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Abstract
A milestone of molecular medicine is the identification of dystrophin gene mutation as the cause
of Duchenne muscular dystrophy (DMD). Over the last 2 decades, major advances in dystrophin
biology and gene delivery technology have created an opportunity to treat DMD with gene
therapy. Remarkable success has been achieved in treating dystrophic mice. Several gene therapy
strategies, including plasmid transfer, exon skipping, and adeno-associated virus-mediated
microdystrophin therapy, have entered clinical trials. However, therapeutic benefit has not been
realized in DMD patients. Bridging the gap between mice and humans is no doubt the most
pressing issue facing DMD gene therapy now. In contrast to mice, dystrophin-deficient dogs are
genetically and phenotypically similar to human patients. Preliminary gene therapy studies in the
canine model may offer critical insights that cannot be obtained from murine studies. It is clear
that the canine DMD model may represent an important link between mice and humans.
Unfortunately, our current knowledge of dystrophic dogs is limited, and the full picture of disease
progression remains to be clearly defined. We also lack rigorous outcome measures (such as in
situ force measurement) to monitor therapeutic efficacy in dystrophic dogs. Undoubtedly,
maintaining a dystrophic dog colony is technically demanding, and the cost of dog studies cannot
be underestimated. A carefully coordinated effort from the entire DMD community is needed to
make the best use of the precious dog resource. Successful DMD gene therapy may depend on
valid translational studies in dystrophin-deficient dogs.
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Introduction
Duchenne muscular dystrophy (DMD) is the most common lethal muscle disease caused by
dystrophin gene mutation.1–3 It affects 1–3 boys per 10,000 male birth worldwide.4,5

Patients start to lose their mobility around 2–6 years of age and are often wheelchair bound
by their early teenage years. Life expectancy is shortened to one-third to half of normal as a

© 2011 Duan, publisher and licensee Dove Medical Press Ltd.
Correspondence: Dongsheng Duan, Department of Molecular Microbiology and Immunology, School of Medicine, University of
Missouri, One Hospital, Dr M610G, MSB, Columbia, MO 65212, USA, Tel +1 573 884 9584, Fax +1 573 882 4287,
duand@missouri.edu.
Disclosure
The author reports no conflicts of interest in this work.

NIH Public Access
Author Manuscript
Res Rep Biol. Author manuscript; available in PMC 2012 March 1.

Published in final edited form as:
Res Rep Biol. 2011 March ; 2011(2): 31–42. doi:10.2147/RRB.S13463.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consequence of respiratory insufficiency and/or heart failure. DMD remains an incurable
disease today.

In 1987, the coding sequence of the dystrophin gene was discovered and deciphered.3
Dystrophin is a subcellular cytoskeletal protein. It scaffolds a series of transmembrane and
cytosolic proteins (including dystroglycans, sarcoglycans, sarcospan, neuronal nitric oxide
synthase (nNOS), syntrophin, and dystrobrevin) into a dystrophin-associated glycoprotein
complex (DGC). The DGC plays the important mechanical and signaling roles in muscle
cells. The cloning of the dystrophin gene led to the recognition that the loss of dystrophin
expression underlies clinical manifestations of DMD.1 The discovery of the dystrophin gene
has revolutionized DMD diagnosis and created hope for a cure with gene therapy. The
reasoning is straightforward. If a method can be invented to deliver a functional dystrophin
gene into the diseased muscle cells, the problem will be solved. Transgenic studies
confirmed this hypothesis, and, it was also found that dystrophin overexpression was not
toxic.6,7 Meanwhile, exciting advances were made in dystrophin biology and muscle gene
transfer,8–15 heralding a new era of muscle gene therapy. To many, a possible cure of DMD
by gene therapy appeared just around the corner.

Genes that can be used to treat DMD
The discovery of the dystrophin gene has also raised a seemingly insurmountable challenges
to the nascent field of DMD gene therapy. The gene itself is huge. The 2.5-mega base (mb)
gene contains 79 exons, and it transcribes into a 14-kb cDNA.2 A vehicle that is capable of
carrying the full-length dystrophin gene is beyond the reach of the current technology. A
few viral vectors that may have the packaging capacity for the full-length dystrophin coding
sequence (such as gutted adenovirus and herpes virus) are very inefficient in transducing
whole-body muscle cells. The hurdle of gene size was partially overcome by genotype–
phenotype analysis in patient populations and by spectacular case reports of individual
patients.16–19 These studies suggest that deletion of a fairly large region of the dystrophin
gene may not cause significant clinical consequences as long as the remaining parts are in
frame and the most critical regions are retained.20–22 This reading frame theory constitutes
the foundation of current DMD gene therapy. Briefly, two distinctive roads are taken. One
approach attempts to generate a synthetic, minimized dystrophin gene that expresses these
key components (Figure 1).23 Examples of these synthetic genes include the highly
functional minidystrophin genes (6–8 kb) and the highly abbreviated microdystrophin genes
(<4 kb).24 The other approach is to restore the reading frame using antisense oligonucleotide
(AON)-mediated exon skipping.25

One obvious problem associated with dystrophin replacement is the potential immune
rejection of the newly introduced protein. The use of an existing gene may minimize this
risk. Although intensive research is ongoing to reestablish dystrophin expression, creative
means have also been developed using the alternative self-genes.26

Soon after the discovery of the dystrophin gene, the utrophin gene was identified.27–29

Utrophin shares structural and functional similarity to dystrophin (Figure 1). Although
utrophin cannot carry out all the functions of dystrophin, it still provides substantial benefit
to dystrophic muscle.30,31 In addition to utrophin, increased expression of several
functionally relevant proteins (such as laminin, sarcoglycan, sarcospan, integrin, and nNOS)
has also been shown to reduce muscular dystrophy in the mouse model.32–36

Another promising field for alternative gene therapy is the identification of genetic
modifiers. Several highly promising candidate genes have emerged. Upregulation of
follistatin, insulin-like growth factor 1, ADAM12, cytidine monophosphate-sialic acid
hydroxylase (CMAH), sarcoplasmic reticulum calcium ATPase, or downregulation of

Duan Page 2

Res Rep Biol. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



myostatin, osteopontin, cyclophilin D, latent transforming growth factor-β binding protein 4,
vascular endothelial growth factor receptor 1, and histone deacetylase have been shown to
reduce dystrophinopathy in animal models.37–48 Targeting these alternative genes will likely
complement dystrophin gene replacement/repair therapies.

We cured a DMD mouse
Many dystrophin-deficient mice have been generated, such as naturally occurring mdx;
chemically induced mdx2cv, mdx3cv, mdx4cv, and mdx5cv; and exon 52 knockout mdx
(mdx52) mice (Figure 2).49–51 Unlike human patients, dystrophin-null mice exhibit very
mild symptoms until they get very old (Figure 2).52,53 To create a phenotypic model that
more closely mimics human disease, a great variety of double knockout (dKO) mice were
made. These include utrophin/ dystrophin dKO, myoD/dystrophin dKO, integrin/dystrophin
dKO, δ-sarcoglycan/dystrophin dKO, CMAH mdx, and mdx/ mTR mice (Figure
2).32,48,54–59 Although there are genetic and/ or phenotypic differences between mice and
humans, these mouse models, nevertheless, provide a great opportunity to test experimental
DMD gene therapy in a live animal.

Early gene therapy studies were performed on a single-limb muscle in mdx mice. The
primary end points of these studies were dystrophin expression, DGC restoration, myofber
degeneration/regeneration, sarcolemmal integrity, and muscle force. Long-term robust
dystrophin expression was first demonstrated using vectors based on adeno-associated virus
(AAV).24,60 AAV is a single-stranded DNA virus. In an AAV vector, all the wild-type viral
genes are removed, and a therapeutic/marker gene expression cassette serves as the vector
genome. The naturally occurring AAV serotypes and the molecularly engineered A AV
capsids have offered essentially unlimited options for gene delivery.61,62 The major
drawback of AAV is its 5 kb packaging capacity.63–65 Only the massively truncated
microgenes can fit into a single AAV vector. Although a microgene only carries ~30% of
the dystrophin coding sequence, local AAV microgene injection has ameliorated muscle
pathology in mdx mice.24,60 Subsequent studies suggest that AAV microdystrophin vectors
also improved muscle force and prevented eccentric contraction-induced injury in
dystrophin-deficient mice.66,67

There remain several limitations of the AAV microgene vector. First, it cannot anchor nNOS
to the sarcolemma. In normal muscle, dystrophin helps recruit nNOS to the
membrane.31,68–70 In DMD, the loss of membrane-associated nNOS results in muscle
ischemia.69,71,72 Further, nitrosative stress induced by delocalized nNOS inhibits muscle
force generation.70 Second, the microgene cannot fully restore muscle strength to the normal
level.24 The larger minigene is needed for better force recovery.24 Third, the configuration
of the earlier versions of the microgene may not be ideal.24,60 In this regard, it has been
suggested that the inclusion of hinge 2 and/or hinge 3 may compromise the function.73,74

The first issue was addressed recently by identification of dystrophin spectrin-like repeats
16/17 (R16–17) as the nNOS-binding domain.69 Incorporation of this domain in the
microgene results in the R16–17/ΔC microgene that normalizes nNOS localization (Figure
1).69, 70 To address the second issue, innovative strategies are needed to expand the AAV
packaging capacity. This is achieved using various dual-vector systems, including the trans-
splicing, overlapping, and hybrid vectors.75–77 The trans-splicing vectors are based on the
head-to-tail concatamerization of the AAV inverted terminal repeats. The overlapping
vectors are based on homologous recombination of the transgene. Newly developed hybrid
vectors integrate the advantages of these two approaches and may result in the most efficient
reconstitution of a split gene.78,79 Promising minidystrophin expression has been achieved
with all three dual-vector systems.78,80,81 To address the third issue, investigators have
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developed newer versions of microdystrophins that do not carry hinges 2 and 3. An example
is the ΔR2–15/ΔR18–23/ΔC microgene (Figure 1).

Although local intramuscular gene delivery is important for proof of principle, it cannot
meet the need of treating all affected muscles in the body. A cure for DMD requires
systemic gene transfer. Whole-body delivery was first demonstrated with AAV serotype 6 in
mdx mice by intravascular injection.82 Subsequently, it was reported that several other AAV
serotypes (such as AAV-8 and AAV-9) also mediate robust body-wide gene transfer.83–87

Successful systemic dual AAV vector transduction was also achieved.80,88–90 With these
great tools in hand, it did not take long to prove that we can effectively treat a dystrophic
mouse with AAV microdystrophin vectors.91,92 The histopathology was ameliorated,
muscle function improved, and life span prolonged.

Initial studies with exon skipping were performed with 2-O-methylated phosphorothioated
(2-OMePS) AON. These studies showed efficient local restoration of dystrophin
expression.93,94 More effective exon skipping has been achieved with recently developed
phosphorodiamidate morpholino oligomers (PMOs), peptide-tagged PMO, and nonpeptide
polymer–tagged PMO.95–99 Collectively, these studies suggest that repeated intravascular or
intraperitoneal AON injection is sufficient to ameliorate muscular dystrophy in dystrophin-
deficient mice. Additionally, a combination of AAV gene transfer and AON-mediated exon
skipping may yield more persistent dystrophin expression.100 In summary, curing a
dystrophin-deficient mouse is no longer beyond the reach of the current technology.

The status of DMD clinical trials
A total of three DMD gene therapy approaches have entered clinical trials. These include
full-length dystrophin replacement with a plasmid vector, AON-mediated exon skipping,
and AAV-mediated microgene therapy.

The first DMD gene therapy clinical trial was performed with a plasmid vector via direct
muscle injection.101,102 Three 17- to 21-year-old DMD patients and six 30- to 50-year-old
Becker muscular dystrophy (a mild form of DMD) patients received 200–1200 µg
dystrophin plasmid in the extensor radialis muscle.102 This phase I study showed low and
variable expression at 21 days after injection.103,104 The efficiency is clearly below the
therapeutic threshold.102 Unless there is a revolutionary breakthrough in the transduction
efficiency, it seems unlikely the DMD patients will benefit from this seemingly simple and
straightforward gene transfer technology in the near future.

There is no doubt that exon-skipping trials have yielded unprecedented success in terms of
restoring dystrophin expression.105,106 Two trials have been reported. Both trials aimed at
restoring the open-reading frame by skipping exon 51. Four 8- to 16-year-old DMD patients
received 800 µg (in a total volume of 800 µL) of 2-OMePS AON along a 1.5-cm long line in
the tibialis anterior muscle.106 Biopsy at day 28 showed 64%–97% of dystrophin-positive
fibers at the intensity of 17%–35% of control. In another trial, two DMD patients (13- and
16-year-old) received 90 µg and five DMD patients (10 to 15 years old) received 900 µg (all
in the volume of 900 µL/patient) of PMO AON in the extensor digitorum brevis muscle.105

Minimal expression was detected at the low dose. However, significant dystrophin
expression was detected in the high-dose group between 21 and 28 days. Myofibers in the
range of 44%–79% showed increased dystrophin expression at the intensity of 22%–32% of
healthy muscle. No adverse response was detected in either trial. Currently, both trials have
moved to repeated systemic administration.25

Although the results of these initial exon-skipping trials are highly promising, we should be
cautious. Dystrophin contains four domains, including the N-terminal, rod, cysteine-rich
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(CR), and the C-terminal domain (Figure 1). The rod domain can be further divided into 24
spectrin-like repeats and four hinges. The N-terminal domain and a specific region of the rod
domain (repeats 11–17) provide two independent binding sites for the cytoskeleton. The CR
domain mediates connection to the extracellular matrix. These domains are essential for
dystrophin function. A patient with mutations in the CR domain is unlikely to benefit from a
treatment that removes the CR domain. By definition, exon skipping only produces an
internally truncated, but not necessarily an optimized protein.74 It is quite clear that the
function of the dystrophin protein is more complex than previously thought.107 For example,
exons 42–45 encode R16–17, the nNOS-binding domain.69 Skipping these exons may
compromise nNOS anchoring. As a matter of fact, many patients who carry in-frame
deletion in this region are still afflicted by the disease.16,108–111 Perhaps, the biggest
challenge for exon skipping is the need to design the patient-specific AON. Due to the
difference in the mutation location, one has to use individualized AON to skip specific
exon(s) in order to restore the open reading frame. The AON tailored to one type of
mutation in one patient may not be applicable to another mutation in a different patient.
Since every AON has its unique composition, it will be a challenge for the regulatory
authority to approve all AONs based on the success of a specific AON.112

The highly anticipated AAV microgene trial has some interesting revelations.113 Six DMD
boys received 0.2 to 1 × 10e11 viral genome particles/kg body weight of an AAV serotype
2.5 ΔR3–19/ΔR20–21/ΔC microdystrophin vector in their biceps (Figure 1). The ubiquitous
cytomega-lovirus promoter was used to control microgene expression. Previous studies with
similar vectors have yielded a great success in the mouse model.60 Unexpectedly, biopsy at
42 and 90 days showed essentially no microdystrophin expression despite detection of the
AAV genome. Further investigation revealed a potential T-cell immune response to the
dystrophin epitopes that were either presented or not presented in the AAV vector.113 This
result was totally unpredicted by the mouse studies.

DMD dogs, a bridge between mice and humans
A model that better resembles human patients may bridge the gap between mice and
humans. In this regard, a dystrophin-deficient dog represents an ideal intermediate model.
Unlike mice, dogs have a body size similar to that of affected boys. More importantly, it has
been shown that the absence of dystrophin indeed causes severe muscular dystrophy in dogs
(reviewed in various studies114–118). The affected pups are stunted and weaker. This soon
progresses into dysphagia, fatigue, abnormal gait, joint contracture, severe muscle wasting,
and premature death (Figure 2). Recent studies suggest that the phenotypic differences in
mice, dogs, and humans may be rooted in the difference of cell surface sialic acids.48 Dogs
and humans share similar glycol modification, but mice have a different type of glycol
modification.48,119 In summary, dystrophin-deficient dogs are genetically (in terms of
mutated dystrophin gene) and phenotypically (in terms of clinical manifestation) similar to
human patients. They represent superior models for DMD research.

Duchenne-like muscular dystrophy has been reported in many different dog breeds (Table
1).120–138 However, few have been characterized. Currently, experimental dog colonies have
only been established in Beagle, golden retriever muscular dystrophy (GRMD), and Corgi
models. The GRMD model is the best studied (Figure 2).126,127 Beagle and GRMD models
share the same mutation.120 In these dogs, an A-to-G transition near the end of intron 6
disrupts the normal splicing acceptor signal. Exon 7 is lost in the resulting transcript.
Jumping from exon 6 to exon 8 introduces frameshift mutation and a premature stop
codon.137,138 Mutations in several other canine DMD models have also been identified. In
the case of German short-haired pointer, a 2.7-mb deletion in the X chromosome removes
the entire dystrophin gene.125 In the case of Cavalier King Charles spaniels, a G-to-T
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transversion at the beginning of intron 50 results in exon 50 deletion and subsequent
frameshift and premature termination.124 Smith et al have recently reported a Corgi DMD
model.139 In this model, insertion of a repetitive element in intron 13 aborts dystrophin
translation.139

Plasmid injection, exon-skipping, and AAV microgene therapies have all been tested in the
canine model. So far, all the reported studies were performed in either GRMD or Beagle
dystrophic dogs. The result of plasmid injection has been briefly mentioned in several
articles, but a comprehensive report is lacking. It was suggested that plasmid injection
efficiency was very poor. In general, <1% myofibers were transduced.102,104,140,141 Exon
skipping was initially tested in cultured GRMD muscle cells in vitro.142 However, recent
studies suggest that such an in vitro assay cannot faithfully predict the in vivo
outcome.143,144 Instead of a single AON, it appears that a cocktail of several different AONs
is needed to achieve efficient skipping in the Beagle dystrophy dogs.144 AAV microgene
therapy has been tested in adult GRMD dogs by local injection and in newborn GRMD dogs
by systemic injection.145–148 Transient immune suppression is required to achieve persistent
expression following direct muscle injection in adult dystrophic dogs.147 Intravascular
delivery of AAV serotype-9 ΔR3–19/ΔR20–21/ΔC microdystrophin (this microgene
contains hinge 3) vector resulted in widespread expression in newborn dogs145,146 (Figure
1). Paradoxically, this therapy did not lead to expected disease amelioration. In contrast, the
treated dogs showed growth delay, pelvic limb muscle atrophy, and contracture.146 The
exact reason behind this peculiar finding is not clear. However, a clinical study suggests that
in-frame deletion of hinge 3 is associated with a milder disease.74 From this point, a
microgene without hinge 3 may represent a better option. Collectively, the preliminary
results of the canine studies have probably revealed a more realistic picture of the challenges
facing DMD gene therapy. Yes, we can now cure a dystrophic mouse. However, we are still
far from curing a DMD boy.

To-do list in the canine model
How can we fill the gap between mice and humans? Considering the limitations of the
murine models and also considering the genetic and clinical similarities between dystrophic
dogs and DMD patients, a logical next step would be to test DMD gene therapy in the dog
model. Our limited experience in dystrophic dogs has already offered critical insight. The
low efficiency of plasmid therapy was confirmed in human trials.104 The canine studies also
raised the need for applying transient immune suppression in AAV-mediated
delivery.145,147,148

Unfortunately, there are more limitations to the canine studies than the murine studies. The
cost of housing, breeding, and raising dystrophic dogs greatly exceeds that of dystrophic
mice. A specialized team consisting of veterinary doctors of different disciplines,
experienced technicians, and basic scientists are needed to maintain a dystrophic dog colony
for translational research.149 Another critical issue is the experimental scale. Unlike mice,
dogs only go in heat twice a year, and dystrophic dogs are usually not suitable for natural
breeding. This signiificantly limits the number of affected dogs one can obtain for
experiments. Considering the pronounced variations of disease progression among
individual dogs (Fine D, Shin J-H, Duan D. Unpublished data),150,151 great caution should
be taken in interpreting the data from a few dogs.152 Lack of canine-specific reagents
constitutes another barrier. More than 100 epitope-specific dystrophin antibodies have been
developed (see http://glennmorris.org.uk/monopubs.htm).153 However few have been
characterized for canine muscle applications ( Figure 3). Perhaps, the most constraining
hurdle is the lack of rigorous physiological parameters to evaluate the therapeutic outcome
in dogs. Standard protocols are available to diagnose dystrophin gene mutation and to
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evaluate dystrophin expression at the mRNA and protein levels. A wide array of in vitro and
in vivo physiological assays has also been established to monitor muscle strength changes in
mice.154,155 These include force measurement in a single, intact muscle, such as in vitro
assay in the extensor digitorum longus muscle and in situ assay in the tibialis anterior
muscle.66,70,156 Other assays include forelimb or hind limb grip strength and treadmill
exercise. However, similar assays are either not developed or the baseline values are not
available for dystrophic and normal control dogs. Further, clinical relevance and reliability
remain to be validated.

There are many unanswered questions. With limited resources, how can we take maximal
advantage of the canine model? To prioritize our effort, it is important to point out that the
core of current DMD gene therapies (such as exon-skipping therapy and AAV microgene
therapy) is based on minimized dystrophin genes. Yet the reading frame theory does not
always hold true for every single patient. Severe cases have been reported in patients
harboring an in-frame deletion (reviewed in Yokota et al157). The gene size is particularly
relevant to the microgene approach. All the mildly affected patients reported so far carry at
least 50% of the dystrophin coding sequence.16,17,19–22,158,159 However, none of the
microgenes contain more than 40% of the coding sequence. A patient who carried a fairly
large rod-domain in-frame deletion actually developed severe DMD.160 The size of the
truncated dystrophin in this severely affected patient is ~160 kDa, a size similar to that of
microdystrophins.160 Although it is possible that a rationally designed microgene may be
functionally superior, this clinical report indeed raises the importance of rigorously testing
the synthetic microgenes prior to human trials.

Although individual investigator-initiated studies should be encouraged, focused studies in a
few carefully weighed experimental therapies could be more productive for the entire field.
In this regard, a platform is needed to convincingly test the therapeutic efficacy in a single,
intact dog muscle at the molecular and physiological levels. Such an approach may lead to
some immediate benefits in terms of improving the quality of life. It will also lay the
foundation for whole-body therapy. On the other hand, we should continue our effort to
expand the available colonies for statistically meaningful large sample-size studies. Further
characterization of the existing dystrophic dog models and the development of new canine
DMD models are also important measures for preclinical investigations.

What else?
Our current effort is mainly focused on skeletal muscle disease. However, we cannot and
should not ignore other aspects of DMD. Although DMD is often referred to as a muscle
disease, it actually affects multiple organ systems. Cardiac complications and central nerve
system involvement are also highly relevant to the health of DMD patients.161,162 A therapy
for skeletal muscle may not effectively treat other complications.163 Recent studies suggest
that very old female mdx mice may model dilated cardiomyopathy in DMD patients.84,164

However, none of the current gene therapy strategies have been evaluated in this model.
Reports on the cardiac changes of dystrophin-deficient dogs are rare. Age-matched
electrocardiogram and echocardiography examination between normal and affected dogs
may provide a valuable baseline for cardiac outcome measurement.

Most current studies are aimed at restoring dystrophin expression (yes, this is still on the
very top of our list). The rapidly expanding library of the disease-modifying genes may also
offer new opportunities. Considering the immense variance in clinical manifestations among
certain patients who carry the same gene mutation,165 investigation in disease-modifying
genes may yield novel alternative gene therapies to treat DMD.
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Perspective
Tremendous progress has been achieved over the last two decades in developing novel
genetic therapies for treating DMD. Our success in treating dystrophic mice suggests that
gene therapy may be a successful modality. Clinical trials have been initiated but they have
yet to produce convincing benefit in DMD patients. Dystrophic dogs represent an important
translational bridge between mice and humans. Unfortunately, we know much less about
dystrophic dogs than we do about dystrophin-deficient mice and DMD patients. There is an
urgent need to expand our investigations in the canine model. This investment will allow us
to perfect gene therapy protocols and minimize unnecessary detours in human trials. To
make this emphasis shift requires commitment and support from the entire DMD
community, including the researchers, funding agencies, and patients and their families and
friends.
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Figure 1.
Schematic illustration of full-length dystrophin, utrophin, and representative minidystrophin
and microdystrophin.
Abbreviations: N, the N-terminal domain of the dystrophin protein; H1–4, hinges 1–4 in
the rod domain of the dystrophin protein; numeric numbers, spectrin-like repeats in the
dystrophin rod domain. Positively charged repeats are in white color. Repeats 11–17
represent the second actin-binding domain. CR, the cysteine-rich domain in the dystrophin
protein; C, the C-terminal domain of the dystrophin protein; nNOS, neuronal nitric oxide
synthase. Empty boxes denote the regions that are deleted in each respective minidystrophin
and microdystrophin construct. Among three microgenes listed here, the ΔR3–19/Δ20–21/
ΔC microdystrophin has been tested in affected dogs and human patients. However, these
trials have failed to demonstrate a therapeutic efficacy. The hinge 2 region in ΔR4–R23/ΔC
microdystrophin has been shown to compromise function. The potentially deleterious hinges
2 and 3 are removed in the ΔR2–15/ΔR18–23/ΔC microgene. Further, this microgene carries
the nNOS localization domain.
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Figure 2.
Mouse and dog models of DMD. A) Representative pictures of an 8-month-old dystrophin-
deficient mdx4cv mouse (left panel), a 23-month-old mdx mouse (middle two panels), and a
3-month-old myoD/dystrophin double knockout (m-dKO) mouse and a 3-month-old mdx
mouse (right panel). Adult dystrophin-null mice do not display clinical symptoms (left
panel). The middle two panels show body emaciation and mouse in aged dystrophin-null
mouse. (Arrow points to kyphosis seen in aged mdx mice. The left panel is a full-body view.
The right-side panel represents a close view of kyphosis after the skin is removed.) The
difference in the genetic background results in different fur color in m-dKO (brown) and
mdx (black) mice (right panel). Findings from dKO mice may be biased by their mixed
genetic background. B) Representative pictures of a 2-year-old normal golden retriever (top)
and an affected GRMD (bottom) dog. The affected dog shows body and limb muscle
atrophy, drooling, and ulnocarpal joints (forelimbs) dropped to the ground level. C)
Representative muscle immunofluorescence staining and histopathology staining in normal
(left panels) and GRMD (right panels) dogs. Dystrophin is detected by an antibody (Dys-1)
specific for spectrin-like repeats 6–8 (top row). Muscle pathology is revealed by
hematoxylin–eosin (HE) staining (middle row) and Masson’s trichrome staining (bottom
row). HE staining shows inflammatory cell infiltration, central nucleation, and variable
myofiber size. Masson’s trichrome staining shows fibrosis. Blue color in Masson’s
trichrome staining images represents fibrotic tissue.
Abbreviations: DMD, Duchenne muscular dystrophy; GRMD, golden retriever muscular
dystrophy.
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Figure 3.
Detection of canine dystrophin with monoclonal antibodies. Monoclonal dystrophin
antibodies were used to detect dystrophin expression in a normal dog skeletal muscle and
the heart. Representative immunostaining photomicrographs are shown for antibodies
Manex1 A, Manex50, and Mandra1. Manex1A recognizes an epitope encoded by exon 1 (N-
terminal domain). Interestingly, it only reacts with dystrophin in dog skeletal muscle.
Manex50 maps to an epitope encoded by exon 50 (rod domain). This antibody can detect
dog dystrophin in both skeletal and cardiac muscles. Mandra1 is supposed to react with an
epitope encoded by exon 70 (C-terminal domain). However, it fails to reveal canine
dystrophin in either skeletal muscle or the heart.
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Table 1

Dystrophin-deficient dogs

Breed Mutation Comment References

Beagle Intron 6 point mutation
(same as in GRMD)

Colony established.
Exon skipping tested

120,121

Belgian Groenendaeler shepherds Unknown 122

Brittany spaniels Unknown 123

Cavalier King Charles spaniels Intron 50 point mutation Exon skipping tested in cultured myoblasts 124

Corgi Repetitive element insertion
in intron 13

Colony established, AAV microgene ongoing 139

German short-haired pointer Unknown 125

Golden retriever (GRMD) Intron 6 point mutation Colony established in several places.
Plasmid, exon skipping, and AAV microgene tested

121,126,127

Grand Basset Griffon Vendéen Unknown 128

Irish terriers Unknown 129

Japanese spitz Unknown 130

Labrador retrievera Unknown 131

Labrador retrievera Repetitive element insertion
in intron

166

Miniature schnauzer Unknown 132

Old english sheepdog Unknown 133

Rat terrier Unknown 134

Rottweiler Point mutation in exon 52 167

Samoyed Unknown 135

Weimaraner Unknown 136

Note:

a
It is not clear whether the two Labrador retrievers share the same mutation.

Abbreviations: GRMD, golden retriever muscular dystrophy; AAV, adeno-associated virus.
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