., 2003) minimizing the penalized least
squares

where Q is a K × K matrix that determines the type of penalty used. Here, λ is a tuning
parameter that controls the amount of regularization and should be chosen from data
balancing the stability and validity of the resulting estimator. The penalized estimator is then
given by b̂λ(t) = {ν̂(t) + λQ}−1μ̂(t). A common choice of Q is the K × K identity matrix,
which leads to the ridge solution, b̂λ(t) = {ν̂(t) + λI}−1μ̂(t). Another common choice of
penalty used is on the degree of smoothness of the penalized solution where Q is chosen

such that its (i, j)th element is equal to  with  denoting the mth

derivative of the kth predetermined basis function. In the following applications, we use the
ridge solution.

Hence, the proposed estimation procedure for the recent history functional linear model,
includes three sets of parameters with different roles: K, λ, and (δ1, δ2). The number of
predetermined basis functions used, K, controls the resolution of the fit; the tuning
parameter, λ, controls the stability of the estimates; and the window, (δ1, δ2), determines the
model used via controlling the predictor window affecting the response. An important
observation in the current estimation set-up is that the proposed estimation procedure is not
sensitive to the choice of K provided that there are enough number of basis functions used in
the estimation, since the penalized solution employed via λ prevents over-fitting. Instead the
choice of the tuning parameter λ is a more important choice controlling the stability of the
estimates. This fact has been pointed out before in similar functional estimation problems,
see Cardot et al. (2003) for further details. We run multiple simulation studies comparing the
estimated regression surfaces obtained with different choices of K and λ to confirm this
observation, where the results are summarized in Section 5.2. Based on the above argument,
following Cardot et al. (2003), we fix K at a value that guarantees good precision and
concentrate on the choice of λ and (δ1, δ2). For example, K is fixed at 10 in both the
simulation studies and the data example that follow, to include 10 B-spline basis functions
of order 4 with 6 interior equi-distance knots in the window Δ, which prove to provide good
precision.

For the selection of λ and (δ1, δ2), consider the following two criteria. Define the normalized
prediction error (NPE) as

where Ŷij is the predicted value for the jth measurement on the ith response trajectory
obtained using λ and (δ1, δ2),  is the number of observations from the ith subject obtained

in the interval, [δ1, T ], and . Note that NPE measures the relative absolute
prediction error which will also be used in evaluating the finite sample performance of the
proposed estimates in the simulations given in Section 5. We also define leave-one-curve-
out cross validation squared prediction error as
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where  is the fitted response function value of the ith subject at time point Tij obtained
from the data excluding the ith subject. Note that in both criteria, NPE and the cross
validation score, the fitted response values are obtained via the prediction methods proposed
in Section 3.2.

We propose to estimate λ and (δ1, δ2) in a hierarchical manner, where first λ is chosen for a
set of (δ1, δ2) values using NPE and finally the set of (δ1, δ2) values are compared to yield
the final choice of (δ1, δ2) with minimum cross validation score. This hierarchical approach
has the advantage that the computationally faster NPE criterion is used within the inside
loop of choosing λ and that the relatively more refined cross validation score is utilized for
the selection of (δ1, δ2), which is similar to model selection in an outer loop. More
specifically, the algorithm can be outlined as follows. Let Λ and D be the predetermined sets
of λ and (δ1, δ2) values considered. For a fixed (δ1, δ2)0 ∈ D, NPE values are calculated for
all λ ∈ Λ. The λ that gives the smallest NPE value is selected as the optimal λ for the given
(δ1, δ2)0 and is thus used for calculating the cross validation score for (δ1, δ2)0. Repeating
the above steps for all (δ1, δ2) ∈ D, the optimal (δ1, δ2) is selected to be the one with the
minimum cross validation score.

5. Simulation studies
In this section, we investigate the finite sample properties of the proposed estimators
through two simulation studies. In the first simulation, we study efficiency of the NPE
criterion for selecting the tuning parameter λ for a fixed (δ1, δ2) choice, along with the finite
sample performance of the proposed estimator based on the selected λ from the algorithm. In
the second simulation, we evaluate the performance of the cross validation method for
choosing (δ1, δ2) with varying sample size. The following simulation results are reported
based on 500 Monte Carlo runs. Bandwidths used in the smoothing of the mean and
covariance functions are chosen by generalized cross-validation.

5.1. Data generation
For n subjects, the number of measurements made on the ith predictor and response
processes, Ni, are randomly selected from 3, 4, and 5. The design points, Ti1, …, TiNi are
randomly selected from the uniform distribution between 0 and 50. At a given time point t,
the predictor function is evaluated around the mean function t + sin(t) using two principal
components,  and  for t ∈ [0, 50]. The
corresponding two eigen component scores, ζ1 and ζ2, are independently sampled from the
Gaussian distributions with mean 0 and the variances, ρ1 = 4 and ρ2 = 1, respectively.

Hence, the predictor process at time t is generated via . In
addition, i.i.d. measurement error, ε, simulated from the Gaussian distribution with mean 0
and variance , is added to the predictor observations in accordance with (4). The
regression function is generated based on the same basis functions used for the predictor

process via, , s ∈ Δt, where c11 = 2, c12 = 2, c21 = 1, and c22
= 2. The true window combination, (δ1, δ2), is set at (20, 0). The error function, ε(t), is also
generated using the same basis functions as the predictor process with eigen-component
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scores independently sampled from the Gaussian distributions with mean 0 and variance
0.025, 0.004, respectively. The response function, Y(t) is generated by the equation, ∫Δt β(s,
t)X(s)ds+ε(t) using the numerical integration procedure. To obtain a noisy version of the
response function, we add i.i.d measurement error, e, generated from the Gaussian
distribution with mean 0 and variance 0.025.

5.2. Simulation results
To evaluate the performance of the λ selection criterion, NPE, let us define relative square
deviation (RSD) at time t as

The RSD measures the relative size of the squared difference between the estimated and true
regression functions at time t. The RSD integrated over the entire support, t ∈ [δ1, T], will be
called integrated RSD, denoted IRSD.

Before reporting on results from the two simulation set-ups, we present the true and
estimated regression functions with different λ and K choices to demonstrate the relative
importance of λ over K in the estimation procedure discussed in Section 4. The true and
estimated regression functions are plotted in Figure 1 from three Monte-Carlo simulation
runs at n = 200 with (K, λ) equal to (5, 7.4) (Figure 1b, for the NPE minimizer (λ = 7.4)), (5,
1) (Figure 1c) and (10, 7.4) (Figure 1d), respectively. While the difference between the
estimators plotted in Figures 1b and 1d is small corresponding to doubling of the K choice,
the estimator given in Figure 1c at the wrong λ value of 1 cannot recover the true regression
function with IRSD= 298. This confirms that the choice of λ plays a more important role in
the proposed estimation algorithm than the choice of K.

The estimated regression function β ̂(s, t) with the tuning parameter λ equal to the minimizer
of IRSD can be thought of as the “optimal estimate”, since information on the true
regression function is utilized in the comparison. Hence, this estimate can only be obtained
in a simulation setting where the true regression function is known. We compare this choice
of λ with the minimizer of NPE, which is the only estimate that can be obtained from the
data in reality. The performance of the two estimators are compared in Figure 2 in terms of
IRSD, where boxplots of estimated IRSD values are given for the optimal and proposed
estimates at n = 200 and 500 from 500 Monte-Carlo simulation runs. In the displayed
boxplots, 22 and 12 outliers are removed for n = 200 and n = 500, respectively.

Figure 2 suggests that the estimator with the λ choice selected via NPE and the one with the
optimal choice of λ, both improve with increasing sample size. For the proposed estimators
with λ chosen by NPE, the median estimated IRSD is 0.2937 at n = 200 and is 0.20670 at n
= 500, which implies that the estimated regression surface is close to the true one. We also
give in Figure 2 the boxplots of NPE values of the proposed estimator with λ chosen by
NPE. The median NPE value at n = 200 is 0.3196 and the median NPE drops to 0.2928 for n
= 500.

The performance of leave-one-curve-out cross validation score for the selection of δ is
studied through the second simulation. For the computational efficiency, we use 10 fold
cross validation. The true value of (δ1, δ2), is set to be (20, 0), where 6 candidate (δ1, δ2)
pairs are considered at (30, 0), (30, 5), (20, 0), (20, 5), and (10, 5). The correct (δ1, δ2)
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choice ratio out of 500 Monte Carlo runs are 0.8929 and 0.9214 for n = 200 and 500,
respectively. There seems to be improvement with increasing sample size.

6. Data analysis
To demonstrate the proposed method, we include an application to the longitudinal primary
biliary liver cirrhosis data collected between January 1974 and May 1984 by the Mayo
Clinic. In the study design, patients were scheduled to visit the clinic at six months, one year
and annually thereafter post diagnosis, where certain blood characteristics were recorded.
However, due to missed visits, the data is sparse and highly irregular where each patient
visited the clinic at different times. We explore the dynamic relationship between serum
albumin level in mg/dl (predictor) and prothrombin time in seconds (response). Both
variables are used as an indicator of the liver function, where a decrease in serum albumin
levels and elevated prothrombin times are typically associated with malfunctioning of the
liver (Murtaugh et al., 1994). We include 201 female patients in the analysis where predictor
and response measurements before 2500 days are considered. The number of observations
per subject ranges from 1 to 9, with a median of 5 measurements. Individual trajectories of
the serum albumin level and prothrombin time overlaying their respective estimated mean
functions are given in Figure 3. The generalized cross-validation choice of smoothing
bandwidths used in estimation of the prothrombin time and serum albumin level mean
functions are 1100 and 1250, respectively. Generalized cross-validation choice for
smoothing bandwidths of auto- and cross-covariance surfaces are (400, 400) and (550, 550),
respectively. The estimated mean functions indicate opposite patterns as expected, where
there is a decreasing trend for the predictor process and an increasing trend for the response.

We next fit the proposed recent history functional linear model to the data with K = 10 B-
spline functions. Among the five candidate (δ1, δ2) choices considered, [1000, 0], [500, 0],
[700, 200], [1000, 200], and [1000, 500], the minimizer of cross-validation error was [1000,
0], and the NPE choice of λ was 6502. To save on computational time, we report results
from 10 fold cross validation.

The estimated regression surface is displayed in Figure 4 viewed from two different angles.
Most of the estimated regression surface is negative stressing the general opposing trends
also observed in literature between serum albumin levels and prothrombin time. For a given
time point, the albumin concentration has the strongest effect in magnitude on prothrombin
time with a delay of about 500 days where the affect decays as the lag increases. Note also
that the observed negative effect of the past albumin concentration levels on the current
prothrombin time seems to get more pronounced towards the later stages of the study and
hence the disease.

Predicted response trajectories for four randomly selected subjects obtained from the
proposals of Section 3.2 and 3.3 and the corresponding 95% asymptotic confidence bands
are given in Figure 5. We also include for comparison predicted trajectories obtained from
the functional linear model proposed by Yao et al. (2005a). The predicted trajectories seem
to be quite close to those from a functional linear model fit which uses the entire predictor
trajectory including observations from future and distant past measurement times in the
predictions as well. Hence, we conclude that the recent history functional linear model
which models the effects of the predictor process from the recent past of 1000 days till the
present time, provide a reasonable model for the data in terms of prediction. Given its ease
in interpretation due to its restricted regression support when compared with the full
functional linear model, the proposed model merges as a viable alternative for the analysis
of the current data set.
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7. Discussion
We proposed an estimation algorithm for the recent history functional linear models which
are useful in applications. The sliding window support of the recent history functional linear
model strikes a useful balance between the global support of the functional linear models
and the point wise support of the varying coefficient models. The assumption that only the
predictor process from the recent past has an effect on the response rather than the future
predictor values or only the current predictor value, is useful in many applications where
changes in the response process can be explained using recent trends of the predictor
process. In addition the product form assumed for the regression surface uses only one
dimensional smooth functions considerably easing and speeding estimation.

Our proposal is geared towards sparse longitudinal data where the estimation procedure
proposed also accommodates measurement error in variables. Sparsity and measurement
error are both commonly encountered in longitudinal designs. We provide asymptotic
properties of our estimators that enable the estimation of the predicted response trajectories
and that lead to asymptotic confidence bands. Choice of model parameters is also addressed,
where favorable properties of the proposed estimators are demonstrated in simulations and
data applications.
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Appendix A. Assumptions
We present the assumptions in three groups, assumptions (A) are needed for all three
Theorems, assumptions (B) are needed for the consistency and asymptotic normality of the
predicted response trajectories given in Theorems 2 and 3 respectively, and assumption (C1)
is only used in Theorem 3.

The data (Tij, Xij) and (Tij, Yij), i = 1, …, n, j = 1, …, Ni, are assumed to be the i.i.d. samples
from the joint densities, g1(t, x) and g2(t, y). Assume also that the observation times Tij are
i.i.d. with marginal densities (t). Let T1 and T2 be two different time points, and X1
(respectively Y1) and X2 (respectively Y2) be the repeated measurements of X (respectively
Y) made on the same subject at times T1 and T2. The predictor (and response) measurements
made on the same subject at different times are allowed to be dependent. Assume (Tij, Til,
Xij, Xil), 1 ≤ j ≠ l ≤ Ni, is identically distributed as (T1, T2, X1, X2) with joint density function
gXX(t1, t2, x1, x2) and analogously for (Tij, Til, Yij, Yil) with identical joint density function
gY Y (t1, t2, y1, y2). The following regularity conditions are assumed on (t), g1(t, x), g2(t, y),
gXX(t1, t2, x1, x2) and gYY(t1, t2, y1, y2). Let p1, p2 be integers with 0 ≤ p1 + p2 ≤ 4.
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(A1) The derivative (dp/dtp) (t) exists and is continuous on [0, T] with (t) > 0 on
[0, T], (dp/dtp)g1(t, x) and (dp/dtp)g2(t, y) exist and are continuous on [0, T] × ℝ,
and {dp/(dtp1dtp2)}gXX(t1, t2, x1, x2) and {dp/(dtp1dtp2)}gYY(t1, t2, x1, x2) exist
and are continuous on [0, T]2×ℝ2 for p1 + p2 = p, 0 ≤ p1, p2 ≤ p.

(A2) The number of measurements Ni made for the ith subject is a random variable
such that , where N is a positive discrete random variable with P(N > 1)
> 0. The observation times and measurements are assumed to be independent of
the number of observations for any subset Ji ∈ {1,…, Ni} and for all i = 1, …, n,
i.e. {Tij, Xij, Yij: j ∈ Ji} is independent of Ni.

Let K1(·) and K2(·, ·) be the nonnegative univariate and bivariate kernel functions for
smoothing the mean functions μX and μY, and auto-covariance surface, GX, and cross-
covariance surface, GXY. Assume that K1 and K2 are densities with zero means and finite
variances on a compact support.

(A3) The Fourier transformations of K1(u) and K2(u, v), defined by κ1(t) =
∫e−iutK1(u)du and κ2(t, s) = ∫e−(iut+ivs)K2(u, v)dudv are required to absolutely
integrable, i.e. ∫|κ1(t)|dt < ∞ and ∫∫|κ2(t, s)|dtds < ∞.

Let hX and hY be the bandwidths used for estimating μX and μY, respectively. Also let hG be
the bandwidth used for estimating GX, and let (h1, h2) be bandwidths used in the estimation
of GXY.

(A4) As n → ∞, the following are assumed about the bandwidths.

(A4.1) hX → 0, hY → 0, , and .

(A4.2) hG → 0, , and .

(A4.3) Without loss of generality, h1/h2 → 1, and .

(A5) Assume that the fourth moments of Y and X are finite.

(B1) The number of eigenfunctions used in (11), M = M(n), is an integer valued
sequence that depends on sample size n and satisfies the rate conditions given in
assumption (B5) of Yao et al. (2005a).

(B2) The number and locations of measurements for a given subject does not change
as the sample size n → ∞.

(B3) For all 1 ≤ i ≤ n, m ≥ 1 and 1 ≤ ℓ ≤ Ni, the functional principal component
scores ζim and the measurement errors εiℓ in (4) are jointly Gaussian.

(C1) There exists a continuous positive definite function ω(s, t) such that ωM(s, t) →
ω(s, t), as M → ∞.

Appendix B. Proofs

Proof of Theorem 1
Uniform consistency of ĜX(s, t) is given in Theorem 1 of Yao et al. (2005b) and that of
ĜXY(s, t) is given in Lemma A.1 of Yao et al. (2005a). Consistency of ν̂kl(t) and μ̂k(t) for νkl
and θk(t) follow from uniform consistency of ĜX(s, t) and ĜXY(s, t). This implies consistency
of b̂(t) for b(t), and hence that of β ̂(s, t).
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Proof of Theorem 2

For fixed M, define , where ζ̂m is as defined in (10) and Pm(t) =
∫Δt β(s, t)ψm(s)ds. Then, it follows that

The convergence of Q2 to 0 as n → ∞ follows from Lemma A.3 in Yao et al. (2005a). Note
that, for Q1,

Uniform consistency of μ̂Y(t) for μY(t) follows from Theorem 1 in Yao et al. (2005b), and

consistency of  for  follows from Theorem 3 in Yao et al. (2005b). From uniform
consistency of β ̂(s, t) established in Theorem 1 of Section 3.1 and that of ψ ̂k(t) shown in Yao
et al. (2005a), uniform consistency of P̂m(t) follows. Combining these results, we have

and by Slutsky’s Theorem, Theorem 2 follows.

Proof of Theorem 3

Under the Gaussian assumption, for any fixed M ≥ 1, we have . In proof

of Theorem 2, it is shown that . Observing that

, we have .

Under assumption (C1), letting M → ∞ leads to . From the

Karhunen-Loéve Theorem, . Therefore, .
From the convergence of ψ ̂(t), , γ ̂m and P̂m for ψ(t), , γm and P̃m, we can deduce

 as n → ∞. Under the assumption (C1), it follows that limM→∞ limn→∞
ω ̂M(t, t) = ω(t, t) in probability. Applying Slutsky’s theorem, (12) follows.

Appendix C. Estimation procedures
In this section, we provide explicit forms for the local polynomial smoothing procedures
used in estimating the mean functions and covariance surfaces. Eigendecompositions for the
estimated covariance surfaces and explicit form of the measurement error variance estimator
are also provided.
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The estimator of mean function for the predictor process, μ̂X(t), can be obtained by local
linear regression via minimizing

with respect to η0, η1, which leads to μ̂X(t) = η ̂0. Estimation of μY(t) follows similarly.

For estimation of the cross-covariance surface GXY, the two dimensional local linear
smoother is fitted to the raw covariances by minimizing

(C.1)

with respect to η = (η0, η1, η2), yielding ĜXY(s, t) = η ̂0. Estimation of the auto-covariance
surface of the predictor process can be obtained similarly where the diagonal elements of the
raw auto covariance matrix are not included in the smoothing as described in Section 3.1.
Hence the second sum in (C.1) is taken over 1 ≤ j ≠ ℓ ≤ Ni, excluding the diagonal terms.

In order to obtain the estimator for the measurement error variance , we first estimate the
diagonal elements of the auto-covariance surface GX(t, t) excluding the diagonal raw
covariances contaminated with error, by applying a local linear smoother along the diagonal
and local quadratic smoother along the direction perpendicular to the diagonal. The resulting
estimators of the diagonal elements are denoted by G ̃X(t). This estimator is then compared to
a linear smoother fit only to the diagonal raw covariance terms {Tij, GX,i(Tij, Tij)},
estimating . This estimator is denoted by V̂(t). We estimate the error variance
by these two estimators, yielding

where  = [T/4, 3T/4]. Here, the integration is taken over the middle half of  in order to
remove the boundary effect of the local polynomial smoother.

The eigenfunctions and eigenvalues of the estimated auto-covariance surface, ĜX(s, t), for
the predictor process are the solutions, ψ ̂k and γ ̂k, of the eigenequation given by

where  and ∫[0,T] ψ ̂m(t)ψ ̂k(t)dt = 0 for m ≠ k. For numerical solutions,
discretization of the smoothed covariance function can be used following Rice and
Silverman (1991).
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Figure 1.
(a) The true regression function defined on Δ = [0, 20]. The estimated regression function
with (K, λ) equal to (5, 7.4) (plot b, estimated IRSD= 0.3632), (5, 1) (plot c, estimated
IRSD= 298) and (10, 7.4) (plot d, estimated IRSD= 0.3274).

Kim et al. Page 18

J Stat Plan Inference. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Boxplots of the estimated IRSD values of the proposed and optimal estimators for n = 200
(a) and n = 500 (b). (c) Boxplot of NPE values of the proposed estimators for n = 200 and n
= 500.
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Figure 3.
(a) Individual predictor trajectories (dashed) overlaying the estimated cross-sectional mean
of the predictor process (solid). (b) Individual response trajectories (dashed) overlaying the
cross-sectional mean of the response process (solid).
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Figure 4.
The estimated regression surface defined on [t − 1000, t] × [1000, 2500] in the longitudinal
primary biliary liver cirrhosis data obtained by λ = 6502 and K = 10.
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Figure 5.
Predicted trajectories for 4 randomly selected subjects. In each plot, circles denote the
original response observations, the solid line is the response trajectory predicted via the
proposed method, the dashed line is the predicted trajectory using the functional linear fit of
Yao et al. (2005a), and the dotted lines represent the 95% asymptotic confidence bands.
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