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Current medications for epilepsy are recognized to have a 
couple of major limitations. First, despite over a dozen exist-
ing drugs, one third of epilepsy patients continue to have sei-
zures and can be defined as medically intractable after failure 
of just two or three drugs. Second, even in patients whose 
seizures are well-controlled on medication, it is generally 
accepted that most current drugs simply suppress seizures 
as symptomatic therapy; they do not prevent the initial de-
velopment or progression of epilepsy. In other words, these 
drugs primarily act as anticonvulsant or antiseizure agents but 
do not possess actual antiepileptogenic or disease-modifying 
properties. To address these limitations, completely different 
types of drugs with novel mechanisms of action are needed.

Although there are some differences in the molecular 
targets of available drugs, most antiseizure medications work 
by similar mechanisms of action: to directly suppress neuronal 
excitability by reducing excitatory neurophysiological mecha-
nisms (e.g., sodium or calcium channels, glutamate receptors) 
or enhancing inhibitory mechanisms (e.g., potassium channels, 
GABA receptors). A novel mechanistic approach to address 
the issues of medical intractability and disease modification in 
epilepsy is to modulate primary cell signaling pathways that 
initially trigger various downstream mechanisms mediat-
ing epileptogenesis and increased neuronal excitability. The 
mammalian target of rapamycin (mTOR) pathway has recently 
received attention as a candidate signaling pathway that may 

be central to epileptogenesis and could be targeted therapeu-
tically with mTOR inhibitors, such as rapamycin (1, 2).

mTOR is a ubiquitous protein kinase with multiple physi-
ological functions, including regulation of cell growth, prolif-
eration, and survival (1, 2). In the brain, mTOR is also involved 
in numerous functions that can affect neuronal signaling 
and excitability, such as axonal and dendritic morphology, 
neurotransmitter receptor expression, and synaptic plastic-
ity, under physiological conditions, and could potentially 
contribute to epileptogenesis under pathological condi-
tions. In the disease, tuberous sclerosis complex (TSC), an 
important genetic cause of epilepsy, hyperactivation of the 
mTOR pathway triggered by TSC gene mutations has been 
strongly implicated in promoting tumor growth, as well as 
contributing to epilepsy and other neurological symptoms 
in this disease. In mouse models of TSC, early treatment 
with rapamycin appears to have antiepileptogenic effects in 
preventing the development of epilepsy and the underlying 
molecular and histopathological mechanisms of epilep-
togenesis in presymptomatic mice (3, 4). In addition, later 
treatment with rapamycin in symptomatic mice can suppress 
or reverse seizures, as well as learning deficits, in TSC mouse 
models (4, 5). Furthermore, in related genetic mouse models 
of PTEN inactivation, rapamycin also decreased seizures, be-
havioral deficits, and histopathological abnormalities (6, 7). 
Thus, mTOR inhibitors may have both antiepileptogenic and 
antiseizure applications in specific types of genetic epilepsy. 
In fact, initial clinical studies already suggest that mTOR 
inhibitors decrease seizures in TSC patients with established 
epilepsy (1, 8), although early antiepileptogenic drug treat-
ment to prevent epilepsy has not been reported.

While genetic epilepsies involving mTOR hyperactivation 
are relatively rare, the widespread functions of mTOR suggest 
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that mTOR pathway dysregulation could also be involved in 
epileptogenesis in other, more common types of epilepsy, 
such as acquired epilepsy as a result of brain injury. In the 
kainate rodent model of epilepsy, kainate administration 
induces an acute episode of status epilepticus and subse-
quent neuronal death, mossy fiber sprouting, and other 
cellular changes in hippocampus that have been implicated 
in promoting epileptogenesis and acquired epilepsy. Kainate 
status epilepticus causes abnormal activation of the mTOR 
pathway, and rapamycin, administered prior to the onset of 
spontaneous seizures, retards the development of epilepsy, 
suggesting that rapamycin has antiepileptogenic actions in 
this model (9).

Although the findings from both the kainate and TSC 
models highlight the potential utility of mTOR inhibitors as 
antiepileptogenic agents for multiple types of epilepsy, from 
a practical standpoint, many people are not eligible for an 
antiepileptogenic approach. By the time patients present 
with seizures and are diagnosed with epilepsy, the process 
of epileptogenesis is likely in its advanced stages, and any 
window of opportunity for therapeutic intervention to prevent 
epilepsy may have closed. However, some cases of epilepsy 
may involve a continued process of progressive epileptogen-
esis. Furthermore, drugs with novel mechanisms of action, 
such as inhibition of the mTOR pathway, may still have other 
beneficial effects that decrease ongoing seizures. Thus, it is 
worthwhile to explore the efficacy of rapamycin for ongoing 
acquired epilepsy.

The study by Huang et al. directly addresses the issue 
of whether mTOR inhibition is an effective treatment for 
acquired epilepsy that is already established. They used 
the pilocarpine model in rats, which is closely related to 
the kainate model; but, in contrast to previous studies of 
rapamycin in the kainate model (9), rapamycin treatment 
was not initiated until after the rats were documented to 
have spontaneous seizures. Despite the relatively late initia-
tion of treatment relative to the process of epileptogenesis, 
rapamycin still caused a remarkable decrease in seizure 
frequency. Although a weakness of this study was that only 
video, not EEG, monitoring was used, the reported effects 
appeared quite robust and suggest that there is a wide 
therapeutic window of opportunity for mTOR inhibitors in 
acquired epilepsy. 

Besides the obvious clinical applications of these findings, 
this study raises some intriguing questions about the over-
lapping relationship between mechanism of epileptogenesis 
and seizure generation and the corresponding distinction 
between antiepileptogenic and antiseizure strategies. The 
inhibitory effect on seizures in this study reversed upon 
stopping the rapamycin, suggesting a direct antiseizure ac-
tion. While the mechanism of this apparent seizure suppres-
sion is not known, Huang and colleagues showed that the 
rapamycin effect on seizures was correlated with a decrease 
in mossy fiber sprouting. While mossy fiber sprouting is 
often viewed as an early, permanent epileptogenic process, 
this finding suggests that mossy fiber sprouting may be a 
progressive, reversible process that actively stimulates and 
maintains recurrent seizures. In contrast, a previous study 
found that early rapamycin treatment inhibited mossy fiber 

sprouting in the pilocarpine model, but that later treatment 
did not reverse established sprouting (10), shedding some 
doubt on the relevance of this mechanism to late antisei-
zure effects. Alternatively, rapamycin could target other 
molecular processes, either through mTOR-dependent or 
mTOR-independent mechanisms, which directly control neu-
ronal excitability, more akin to a traditional anticonvulsant 
effect. However, rapamycin has been found to have minimal 
direct effects on neuronal excitability (11, 12). Furthermore, 
other recent studies have found no effects of rapamycin 
on seizures in the pilocarpine model (13) and paradoxical 
effects of rapamycin on mTOR activation and cell death in 
the kainate model (14), suggesting a complex, potentially 
dual regulation of epileptogenic mechanisms by mTOR. Thus, 
further investigations are needed to clarify the mechanisms 
by which rapamycin may affect both the initial development 
and the ongoing maintenance of epilepsy and to determine 
the corresponding timing and clinical applications (presymp-
tomatic/antiepileptogenic vs symptomatic/antiseizure) of 
rapamycin for epilepsy.

by Michael Wong, MD, PhD
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