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Abstract
Exponential-family random graph models (ERGMs) provide a principled way to model and
simulate features common in human social networks, such as propensities for homophily and
friend-of-a-friend triad closure. We show that, without adjustment, ERGMs preserve density as
network size increases. Density invariance is often not appropriate for social networks. We
suggest a simple modification based on an offset which instead preserves the mean degree and
accommodates changes in network composition asymptotically. We demonstrate that this
approach allows ERGMs to be applied to the important situation of egocentrically sampled data.
We analyze data from the National Health and Social Life Survey (NHSLS).
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1. Introduction
Networks are a device to represent relational processes and data, that is, data that include
both the attributes of the individual units (nodes) and the attributes of the relations (links)
between them. Examples of relational processes include the behavior of epidemics, the
interconnectedness of corporate boards, genetic regulatory interactions, and computer
networks. In social networks, each node represents a person or social group, and each tie or
edge represents the presence or absence, or strength of a relationship between the nodes.
Nodes can be used to represent larger social units (groups, families, organizations), objects
(airports, servers, locations), or abstract entities (concepts, texts, tasks, random variables).

In this paper we consider stochastic models for networks, and Exponential-family Random
Graph models (ERGMs) in particular. This class of models allows complex social structure
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to be represented in an interpretable and parsimonious manner [10, 4]. The model is a
statistical exponential family for which the sufficient statistics are a set of functions of the
network. The statistics are chosen to capture the way in which the structure of the network
departs from a simple random graph in which the state of relationship between each pair of
actors is independent from that of every other and has a probability of 1/2 of there being a
tie [10, 32, 12]. Examples of such features include long-tailed degree distributions [7],
homophily, where actors prefer to associate with actors like themselves [19, 14], triad-
closure bias [4, 27], and more complex features [26, for example].

One of the disadvantages of sophisticated models for complex networks is that the sample
space is a set of whole networks, rather than actors in the network or dyads. This means that
the model fit based on one observed network from a population typically cannot be directly
used to infer to a population based on a different set of actors, particularly if those actors
differ from those in the original network in ways which are relevant to the model.

In particular, this means that given two social networks with different numbers of actors or
different distributions of any exogenous actor attributes relevant to the model it may not be
possible to fit the model to both of them and directly compare the estimated parameters.
Conversely, having fit an model to a particular network, attempting to apply the model and
estimated parameters to simulate a network over a different set of actors may lead to
network structure bearing little semblance to what would be realistically expected. For
example, the natural (canonical) parametrization of an ERGM preserves the density of a
network (the ratio of the number of ties to the number of possible dyads) as the size of the
network increases. This implies that the number of ties per actor increases proportionally,
without limit. Anderson, Butts, and Carley [2] studied a similar problem with graph-level
indices such as degree centralization, by simulating the distributions of these indices on
Erdős-Rényi graphs of varying sizes and densities. Goodreau, Kitts, and Morris [6] fit
several exponential random graph models to friendship networks of 59 schools of the Add
Health survey [30]. The schools varied in size from 71 to 2,209 students, and the authors
briefly considered the relationship between school size and the resulting parameter
estimates. We compare our results with those of Goodreau et al. [6] in Section 7.

Of course, what would be considered “realistic” depends on the specific domain in which
the network is observed: some networks show continual increase in average degree of an
actor as they become larger [17], while others imply a fairly constant value [20, 14], other
things being equal. In this paper, we focus on networks of people representing personal
relationships — friendships, sexual partnerships, gift-giving, etc., and our discussion will
apply primarily to those. Using ERGMs to analyze these types of data often presents a
separate but related challenge: whereas ERGMs generate probability distributions for the
dyad census — the state of every potential relationship, such data are extremely difficult to
collect in large, sparse networks where collection cannot be automated (such as sexual
partnership networks) and often come with severe confidentiality issues: the authors are
aware of only two sexual network datasets aiming at a dyad census: the Colorado Springs
Study [33, 13], in which a dyad census was observed among the 595 individuals ultimately
interviewed; and a census of residents of Likoma Island, Malawi, aged 18–35, interviewing
them about their sexual partnerships and matching those up to the list of island residents [9].
These are the exceptions that prove the rule, however: in the Colorado Springs Study, the
respondents nominated a total of 5162 contacts, so most of the individuals in this sexual
partnership network were not interviewed, while the Likoma Island study’s circumstances
are fairly unique.

This is related to the network size problem in that egocentric data typically comprise a
sample of actors from the network of interest. These data clearly contain information about
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some aspects of the structure of this network, but because they are only a subset of its actors,
to infer its structural properties requires a theory on how they are affected by network size.

We start to address these issues by discussing, in Section 2, the desirable properties for a
model for social networks that would take into account network size and composition. In
Section 3, we show which of these properties ERGMs do and do not have. In Section 4, we
propose an offset term to adjust for network size, and show how the resulting model
possesses the properties we desire.

In Section 5, we develop an approach to fitting ERGMs to egocentrically sampled data from
network processes that fulfill the heuristics described in Section 2, by constructing networks
of varying sizes but similar structure from these data. Finally, in Section 6 we test our
approach by fitting models to constructed networks of varying sizes but similar structure to
confirm that the parameter estimates are comparable.

1.1. Notation
In this paper, we restrict our attention to networks of binary relations. Thus, a network may
be considered to be a set of ties.

So for a network with n actors, labeled 1, 2, …, n, define  ⊆ {1, …, n}2 to be the set of all
dyads (i.e. maximal set of ties) if relation of interest is directed (e.g. friendship), with pairs

 ⊆ {{i, j} : (i, j) ∈ {1, …, n}2} being unordered if the relation of interest is undirected
(e.g. sexual partnership). We further restrict attention to spaces of networks where there are
no constraints on the set of potential relations of interest beyond a prohibition on self-loops,
and that have no structural constraints beyond the constraint on the set of dyads in the
network. That is, , the set of possible networks of interest, equals to , the power set of
the possible ties. These restrictions exclude bipartite networks, though, as we show in
Section 6 networks with within-group density much lower than between-group density can
still be accommodated. Also, while our focus is on networks with undirected ties, much of
our reasoning applies equally to networks with directed ties. We will drop “(n)” where only
a space of networks of a single size is considered.

Let x be exogenous information — those attributes that actors in the network might have that
may influence the structure of the network (referred to as xi). For the purposes of this paper,
we assume x to be fixed, and for brevity, we assume that any relevant dyadic attributes xi,j
can be derived from xi and xj and do not need to be enumerated explicitly.

For a realization y ∈ , let yi,j = 1 if the relation of interest is present between actor i and
actor j and 0 otherwise, and yi be the set of neighbors of i — those actors to which i has ties.
Define y + (i, j) to be the network y with a tie between i and j added (if absent) and y − (i, j)
to be the network y with a tie between i and j removed (if present).

Throughout this paper, it is often necessary to specify precisely on which elements of a
network — which dyads’ values and attributes of which actors — a particular network
statistic may depend. We use a variant of the set-builder notation to do this: for example,
“xj : j ∈ yi” refers to the attributes of the neighbors of actor i and “yu,v : (u, v) ∈ yi × yj”
refers to the states of those dyads one of whose incident actors has a tie to i and the other to
j.

2. Desirable properties of invariant models
In this section, we discuss what properties a network model that takes into account network
size and composition should have. In other words, what probability model Pr(Y = y|x; θ)
(that is, probability over y ∈  for a particular network size and composition represented by
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x, parametrized by θ) would result in similarly structured networks for similar values of θ,
across different values of x?

Answering this question empirically for social networks is fraught with circular logic:
examining what makes two networks that differ in size and composition have similar
structure requires postulating that two or more networks over different sets of actors have
similar structure, which, in turn, requires one to postulate what similarly structured networks
look like. Thus, we focus on the local properties of networks, and describe several heuristics
that should let us evaluate models.

2.1. Locality
Social processes that produce networks of human social relationships are primarily local in
nature: ties are formed and dissolved based on the network from the point of view of the
actors involved. For example, an actor may be motivated to seek another partner by the
actor’s own lack of partners, but not by a low average number of partners in the network.

The model for a network of such actors should behave similarly: any global network
structure should be a product of local behavior and constraints. Conversely, if the network
structure, from the point of view of an individual actor, does not change, neither should the
actor’s local behavior. [22, 27]

2.2. Degree distribution under scaling without composition changes
Because each human actor typically has a finite amount of resources to devote to relations of
interest, other things being equal, adding more actors to the network past a certain point
should not substantially increase the degree. Thus, we choose to focus on models which
produce declining marginal impacts of network size on degree distributions.

2.3. Mixing properties
Often, networks of interest are not homogeneous — actors may possess attributes, such as
sex, socioeconomic status, and age that influence with whom they associate. Counts of ties
broken down by attributes of the actors involved — called mixing matrices — have been
modeled using log-linear models, where they have been presented as a function of the
numbers of actors with each attribute value, overall attribute-specific propensities of actors
with each attribute value to form ties, and an additional “selectivity” factor representing the
propensity of actors from each attribute class to form ties with each other. [20]

From the point of view of an individual actor, this suggests that an actor’s degree should be
a function of how that actor’s own affinities match up with the attribute composition of the
population, which affects how often an actor might encounter potential partners with the
actor’s preferred attributes.

3. Structure of exponential-family random graph models
We now discuss how well ERGMs fulfill these criteria. Consider a general curved ERGM
for networks of binary relations [12],

(1)

with
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where g(·, ·) is a vector of sufficient statistics (also incorporating exogenous information ),
θ is a vector of model parameters, η(·, ·) is a mapping from the model parameters θ (also
incorporating exogenous information x) to natural parameters, and c·,·(·, ·) is the normalizing
constant. (Often, η(θ, x) = θ for a linear ERGM.) Depending on g, it may be intractable. [12]

3.1. Change statistics
An interpretation of an ERGM from the point of view of individual actors comes in the form
of change statistics. A change statistic of a network statistic gk is the change in its value
associated with toggling a dyad (say, (i, j)),

The conditional probability of a tie between i and j given the rest of the network is a
function of the change statistics for (i, j), reduces, through cancellations, to

for . (See Appendix A.1 for the complete derivation.)

Consider a hypothetical discrete Markov process in which, during each step, a pair of actors
(i, j) ∈  is selected at random, and they either form (or maintain) a tie between them, with
probability logit−1 (η(θ, x) · Δi,jg(y, x)) or dissolve (or maintain absence of) a tie between
them otherwise.

A selection of i and j may be viewed as an “opportunity” for actors i and j to have or not to
have a tie and the “decisions” by these actors whether or not to do so may be viewed as
made based on the factors that the actors take into consideration (Δi,jgk(y, x)) and how they
weigh these factors (ηk(θ, x)). Thus, if a change statistic does not depend on some datum, it
may be viewed as having the actors make the decision while being ignorant of that datum or
choosing not to take that datum into account. This process is a Gibbs sampling algorithm
(formally described in Appendix A.2) that generates a draw from an ERGM over the space
of graphs  having θ as its parameters and g as its sufficient statistics, so an ERG may be
viewed as a consequence of a long series of these opportunities and decisions. Robins and
Pattison [25] draw a similar parallel — the global network structures arising as a
consequence of local processes.

We do not assert that this is a realistic description of a temporal network process (if only
because only one tie may be formed or dissolved during each time step), but it serves as a
useful analogy.

3.2. Locality
The notion of locality of a model can thus be expressed through the dependencies of the
change statistics. It is not sufficient to specify the dependence of dyads on states of other
dyads, however: it is also important to consider dependence on attributes of the network, the

Krivitsky et al. Page 5

Stat Methodol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



actors, and the dyads that would, under most formulations, be considered exogenous, and
thus effectively conditioned on. For example, while a count of ties g(y, x) = |y|, resulting in
Δi,jg(y, x) = 1 would be a “local” statistic, network density  (for undirected
networks) would not be local in this sense, because its change statistic, , depends on the
network size — a network-wide attribute. Using the analogy described in Section 3.1, a
model with a density sufficient statistic would be akin to actors making their “decision”
based on the total number of actors in the network — a very non-local decision rule. The
relationship between notions of social neighborhoods and ERGM dependence structure was
also discussed by Pattison and Wasserman [23].

We thus discuss three notions of locality, based on three types of dyadic dependence that
have appeared in literature.

3.2.1. Locality based on dyadic independence—If a change statistic for (i, j) only
depends on yi,j (and, for directed networks, yj,i), then the model has dyadic independence —
all dyads are stochastically independent, and the probability of the network is a product of
individual dyad probabilities. With respect to exogenous attributes, the corresponding
constraint is that the change statistic must also not depend on attributes of actors other than i
and j: Δi,jg(y, x) = f (xi, xj) for some function f(·, ·). (Note that f is not a function of yi,j itself,
since it is a difference between the network y + (i, j) and network y − (i, j), no matter the
present state of yi,j.) However, the class of models with dyadic independence is fairly limited
[10, 4, 27], so weaker notions of locality are needed in order for the concept to be useful.

3.2.2. Locality based on Markov dependence—Described by Frank and Strauss [4], a
Markov graph is one in which two dyads are conditionally independent given the rest of the
network if they do not share an actor. In terms of change statistics, it means that a change
statistic for a dyad (i, j) may only depend on dyads incident on actor i and dyads incident on
actor j. Sufficient statistics in this class that are meaningfully local but do not preserve
dyadic independence include the count of actors in the network that have exactly d ties:

, for an undirected network, has change statistic

which only depends on the dyads incident on the actors incident on the dyad of interest.

While models described by Frank and Strauss [4] do not make explicit use of exogenous
attributes of dyads and actors, it is often desirable to incorporate these into the model as in
the Markov block models of Strauss and Ikeda [28]. However, directly extending the
concept of Markov dependence to exogenous dyadic and actor attributes results in a
definition that allows a dyad (i, j) to depend on attributes of any and all dyads (i, k) and (j,
k), for all k ∉ {i, j} and thus on attributes of any actor k. This definition is not meaningfully
local — at least not in human networks being considered. Thus, a useful definition of change
statistic locality beyond dyadic independence must be realization-dependent — that is, it
must depend on the specific configuration of the social neighborhood of the dyad of interest.

We define a Markov graph local change statistic as one that only depends on states of dyads
incident on (i, j) and only on exogenous attributes of those actors that have ties to either i or
j. That is,
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for some function f(···). The conditional dependence structure of of the Markov graphs is
thus realization-independent with respect to dyad values in that, for a given dyad (i, j), the
set of dyads whose states may affect the conditional probability of (i, j) having a tie does not
depend on what other ties are present in the network. On the other hand, it is realization-
dependent with respect to the actor attributes, in the sense that (i, j) does not depend on xk,
unless there is a tie between i and k or between j and k.

3.2.3. Locality based on partial conditional independence—Pattison and Robins
[22] and Snijders, Pattison, Robins, and Handcock [27] define an even broader class of
network models that still preserve the local nature of the sufficient statistics — partial
conditional dependence, a realization-dependent dependence structure for dyads, where
dyads (i, j) and (u, v) are conditionally independent given the rest of the network unless they
either are incident on the same actor (i.e. i = u, i = v, j = u, or j = v), or if there exist edges at
both (i, u) and (j, v) (i.e. yi,u = yj,v = 1), or vice versa.

Because dependence of change statistics directly reflects conditional dyad dependence, this
means that a change statistics for dyad (i, j) may only be a function of the states of those
dyads (u, v) that fulfill the criteria above, and a natural constraint on the exogenous
attributes on which the statistic may depend is that it may depend only on the attributes of
actors that would be involved in the social neighborhood defined by the conditional
independence: dyads and actors that have ties to either i or j and dyads both of whose
incident actors have ties to i or j. Concretely,

for some function f(···).

Thus, by choosing appropriate change statistics, an ERGM can be made “local”, and this
class of statistics is fairly rich, including k-star, degree, and triangle counts [4], mixing terms
[14], and shared partner distributions [27, 12].

3.3. Scaling without composition changes
However, any linear ERGM suffers from a problem: if η(θ) = θ, then it can be shown that for
any g(·, ·), if θ is set to give an average degree of μ for a particular number of actors n, then
for a different n, the expected average degree will be different from μ under this model.

Intuitively, this is because for a network to maintain the same mean degree, the number of
ties must grow linearly in the number of actors. However, for a constant value of θ = 0, the
network distribution always reduces to an Erdős-Rényi graph with density , whose expected
number of dyads grows quadratically in the number of actors, so the mean degree inevitably
increases. A more rigorous derivation of this is given in the Appendix B.1.

In the following section, we consider adjusting the ERGM for network size effects.

4. An offset model to adjust for network size
In this section, we consider adding a single offset term to the ERGM to adjust the model for
network size effect. An offset term is a component of the vector g(·, ·) which does not have a
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free parameter associated with it. The coefficient of the term is instead a known constant or
a function of known quantities. This terminology is extended from that for Generalized
Linear Models [18, p. 206].

4.1. Model statement
Specifically, we add a term that would ensure that mean degree would converge,
asymptotically, in the absence of all other terms:

Here, n is, again, the number of actors in the network.

There is an intuitive interpretation for the offset term, suggested by the Naïve Gibbs
sampling and change statistics from Section 3.1. Recall that the conditional log-odds of a tie
at (i, j) given the rest of the network is

In the presence of the offset term, this becomes

or

so the conditional odds of each dyad given the rest of the network are multiplied by . This
can be viewed as reflecting the declining fraction of the network with which each actor may
get an “opportunity” to make contact (although this interpretation is not necessary).

Given this “opportunity”, the effect of each term ηk(θ, x(n))Δi,jgk(y, x(n)) on the conditional
log-odds of the tie does not depend on network size and composition, since gk(·, ·) is local.

We now describe some asymptotic properties of this model for the cases of dyadic
independence. A model with dyadic dependence is demonstrated in Section 6.

4.2. Erdőos-Rényi model
A model with the offset term and a single edge-count term,
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(2)

results in a Erdős-Rényi network [10] with the probability of each individual tie,
independently,

As network size n increases, the probability that a given vertex has a particular degree d.

(Full derivation is given in Appendix B.2.) Thus, the degree distribution converges to
Poisson(exp (θ)). With the expected mean degree converging to exp (θ), θ, which, in the
absence of the offset, would determine the density of the network, instead determines the
network’s mean degree. Conversely, for sufficiently large networks with similar mean
degree, the maximum likelihood estimates of θ would be similar.

4.3. Selective mixing model
In many circumstances, actors can be partitioned into K exogenous groups, and propensities
of actors in one group to form ties to another (or others in the same group) can be modeled
using ERGMs [14]. We describe here how these models behave under changing network
size and how they interact with composition in the presence of the offset. Suppose that for a
sequence of random networks Y(2), Y(3), … of increasing size, their actor attributes x(n)

partition the actors into a partitioning , k = 1, …, K, with P(n)(i) giving k such that

, and  being the set of ties between actors in  and actors in . Suppose that

the x(n) are such that these proportions converge: .

Consider the following mixing model [14] for a given size, with the proposed offset added:

This model is dyad-independent and local, with all dyad values for each combination of k1
and k2 being identically distributed. ηk1,k2(θ) can be thought of as representing preferences
of actors in group k1 toward actors in group k2. Different forms of η(·) may be used to model
different patterns of mixing, such as assortative (homophily), disassortative, and even
overall group activity levels. Then,
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and the expected degree of some actor i is

which, as network size increases, becomes

Thus, asymptotically, the number of ties actor i in group P(i) is expected to have to actors in
group k (i.e. the actor’s mean degree with respect to that group) is proportional to the
fraction of the actors in the network made up by members of k (i.e. how often i gets an
opportunity to make a tie with a k, relative to others) and proportional to exp (ηP(i),k(θ) (i.e.
how much actor i favors/disfavors ties with members of k). The expected overall degree of
that actor is thus a function of how well availability (pk) matches up with affinities
(ηP(i),k(θ)).

Conversely, if η(·) is a linear transformation, the MLE for θ would be similar for networks
of different size and composition if they had this proportional mixing structure.

5. Inference from egocentrically sampled data
An ERGM applies to a dyad census — the enumeration of dyad states of all dyads among a
particular set of actors. Egocentrically sampled data —data collected by surveying a sample
of the actors (“egos”) about actors to whom they are tied in the network of interest (“alters”)
[14] — only contains information about dyads incident on each of the sampled egos.
Furthermore, alter identities are not observed, only their attributes of interest are, so it is not
known, for example, whether two egos reporting two alters with similar attributes are, in
fact, referring to the same individual, and whether two egos who each describe an alter with
attributes similar to those of the other ego are, in fact, referring to each other. In order to
analyze egocentrically sampled data using ERGMs, we consider hypothetical full networks
from which the egocentrically observed egos could have come, and what their network
statistics of interest would have to have been in order to have produced the egocentric data
that were observed.

5.1. Deriving sufficient statistics from an egocentric census
We describe how certain network statistics can be computed from a census of the egos in an
observed network. Because they can only depend on information about actors in the sample
and their immediate neighbors, they are local according to the Markov graph variant of the
definition, given in Section 3.2.2.

Let E be the set of egos (respondents) and Ae be the set of alters (nominations) nominated by
ego e ∈ E. Note that these are nominations, rather than actors: a single actor may be
nominated multiple times and egos may nominate each other, and they all appear as distinct
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nominations. Lastly, let xe and xa be attributes of interest of the respective egos and alters.
Define A = ∪e∈EAe.

5.1.1. Dyad census statistics—When an undirected network is observed egocentrically,
with a census of actors, each tie is reported twice: once by each of the actors involved. Thus,
a dataset with |A| alters nominated by |E| egos could have been observed on a network of |E|
actors and a total of  ties.

More generally, a network statistic that is the summation over the edges in the network of
some function f(xi, xj) of the attributes of the actors incident on the edge,

(3)

would be observed egocentrically as f(xe, xa), e ∈ E, a ∈ Ae, with each tie being observed
twice: once when i had nominated j and once when j had nominated i. Thus, gk(y, x) is

(4)

Sufficient statistics for a selective mixing model such as that in Section 4.3, the count of ties
between actors of a particular pair of categories (say, k1 and k2) can be expressed in the form
(3), for

with the second case being a consequence of the network being undirected. Observing the
network egocentrically, ties counted in the case of k1 = k2 are reported twice as ties between
k1 and k1, while ties counted in the k1 ≠ k2 case are reported as one partnership with the ego
in k1 and the alter in k2 and another partnership with the ego in k2 and the alter in k1. Thus,
the number of ties between k1 and k2 is

5.1.2. Actor census statistics—Statistics such as the number of actors with a particular
degree (or range of degrees) or the number of k – stars that are local are observed directly in
an egocentric census: they are the properties of the egos. Thus, they are statistics that can be
expressed as a summation over the actors of some function of each actor and its neighbors:

(5)
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Suppose f(xi, xj : j ∈ yi) is local — that is, it only depends on exogenous properties of actor i
and actors j ∈ yi. Then f (xi, xj : j ∈ yi) would be egocentrically observed as f(xe, xa : a ∈ Ae),
e ∈ E. Thus statistics of the form (5) can be expressed as Σe∈E f(xe, xa : a ∈ Ae).

In particular, the count of actors with a particular degree d,  can be
expressed in the form of (5)with f(xe, xa : a ∈ Ae) = 1|Ae|=d, so the number of actors with
degree d is simply Σe∈E 1|Ae|=d.

5.2. Sampling and consistency
Section 5.1 describes the derivation of sufficient statistics from egocentric data consisting of
all the actors in the network of interest, rather than a sample of actors, and the data available
are a sample. However, if the sample of egos is representative (i.e. is a simple random
sample or a properly weighted stratified sample), the distribution of egos and ego reports in
a network is representative of those in the full network at the time the data were collected. In
particular, the degree distribution in the sample is representative of that in the full network
and the selective mixing observed in the sample is representative of that in the full network,
provided that the underlying network process is local.

Another potential problem arising when inferring network statistics from sampled egocentric
data, as opposed to a census of all actors in the network, is possible mutual inconsistency of
reports. For example, consider an undirected network of sexual partnerships such as the one
modeled in Section 6. Assuming no nonresponse and truthful reports, egocentric census of
such a network would produce the same total number of ties to females reported by males as
ties to males reported by females, and the total number of partnerships reported by all actors
would necessarily be even (as each partnership is reported twice). An egocentric sample will
not necessarily produce mutually consistent reports, and it may be the case that no network
having the exact statistics can be constructed, either because reports are inconsistent or
because a fractional number of ties is implied.

While there is ongoing work on more sophisticated approaches to deal with inconsistent
reports [1, for example], we take the simple approach of taking the average of conflicting
reports: in the above example, if the number of ties to females reported by males is different
from the number of ties to males reported by females, we use their average as the implied
number of male-female ties, as (4) suggests. Also, from the point of view of ERGM-based
inference and simulation, an implied fractional number of ties is not problematic: instead of
considering the value a statistic of a concrete network, we may consider it a mean-value
parameter, the expected value of the network statistic in question under the distribution
whose (natural) parameters are of interest [31].

The network inferred from egocentrically sampled data has a degree distribution similar to
that of the population to the extent that the egocentric sample is representative of it, and its
mixing properties are similar as well: the composition of the inferred network is proportional
to that of the sample and thus approximately proportional to that of the population, and the
average number of relations in the inferred network that an actor with a particular value of a
given attribute has with actors of a particular (possibly different) value of a given (possibly
different) attribute is close to that of the sample and thus that of the population. Therefore,
according to our heuristics the structure of the inferred network is at least approximately
similar to that of the full network, which suffices for the following demonstration.
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6. Application to National Health and Social Life Survey data
In this section, we illustrate the approach in the context of real data. To examine whether a
model has desirable properties with respect to networks of varying sizes and compositions
requires postulating two or more distinct networks as having the same structure, and we
construct networks of increasing size but with similar structure by extrapolating data from
the 1992 National Health and Social Life Survey (NHSLS). [16, 15]

For each of a range of network sizes, we use a bootstrap of the egos (with their nominations)
in the sample to generate a pseudo-population of egocentric network datasets and network
statistics implying, on average, similar structure according to the criteria of Section 2, and
fitting the same model to each of these networks, to see if the results from the model are
comparable across network sizes. We elaborate on the exact procedure below.

6.1. NHSLS Data
The data comprise a stratified random sample of 3,432 American men and women between
18 and 60 years old. Respondents were asked to report on all of the spousal or cohabiting
partnerships they had ever had, and all of the sexual partnerships they had had in the last
year. For the purposes of this analysis, we focus only on the partnerships that were active on
the day of the interview. As a result, any respondent reporting more than one active
partnership can be defined as having “concurrent” partnerships [21]. As this was an
egocentric sampling design, the partners were not enrolled in the study. Instead, the
respondent was asked to report on many aspects of the partner and the partnership. Among
the information collected were the age, sex (male or female), and race/ethnicity (Asian/
Pacific Islander, White, Black, Alaskan/Native American, Hispanic, or “Other”) of each
respondent and of all of the respondent’s sexual partners.

6.2. Missing data and weighting
For the purpose of this analysis, the smallest racial categories — Asian/Pacific Islander (67
egos, 51 alters), Alaskan/Native American (45 egos, no alters), and “Other” (no egos, 58
alters) — were all merged.

Five egos have missing or invalid information on age, race, or sex, and 67 egos have missing
or invalid information on age, race, or sex of one or more of their alters. We excluded these
(72) egos and their alters from the analysis.

By design, the respondents (egos) were to be aged 18–59; however, a few (3) of the
respondents are 60, and we exclude them from the analysis. At the same time, there was no
age limit on the alters nominated, so the youngest alter is 16 and the oldest alter is 82. The
hypothetical network we construct from these data is the network of egos — all 18–59 — so
to make it “closed” we exclude all alters younger than 18 (21 alters) or older than 59 (114
alters), but not the egos who have nominated them. Thus, we model the network of sexual
partnerships between individuals who are 18–59.

We use the post-stratification weights provided by the study to adjust for the design of the
stratified sample and the post hoc analysis of non-response patterns. This ensures that both
egos and alters are proportionally represented. We give the breakdown of this population
and the weighting in Table 1. All data summaries and figures that follow incorporate these
weights.

In order to generate a network dataset with a particular number of egos, we sample egos,
with replacement, from the set of NHSLS respondents 18–59, with missing data treated as
above, weighted by the sampling weights. If the reweighted NHSLS survey data are
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considered to be the empirical distribution of the target population, this approach is a form
of nonparametric bootstrap [3].

6.3. Modeling the sexual partnership network
We model the hypothetical network that could have produced the resampled egocentric data
as a linear ERGM, with the sufficient statistics reflecting actor attributes as we expect them
to affect the network structure. The model includes terms that represent the effects of three
nodal attributes —sex, race, and age — and propensities for monogamy. All of the statistics
are local in the sense defined in Section 3.2: the monogamy propensity statistics have
Markov dependence structure (Section 3.2.2), and the others are dyad-independent (Section
3.2.1).

6.3.1. Sex—Under our model, the propensity to have partners is affected by sex in three
major ways. Firstly, different sexes may have different overall propensities to have partners,
and different degree of propensity toward monogamy (Table 2). Secondly, same-sex
partnerships are rare (Table 3). Finally, in heterosexual partnerships, the male partner is
often older than the female partner. (In this dataset, in heterosexual partnerships, the female
partner is, on average, 1.8 years younger than the male partner.) We model these effects by
adding the following sufficient statistics to the ERGM:

overall propensity of actors of each sex to have ties represented by the number of partners
of actors of each sex:

(and note that Σi∈Male |yi| + Σi∈ Female |yi| = 2 |y|);

relative prevalence of same-sex partnerships represented by the number of same-sex ties:

propensity toward monogamy represented by the number of actors of each sex having
exactly one partner:

age-sex asymmetry in partnerships represented by the number of ties between an older
male and a younger female:

where ti is age of actor i.
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6.3.2. Race—We model race effects as an overall propensity of each racial category to
have partners and as a propensity to have partners in the same racial category (19; also see
Table 4), with the following ERGM statistics:

overall propensity of actors of each race to have ties represented by the number of
partners of actors in each racial category but one:

with category “Black” used as an arbitrary baseline for alphabetical reasons;

race homophily represented by the number of ties within each racial category:

6.3.3. Age—We model the effect of age on tie probabilities in three ways. (We illustrate
them in Figure 1.) Firstly, actors at different ages may have different overall propensities for
partnerships, and, furthermore, the effect of the age on the number of partners would be
stronger for younger actors. We thus model the marginal effect of age as a quadratic
function of the square root of age. Secondly, actors tend to have partners of similar age [19],
again, with the effect being stronger for younger ages. We thus model this effect with a
quadratic function of the difference between ages of partners and a quadratic function of the
difference between square roots of their ages. Lastly, there is age asymmetry in heterosexual
relationships, described above.

To reduce correlations and improve the numeric conditioning of the model, we center and
scale the ages of actors to be between  and . The transformation used does not modify
the model itself, only the coefficients. This results in the following ERGM statistics:

overall age effects represented by the summing, over all the actors, the product of each
actor’s number of partners and of each function of interest of that actor’s age:

age difference effects represented by the summing, over all the dyads, the product of the
value of each dyad and of each function of interest of the incident actors’ ages:

6.4. Simulation study design
We performed two simulation studies. Firstly, we compared parameter estimates for 400
egocentric bootstrapped resample sizes ranging from 600 to 12,000, logarithmically spaced.
Secondly, we compared 100 resamples of each of the sizes 1,000, 6,000, and 11,000. For
each sample size, we generated estimates as follows:
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1. Resample the desired numbers egos and their alters from the NHSLS dataset, as
described in Section 6.2.

2. Compute network statistics as described in Section 5.1.

3. Fit an ERGM with terms and offset described in Section 6.3 using R [24] package
statnet [8].

4. Record the ERGM parameter estimates θ ̂.

In the framework of van Duijn, Gile, and Handcock [31], we are considering networks of a
given size with mean value parameters derived as described in Section 5, and consider
whether the corresponding natural parameters, in the presence of an offset, are invariant to
network size. A model with good invariance properties would thus produce natural
parameter estimates that do not change substantially with a changing network size. The
variability in the estimates due to bootstrap resampling provide a baseline for the magnitude
of this change.

6.5. Results
We give the estimated model coefficients for the three-resample-size simulation in Table 5.
The model parameter estimates are consistent with our expectations: same-sex partnership
count has a significant negative coefficient, and there is a strong bias for monogamy for both
sexes. Race homophily is consistently positive. The positive coefficient on the age
asymmetry term indicates a bias for older-male-younger-female partnerships as well.

More importantly, the parameter estimates are essentially stable as the resampled network
size ranges from 6,000 to 11,000. In fact, on average, the difference between a parameter’s
estimate for 6,000 and 11,000 is smaller than 1 simulated standard error for that estimate
based on resample size of 11,000. These standard errors are not conservative, since the
original dataset is one third of that size and the resampling is reweighted, both of which lead
to the standard errors in Table 5 being smaller than what the standard deviations of the
parameter estimates would be in a hypothetical simple random sample of 11,000 egos. In
short, the difference in the estimates due to the difference in network size is smaller than the
differences due to sampling error.

The simulation of network sizes 600 through 12,000 shows a similar trend. We give the
trends in the parameter estimates in Figure 2. The estimates show a pattern of asymptoting,
although asymptoting for some of them —particularly age difference effects — appears to
be slower. This could be an artifact of normalizing the ages.

All this suggests asymptotic invariance to network size for this, fairly complex, model.
While limitations of computing capacity preclude computing parameter estimates for
network sizes in the hundreds of millions — the population of the United States in 1992 in
the age range surveyed — it is likely that these estimates would be very close to those for
network size 12,000.

7. Discussion
Effect of network size and composition on ERGMs has received limited attention in the
literature to date. We have described the desired behavior we would like a social network
model to exhibit when applied to social networks of different sizes, and have shown which
of these are (or are not) properties of an unadjusted ERGM. We propose a simple adjustment
based on an offset term that appears to produce, asymptotically but also for networks of
moderate size, the desired behavior: given that the network statistics are “local” in nature,
the model produces the size appropriate mean statistics for group mixing and degree
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distributions under a variety of network sizes — similar distributions map to similar
parameter values.

We demonstrated this property by fitting a fairly complex ERGM to networks of different
sizes constructed to have similar structure.

We also described an approach to fitting ERGMs to egocentrically sampled data that makes
use of our heuristics for similar structure across network sizes. Combined with the proposed
network size adjustment for ERGMs, it may allow the parameter estimates from fitting the
network data on a sample to be generalized to the population from which the sample was
drawn.

This approach provides a principled framework for network comparison and simulation.
With the offset adjustment, the remaining parameters in the ERGM can be used to test
whether network structures represented in the model are statistically different between two
networks, even if the networks have different size and/or composition. Since the
parametrization is now size and composition invariant, this approach can also be used to
simulate networks that have the same underlying structure, though they may have different
size and composition.

Our analysis leaves open some questions. We limit our statistics to first-and second-order
effects — dyadic and degree distribution effects — and do not discuss third-order effects
such as triad-closure bias, and while two of the notions of locality that we describe allow
modeling of such effects, we do not examine the properties of these in the presence of an
offset, because the egocentrically sampled data available do not contain information about
such effects. Goodreau et al. [6], using dyad census data, fit a geometrically-weighted
edgewise shared partner (GWESP) statistic [27, 12, 11], used to model triad-closure bias,
and found that the coefficient of the GWESP statistic appeared to asymptote as school sizes
increased. Other parameters, except for the overall density parameter, also did not appear to
depend on school sizes [5]. This suggests that our approach applies to third-order effects as
well, but this is a subject for future research.

Another question is whether convergence to the asymptotic estimates could be sped up by
modifying the offset term:  has the advantage of simplicity, but there are other
candidates, such as , for a constant μ ≪ n that may have better properties. At the
same time, if the sufficient statistics of the model or some linear combination thereof include
|y|, the change in the offset coefficient will be absorbed only into their parameter estimates,
and will not affect the convergence of the others. In our example, the number of partners of
males and the number of partners of females sum to twice the number of edges, and, thus,
their coefficients would play this role.

While we describe a way to use egocentrically sampled data to construct networks with
similar structures but varying sizes, and describe how these parameter estimates may be
generalized to the underlying network, we do not have an appropriate measure of
uncertainty of these estimates — we note above that the standard errors we report for the
larger network sizes are too small — rigorously assessing this uncertainty is a subject of
ongoing work.

Lastly, network size can affect the structure of a network in ways other than density, and we
do not explore these effects here.
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Appendix A. Change statistics and Gibbs sampling

Appendix A.1. Conditional probability of a dyad (i, j)
ERGM distribution in (1) has the conditional probability of an edge at (i, j), given the rest of
the network, of

where  and Δi,jgk(y, x) ≡ gk(y + (i, j), x) − gk(y − (i, j), x).
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Appendix A.2. Naïve Gibbs sampling algorithm for ERGMs
The following algorithm can be used to generate a random draw from an ERGM probability
distribution (1) with an intractable normalizing constant:

Require: Arbitrary y0 ∈  and S sufficiently large

1: for s ← 1 to S do

2:  (i, j) ← RandomChoose( )

3:  r ← logit−1 (η (θ, x) · Δi,jg(y, x)) {i.e. Prη,g(Yi,j = 1|x, Y(s−1) − (i, j) = y(s−1) − (i, j); θ)}

4:  u ← Uniform(0, 1)

5:  if u < r then

6:   ys ← y(s−1) + (i, j) {Have a tie at (i, j) with probability r.}

7:  else

8:   ys ← y(s−1) − (i, j) {Have no tie at (i, j) with probability 1 − r.}

9: return yS

Here, RandomChoose(A) is a function that, given a set, A, selects and returns a member a ∈
A at random.

Appendix B. Details of asymptotic properties of ERGMs

Appendix B.1. Size-invariant statistics of linear ERGMs
In this section, we prove the assertion about linear ERGMs that was stated in Section 3.3.
Consider a sequence of random undirected networks Y (n1), Y (n2), … of increasing size
whose actor attributes x(n) such that frequency or distribution of any exogenous actor
attributes converges as n → ∞ — that is, the network size grows, but the composition does
not change. Because we do not model actor attributes in this discussion, an intuitive way to
construct such a sequence is by defining some initial set of actor attributes x(n0) and
defining, for any integer k > 1, x(nk) to simply be x(n0) replicated k times.

Let η(θ, x(n)) = θ be the natural parameter vector (i.e. a linear ERGM); g(·, ·) be a vector of
network statistics that may also depend on network size and composition; and T (·, ·) be the
vector of network statistics, which may depend on network size and composition, but whose
expected value needs to remain constant as network size changes or converge to a finite
limit as it increases.

Suppose that for some T (·, ·) of interest,

(B.1)

That is, suppose that for this particular T (·, ·), there exists a vector of statistics g(·, ·) such
that for any given fixed value of natural parameter vector θ, the maximum difference in
expected value of the statistic of interest T (·, ·) due to differences in network size can be
made arbitrarily small for sufficiently large networks. Then [29, p. 71]
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(B.2)

the expected value converges to some tg(θ, X), a function of θ and asymptotic network
composition distribution X. For this particular combination of g(·, ·) and T (·, ·), (B.2) holds
for all θ, and therefore holds for θ = 0. But then,

This summation is just the expected value of T (·, ·) under an Erdös-Rényi graph of that size
and composition with each dyad value having an independent Bernoulli  distribution, with
x(n) being irrelevant, so

where Y is a Bernoulli  graph of size n.

Thus, regardless of what g(·, ·) may be, unless T (y, x(n)) already has the property of its
expectation converging as its network size increases (at least in a Bernoulli model), it is not
possible to construct an ERGM that satisfies (B.1). In particular, the expected mean degree
in an undirected Bernoulli  graph of size n is  as n → ∞, so the degree
distribution does not remain unaffected or converge under changing network size. The
network statistics that can be made unaffected by network size include the density of the
network, the densities of subnetworks, and affine transformations thereof with fixed
coefficients.

Appendix B.2. Asymptotic degree distribution of a simple offset model
Starting with (2), let

Then,
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the PDF of a Poisson distribution with mean exp (θ).
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Figure 1.
Mean number of partners reported by a respondent (left) and mean absolute difference
between age of respondent and that of the respondent’s partner(s) (right), as a function of
age
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Figure 2.
Parameter estimates of the model fit to the resamples of NHSLS dataset, as a function of
network size, varying from 600 to 12,000, spaced logarithmically. Note that the horizontal
axis is on a logarithmic scale.
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Table 3

Reported mixing matrix, by sex

Alter

TotalFemale Male

Ego
Female 0.4% 53.0% 53.5%

Male 45.5% 1.0% 46.5%

Total 45.9% 54.1% 100.0%
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Table 5

Average bootstrap estimates (and standard errors) of NHSLS model parameters, by sample size

Term N = 1000 N = 6000 N = 11000

Offset −6.91 (fixed) −8.70 (fixed) −9.31 (fixed)

Actor activity by sex

 Female −1.29 (0.88) −1.10 (0.17) −1.19 (0.13)

 Male −0.43 (0.91) −0.58 (0.16) −0.63 (0.12)

Same-sex partnership −4.59 (1.75) −4.07 (0.14) −4.09 (0.11)

Monogamy by sex

 Female 2.31 (0.33) 2.17 (0.11) 2.20 (0.08)

 Male 2.00 (0.25) 1.93 (0.07) 1.94 (0.05)

Actor activity by race

 Black 0 (baseline) 0 (baseline) 0 (baseline)

 Hispanic 0.86 (0.35) 1.00 (0.13) 1.02 (0.11)

 Other 1.28 (0.44) 1.39 (0.16) 1.42 (0.14)

 White 0.51 (0.45) 0.58 (0.22) 0.60 (0.15)

Race homophily by race

 Black 4.65 (0.60) 4.85 (0.27) 4.83 (0.18)

 Hispanic 2.84 (0.48) 2.67 (0.22) 2.70 (0.16)

 Other 3.34 (0.54) 3.20 (0.21) 3.17 (0.16)

 White 2.11 (0.42) 2.09 (0.20) 2.13 (0.15)

Age effects

   effect
−1.71 (0.54) −1.80 (0.24) −1.74 (0.18)

 age effect 1.62 (0.44) 1.65 (0.18) 1.60 (0.13)

Age difference effects

 Diff. in 
−8.29 (2.38) −8.31 (1.21) −8.19 (0.96)

 Diff. in age −7.70 (2.24) −6.72 (1.05) −6.61 (0.74)

 Squared diff. in 
4.37 (3.27) 4.08 (2.07) 3.72 (1.80)

 Squared diff. in age 6.05 (2.98) 4.05 (1.51) 3.77 (1.11)

 Age-sex asymmetry 0.98 (0.10) 0.94 (0.04) 0.95 (0.03)
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