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Abstract
Elliptic partial differential equations (PDEs) are widely used to model real-world problems. Due to
the heterogeneous characteristics of many naturally occurring materials and man-made structures,
devices, and equipments, one frequently needs to solve elliptic PDEs with discontinuous
coefficients and singular sources. The development of high-order elliptic interface schemes has
been an active research field for decades. However, challenges remain in the construction of high-
order schemes and particularly, for nonsmooth interfaces, i.e., interfaces with geometric
singularities. The challenge of geometric singularities is amplified when they are originated from
two or more material interfaces joining together or crossing each other. High-order methods for
elliptic equations with multi-material interfaces have not been reported in the literature to our
knowledge. The present work develops matched interface and boundary (MIB) method based
schemes for solving two-dimensional (2D) elliptic PDEs with geometric singularities of multi-
material interfaces. A number of new MIB schemes are constructed to account for all possible
topological variations due to two-material interfaces. The geometric singularities of three-material
interfaces are significantly more difficult to handle. Three new MIB schemes are designed to
handle a variety of geometric situations and topological variations, although not all of them. The
performance of the proposed new MIB schemes is validated by numerical experiments with a wide
range of coefficient contrasts, geometric singularities, and solution types. Extensive numerical
studies confirm the designed second order accuracy of the MIB method for multi-material
interfaces, including a case where the derivative of the solution diverges.
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1 Introduction
Mathematical modeling of material interfaces often leads to elliptic partial differential
equations (PDEs) with discontinuous coefficients and singular sources. Solutions to such
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PDEs have attracted much attention [2, 4, 5, 11, 14, 19, 27, 25, 28, 29, 31, 32, 34, 37, 39, 40,
42, 45, 56, 57, 58, 59, 50, 62, 6, 3] since Peskin pioneered the immersed boundary method
(IBM) in 1977 [20, 35, 53, 54, 52]. Interface techniques have demonstrated an increasing
importance in a number of areas, including fluid dynamics [12, 15, 16, 30, 49, 37, 39, 36],
electromagnetic wave propagation [22, 23, 33, 34, 68, 67], materials science, [24, 27] and
biological systems [43, 70, 64, 17, 7]. A major advance in the field after Peskin’s
contribution was the remarkable second order sharp interface scheme, the immersed
interface method (IIM) constructed by LeVeque and Li [38, 1, 10, 41]. Many other elegant
methods have been proposed in the past decade, including the ghost fluid method (GFM)
proposed by Fedkiw, Osher and coworkers [13, 44], finite-volume-based methods [51],
integral equation methods [46, 47, 48], and the piecewise-polynomial discretization (PPD)
by Chen and Strain [9].

We have recently proposed a highly accurate algorithm, the matched interface and boundary
(MIB) method [66, 65, 68, 72, 71] for solving elliptic equations with discontinuous
coefficients and singular sources. The essential ideas of the current MIB method were
introduced in an earlier interface scheme for solving Maxwell’s equation [68]. The MIB
method is of arbitrarily high-order accuracy in principle. The 16th order accurate MIB
scheme has been demonstrated with a simple interface geometry [68, 72] and sixth-order
accurate MIB schemes have been constructed for curved interfaces in two-dimensional (2D)
and three-dimensional (3D) domains [65, 72].

The main features of the MIB method are as follows. First, whenever possible, it employs a
dimensional splitting strategy inherited from our earlier discrete singular convolution
algorithm [60, 61] to reduce 2D and 3D interface problems into 1D ones. This strategy
significantly reduces the topological complexity in handling 3D interface geometries.
Additionally, the MIB method enforces only lowest order interface jump conditions (i.e.,
interface continuity conditions). In order to achieve higher order accuracy, which requires
many more jump conditions, the set of lowest order interface jump conditions is iteratively
utilized in the MIB method [68]. This approach avoids the numerical instability and
accuracy reduction in implementing higher order jump conditions. Moreover, in our MIB
method, as well as our earlier discrete singular convolution algorithm [60, 61], fictitious
points are created so that a uniform discretization scheme can be directly employed
throughout the domain, including in the vicinity of the interface and singular source. This
approach avoids the confusion in determining the discretization scheme in the vicinity of the
interface when the geometry is very complex, as the case in many biomolecular applications
[70, 64, 17, 7]. Furthermore, because of the use of fictitious points, enforcing the jump
conditions is separated from the discretization of the governing PDE. In fact, the interface
modeling is virtually independent of the governing PDE and thus the technique developed
for solving one PDE can be applied to a vast range of other PDEs without too much
modification. A comparison of the MIB, GFM, and IIM is given in our earlier work [72, 71].

Independently, Zhao has developed impressive MIB schemes for the Helmholtz equation
[67]. Note that interface conditions in this problem are more complex. Zhao’s MIB schemes
achieve fourth order accuracy for these equations with arbitrarily curved interfaces [67].
High order schemes are particularly valuable for electromagnetic wave scattering and
propagation due to their nature of involving high frequencies.

In the past, much attention was paid to the construction of elliptic interface methods to
ensure the symmetric and/or diagonally dominant matrices due to the concerns of the
condition number and the speed of convergence of iterative matrix solvers [65]. These
concerns have become essentially unnecessary, thank to the development of Krylov-
accelerated multigrid methods [9] and Krylov subspace techniques [7]. The non-symmetric
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and non-diagonally dominant matrices resulting from finite difference and finite volume
types of elliptic interface discretizations can be easily solved with the state of the art Krylov
subspace techniques. The reader is referred to the portable, extensible toolkit for scientific
computation (PETSc) package (http://www.mcs.anl.gov/petsc/petsc-as/) for the application
of advanced linear algebraic equation solvers. However, for time-dependent problems,
matrix properties are still important [68, 69].

Most of earlier elliptic interface methods are developed for smooth interfaces, perhaps
partially due to the fact that many elliptic interface methods were originally developed for or
motivated by problems in computational fluid dynamics. In fact, in most other physical
problems, one frequently encounters elliptic problems with nonsmooth interfaces or
interfaces with Lipschitz continuity [9, 25, 26, 66, 65, 64]. Nonsmooth interfaces are also
called geometric singularities. This class of problems are significantly more challenging
than ones with smooth interfaces. The first known second order accurate schemes for 2D
nonsmooth interfaces were constructed by us using the MIB method in 2007 [66]. Since
then, a couple of other interesting methods have been reported for this class of problems in
2D [9, 26]. It is worth mentioning that the PPD developed by Chen and Strain has
demonstrated its utility in handling exotically complex interface topology [9]. It will be
interesting to see the further development of the PPD for 3D elliptic interface problems. For
arbitrarily nonsmooth interfaces in 2D, the best results reported are all limited to the second
order accuracy [9, 26, 66]. The construction of 2D schemes of numerical orders higher than
two for arbitrarily nonsmooth interfaces is another open problem, although it may be
possible to do so for some special nonsmooth interface geometries. For practical
applications, there is a pressing need to develop high order schemes for nonsmooth
interfaces in 3D domains as most realistic problems are in 3D domains. The MIB method
[65] provides second order schemes for 3D elliptic PDEs with arbitrarily non-smooth
interfaces or geometric singularities. It has found numerous applications in biomolecular
systems [64, 17, 7, 18] and biomedical imaging [8]. However, currently fourth order
schemes for 3D elliptic PDEs with nonsmooth interfaces have been developed only for a
few special interface geometries [65]. It appears truly challenging to develop fourth order
schemes for arbitrarily non-smooth interfaces in 3D domains, which contributes to another
open problem in the field as posed in 2007 [65].

Moreover, it is fairly easy to construct a second order scheme for elliptic interface problems
and demonstrate the scheme on some special and simple geometries. However, it is
extremely difficult to ensure that the designed accuracy is achievable for all possible
geometric situations. So far, there has been very little literature to address this issue in the
computational mathematics community. Unfortunately, for real-world problems, one
encounters extremely complicated geometries. Consequently, most mathematical schemes
do not keep their designed promises. This is particularly true for biomolecular systems —
molecular surfaces [55] of proteins have geometric singularities, i.e., cusps, sharp tips and
self-intersecting surfaces. The MIB method based Poisson-Boltzmann solver, the MIBPB
[64, 17, 7, 18], is able to derive second order accuracy in solving the Poisson-Boltzmann
equation with primitive molecular surfaces of proteins. Unfortunately, at present, the
MIBPB still cannot guarantee its designed second order accuracy for tens of thousands of
protein geometries — it occasionally encounters the accuracy reduction for some special
protein molecular surfaces. Therefore, there is a pressing need in the field of elliptic
interface problems to develop systematical procedures to ensure the designed accuracy for
all possible geometric and topological variations.

What concerns the present work is a new class of interface problems, the construction of
high order numerical schemes for elliptic equations with discontinuous coefficients from
modeling multi-material interfaces, as briey reported elsewhere [63]. This class of problems
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is referred to as multi-material interface problems and is omnipresent in science, engineering
and daily life. The solution to this class of problems becomes exceptionally challenging
when more than two heterogeneous materials join at one point of the space and form a
geometric singularity. For instant, two different internal organs and the internal liquid can
form a three-material singularity (or triple junction) [8]. Note that although each organ is
very smooth, the resulting geometric singularity can be very sharp. To our knowledge, no
second order elliptic interface scheme has been constructed for this class of problems before
our poster in 2010 [63]. The primary objective of the present work is to construct a second
order method to solve 2D elliptic equations with discontinuous coefficients associated with
three-material interfaces. The MIB method is developed for solving this class of challenging
problems. The secondary objective of the present work is to removed an acute angle
restriction in our earlier MIB schemes for 2D elliptic PDEs with two-material interfaces [66]
by utilizing two sets of interface jump conditions. Additionally, we propose new MIB
schemes to deal with singular interface geometries due to exotic two-material interface
topologies.

The rest of this paper is organized as follows. Section 2 is devoted to the theory and
algorithm. We start with the construction of a number of new MIB algorithms for two-
material nonsmooth interfaces. These algorithms resolve the restriction of the minimum
angle in our previous 2D MIB schemes [66] by using interface jump conditions at two
intersecting points between the interface and a mesh line. This idea, originally proposed in
our 3D scheme [65] is very useful for us to construct the present MIB scheme for multi-
material interfaces. We also provide a full consideration of all the possible geometric and
topological configurations for an interface to locate exactly on a grid node in two-material
nonsmooth interfaces, which completes our previous 2D MIB schemes for two-material
nonsmooth interfaces and provides a systematical strategy for the present MIB scheme in
dealing with multi-material interfaces. Algorithms for three-material interfaces are presented
in Section 3. As indicated before, the main challenges of three-material interfaces still come
from the geometric singularities when three-materials join at one point in the space.
Otherwise, the three-material problems can be handled by previous two-material schemes.
We categorize the three-material interface singularities into three types of distinguished
topologies and appropriate MIB schemes are constructed for these topological variations. In
Section 4, we carry out intensive numerical experiment to validate the order of accuracy and
demonstrate the performance of the proposed MIB schemes for two- and three-material
nonsmooth interfaces. A variety of geometric morphologies are considered in the present
work. Problems with a wide range of coefficient magnitudes are designed to test the
robustness of the MIB method. The designed second order accuracy is confirmed in our
numerical studies. This paper ends with a conclusion.

2 Theory and algorithm for two-material interfaces
In this section, we develop new systematical schemes to deal with all the possible geometric
and topological configurations in two-material nonsmooth interfaces. These schemes also
provide some of the basic technical preparation for us to handle three-material interfaces in
Section 3.

Consider an open bounded domain Ω ∈ ℝ2. A given interface Γ divides Ω into two
subdomains, Ωa and Ωb, hence Ω = Ωa ∪ Ωb and Γ = Ωa ∩ Ωb. We assumed that the
boundary ∂Ω and interfaces Γ are Lipschitz continuous and there is a piecewise smooth
level-set function Φ on Ω̄, such that Γ = {x, y|Φ = 0; x, y ∈ Ω}, Ωa = {x, y|Φ ≥ 0; x, y ∈ Ω}
and Ωb = {x, y|Φ ≤ 0; x, y ∈ Ω}. We solve the following two dimensional (2D) elliptic
interface problem
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(1)

with variable coefficients β(x, y), which may have jumps at the interface Γ. To make the
problem well defined, there are two given jump conditions associated with the interface, i.e.,

(2)

(3)

where superscripts a and b denote the limiting value of a function from Ωa and Ωb sides of
the interface Γ respectively. We assume that both Ψ1(x, y) and Ψ2(x, y) are C1 continuous. In
considering the interface which is not always aligned with the x- or y- mesh lines, one more
interface condition can be attained by differentiating Eq. (2) along the tangential direction of
the interface, . Hence for a point on the interface, if we define unit normal
vector n⃗ = (cos θ, sin θ), the unit tangential vector is τ⃗ = (−sin θ, cos θ). Thus, we have three
jump conditions

(4)

(5)

(6)

In the MIB approach, the implementation of jump conditions is disassociated from the
discretization of the elliptic equation. Here (βux)x and (βuy)y are discretized separately with
the second order central finite difference scheme [71]. Therefore, a direct calculation of
(βux)x at point (i, j) only involves grid points ui−1,j, ui,j, and ui+1,j. When the interface
intersects the jth mesh line at a point between (i, j) and (i + 1, j), the ui,j and ui+1,j are located
in different subdomains. In order to avoid the reduction of the convergence order, we
replace ui+1,j with a fictitious value fi+1,j, which can be regarded as a smooth extension of
the function value from ui,j side. To estimate the fictitious value, we enforce the jump

conditions by discretizing some of ua, ub,  based on the geometry. We can
then construct two linear equations involving two fictitious values.

It is always possible in practice to find out two fictitious values in a 2D domain. If  is
difficult to evaluate, we can eliminate it from Eq. (5) and Eq. (6) to attain

(7)
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where . Based

on the geometry, we can choose to eliminate one of  and attain two linear
equations. If one eliminates ,

(8)

where . If one
eliminates ,

(9)

where . If one
eliminates ,

(10)

where .

In our earlier work, we classified irregular points as off-interface type and on-interface type,
and proposed different schemes to deal with them [66]. For Off-interface schemes 2, which
is designed to do with the situation when interface has large curvature, sharp edge, sharp
wedge and tip, we introduced the concept of secondary fictitious point and achieved second
order accuracy for nearly all the situations except when the acute angle is smaller than the
critical angle of 2tan−1(1/3) [66]. Here, we present a scheme to remove this limitation in 2D
domain. The resulting MIB algorithm has no critical angle restriction at all. The detail of this
scheme is described in Section 2.1.

On-interface schemes are created for the situations where the interface intersects a node of
the Cartesian grid [66]. We introduced some basic schemes to study general on-interface
situations and achieved second order accuracy. While, as the geometry becomes more and
more complicated and some unusual on-interface situations may occur. In order to make our
MIB method general and robust, we category all the possible on-interface situations from a
topological point of view. We propose three new on-interface schemes. By combining our
disassociation technique [66] with six on-interface schemes, we are able to provide solutions
for all possible on-interface situations.

2.1 Scheme for two-material interfaces
The MIB approach splits a 2D problem into 1D ones, and disassociates the enforcement of
jump conditions from the discretization of the PDE under study. At an interface, such a
disassociation is made possible by appropriate use of the auxiliary points and fictitious
points. For example, when ui,j and ui+1,j are in different regions, two fictitious values fi,j and
fi+1,j and two auxiliary values ui−1,j and ui+2,j are needed to construct the central difference
scheme at point (i, j), which involve values ui−1,j, ui,j and fi+1,j. Similarly, at point (i + 1, j),
fi,j, ui+1,j and ui+2,j are involved. However, when there are sharp tips or sharp wedges at the
interface, the auxiliary values are not available. This situation is already considered by us for
second order 3D MIB schemes [65]. Here, we give a detailed description to resolve this
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difficulty in the present 2D scheme, and thus remove the critical angle restriction in our
earlier MIB scheme in 2D [66].

Consider the situation depicted in Fig. 1, two interfaces near irregular point (i, j) intersect
the grid meshline at points o and o′. In a common MIB approach, the enforcement of the
jump conditions at point o to solve the fictitious values fi−1,j and fi,j requires that the
auxiliary points ui+1,j and ui,j are in the same domain. In order to overcome this geometric
restriction, we replace ui+1,j with fictitious value fi+1,j. Therefore, together with the original
two fictitious values, we can discretize jump condition (2) at points o and o′, and two sets of
equations can be attained. As we now have three fictitious values to be resolved, we just
need one more equation. This equation, however, can be easily attained by using the normal
and tangential direction jump conditions at point o or o′. The detail of this scheme is
described below.

In Fig. 1, the interface divides the whole domain into two subdomains, denoted as Ωa, and
Ωb. In this paper, Ωa is marked with yellow color, while Ωb is marked with green color. To
make it clear, we denote uao the limiting value of function u at point o from the Ωa, and ubo

the limiting value at point o from Ωb. The derivative of u with respect to x at point o from
Ωa is represented as , and from domain b as . We use a set of similar notations for
point o′. For example, uao′ stands for the limiting value of function u from Ωa at point o′.

Therefore, for point o, using ui−2,j, ui−1,j, ui,j, ui+1,j and the fictitious values fi−1,j fi,j and
fi+1,j, we can discretize uao, ubo,  explicitly as follows

(11)

where  are the standard finite difference weights computed from Lagrange polynomials.
Subscript n = 0 represents the interpolation and subscript n = 1 the first order derivative.
Here, subscript m stands for the node index and superscript l is the position of the
interpolation, for example, ao stands for the limiting value at point o from Ωa.

According to Fig. 1, it is difficult for us to find suitable auxiliary points to discretize  as

there are not enough points in Ωa around point o. We choose to discretize . In order to do
so, we need three u values along the y-direction in Ωb. Here we denote the coordinate of
point o as (io, j). We can choose these three values at point (io, j), (io, j + 1) and (io, j + 2).
Having already obtained ubo, the other two values can be approximated by auxiliary values

ui−3,j+1, ui−2,j+1, ui−1,j+1, ui−2,j+2, ui−1,j+2 and ui,j+2. Here,  can be represented as

(12)

Xia et al. Page 7

J Comput Phys. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where, w1 and w2 are finite difference coefficients for the points at two auxiliary lines.
Based on the local geometry, we eliminate , and two equations can be attained by
substituting Eqs. (11) and (12) into Eq. (8)

(13)

(14)

(15)

Here the unit normal vector is n⃗ = (cos θ, sin θ),

. Therefore,
we obtain two equations from the interface information at point o. We can use the same
method to attain two similar equations by using jump conditions at point o′. There are only
three fictitious values which are to be represented by node values and jump conditions.
Therefore, we just need to discretize uao′ and ubo′, and enforce Eq. (4) as follows

(16)

Substituting Eq. (16) into jump condition (4), one has

(17)

To obtain fictitious values, we solve Eq. (13), Eq. (14) and Eq. (17) together. The fictitious
values can be represented by node values and jump conditions from interface intersecting
points o and o’

(18)

where vector {U}14×1 consists of 10 function values and 4 jump conditions as follows
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(19)

Here, {C}3×14 is a coefficient matrix and its components are the combination of weights and
trigonometric functions of the normal vectors at points o and o′. Thus, once the locations of
o and o′ are given, one can easily calculate the matrix and then the expression of fictitious
values. Finally, one discretizes (βux)x at irregular points (i − 1, j), (i, j) and (i + 1, j) as
follows

(20)

To solve the singularity problem of sharp tips and sharp wedges, we enforce jump
conditions at two interface intersecting points together. It is seen that not all the information
of two jump conditions is required in the present scheme. In fact, at point o′, we only
enforce Eq. (4) by discretizing uao′ and ubo′. We can however discretize , and

find suitable auxiliary points to approximate  based on the geometry. Therefore,
we can construct another equation by enforcing Eq. (8). In fact, this is the main idea to deal
with geometric singularities in three-material interfaces.

2.2 On-interface schemes
In our previous work, the situation of an interface passing through a grid node was studied
and three “On-interface schemes” were constructed for dealing with some of these “on-
interface” situations [66]. The main idea in these schemes is that when the interface
intersects with a grid node, this special node can be treated as serving dual functions, one as
a node inside the interface and the other as a node outside the interface. State differently, the
special node can have a left-limiting value and a right-limiting value. These two values are
related by the jump condition (4). We then utilize both values on this special node and other
auxiliary points to discretize the derivatives, and to construct equations to solve fictitious
values.

Although many situations are considered in our earlier three on-interface schemes [66], there
are still some exotic situations that have not been accounted for. As the interface geometry
becomes more and more sophisticated, more on-interface schemes are needed to ensure the
robustness of the MIB method. In the present work, we summarize all the possible
topological situations of the interface intersecting with a grid node and construct
corresponding schemes to resolve these situations.

Three on-interface schemes were discussed in our earlier work [66] and their topologies are
depicted in Fig. 2. The red dots and green dots indicate grid points in different domains
separated by the interface. To obtain fictitious values, we focus on two jump equations

(21)
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(22)

For node point on the interface, if we regard it as in Ωa, we can use the jump condition [u] =
ua − ub to obtain ub. Therefore we can have two limiting values at this grid point.
Combining them with the function value from auxiliary points, we can discretize

 and substitute them into two jump conditions (21) and (22) to solve two
fictitious values. Otherwise we can just eliminate one of the four derivatives by using the
above two equations and substitute the discretization expressions of other three derivatives
into the equation we attained to solve one fictitious value. The second approach is similar to
the common method of calculating the fictitious value in our earlier MIB, except that the
derivative is calculated on a grid node rather than off the grid. Thus, the discretization is
much simpler.

2.2.1 On-interface scheme 4—As shown in Fig. 3 (On-interface scheme 4), the
interface passes through node (i, j). All the green dots are on the same side of the interface
and all the red dots are on the other side of the interface. For this scheme and all the schemes
below, we assume that all the green points belong to Ωb, and all the red points belong to Ωa.
Here for the situation in Fig. 3 (On-interface scheme 4), the on-interface grid node is treated

as a Ωb point. With the relation , we can discretize three derivatives as

(23)

(24)

(25)

Substituting above relations into Eq. (10), we can easily calculate fi,j+1.

2.2.2 On-interface scheme 5—The geometry is shown in Fig. 3 (On-interface scheme

5). We treat the on-interface node as a point in Ωb, and note that . The two
fictitious values are fi−1,j and fi,j−1. Four derivatives can be discretized as

(26)

(27)

(28)
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(29)

By substituting these equations into Eq. (21) and Eq. (22), we solve fi−1,j and fi,j−1.

2.2.3 On-interface scheme 6—As shown in Fig. 3 (On-interface scheme 6), we treat the

on-interface node as a point in Ωa, and use the relation . Two fictitious values
are fi−1,j and fi,j+1. We obtain the explicit discretization equations of four derivatives as

(30)

(31)

(32)

(33)

We compute fi−1,j and fi,j+1 by substituting above equations into Eq. (21) and Eq. (22).

2.2.4 On-interface topological variations—An important issue in the construction of
elliptic interface schemes is to make sure that the designed scheme is robust for all possible
geometric situations and topological variations. As 2D schemes provide some of the
necessary cornerstones for 3D schemes, it is important to systematically examine all
possible topological variations. Here, we develop MIB schemes for two-material interfaces
with all possible 2D on-interface topological variations. For each scheme, if we denote
points in Ωa as inside the interface and in Ωb as outside the interface, the basic topological
relation remains the same when we switch all the points inside and outside. Similarly, the

basic topological relation remains the same if we rotate the axis clockwisely by .
Therefore, our MIB scheme for this particular topology should work for all of these
variations. For this reason, we can summarize all the possible on-interface situations in a
systematical manner.

For all the on-interface schemes, it is easy to see that two mesh lines intersect with the
interface at one node point. Apart from this special node point, all likely involved points in
our schemes are eight adjacent points which all locate on these two meshlines. On each side
of the interface, if two adjacent grid points are in the same domain, we call these two points
a pair. We can have at most four pairs in a 2D domain. Patterns with three or four pairs are
obviously easy to resolve. We classify all possible topological variations which have less
than three pairs into three categories. In the first category, we have exactly two pairs on
meshlines near the special node, see Fig. 4. Additionally, in the second category, we have
only one pair of on meshline grid points near the special node, see Fig. 5. Finally, in the last
category, there is no pair of on meshline grid points near the special node, see Fig. 6. In all
categories, if the fictitious values in a gird point pattern can be solved by using one of
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aforementioned six on-interface schemes, we encircle the required grid points in such a
pattern by manganviolett dash lines. No manganviolett dash lines are presented if the
fictitious values in a gird point pattern cannot be solved by using one of aforementioned six
on-interface schemes. In this situation, we need to utilize additional disassociation strategy,
which was discussed in our earlier work [71]. Essentially, in case one cannot find required
auxiliary points in constructing an interface scheme from a given direction, one may make
use of the fictitious values obtained either from an interface scheme in another direction or
from an interface scheme at another nearby location.

For the first category, there are four different types. The first type has two pairs of grid
points which are on the same side of the interface but on different meshlines as depicted in
Figs. 4(A). Then, depending on the interface morphology, there can be three different
topological variations as shown in Fig. 4(A1) – 4(A3). Among these three variations, the
case of Fig. 4(A1) can be resolved without using an interface scheme. While fictitious
values in pattern Fig. 4(A3) can be solved by using one of the aforementioned six on-
interface schemes. Only the fictitious values in pattern Fig. 4(A2) needs the disassociation
strategy [71].

The second type of the first category has two pairs of grid points which are on the different
sides of the interface and on different meshlines as depicted in Fig. 4(B). Depending on the
interface morphology, there can be three different topological variations as shown in Figs.
4(B1) – 4(B3). Among these three variations, the cases of Figs. 4(B1) and Fig. 4(B3) can be
can be solved by using one of the aforementioned six on-interface schemes. However, the
fictitious values in pattern Fig. 4(B2) requires the use of the disassociation strategy [71].

In the third type of the first category, two pairs of grid points are on the same side of the
interface and on the same meshline as depicted in Fig. 4(C). There are three different
topological variations as shown in Figs. 4(C1) – 4(C3). Among them, the case of Fig. 4(C1)
can be solved by using one of the aforementioned six on-interface schemes. Moreover, the
case of Fig. 4(C3) can be resolved without using an interface scheme. Once again, we use
the disassociation strategy to solve fictitious values in pattern Fig. 4(C3) [71].

Finally, the last type of the first category has two pairs of grid points which are on the
different sides of the interface but on the same meshline as depicted in Fig. 4(D). One can
see that there are three different topological variations as shown in Figs. 4(D1) – 4(D3). All
of these cases can be resolved by using one of the aforementioned six on-interface schemes.

For the second category, there are six different topological variations for a pair in the
computational domain, as shown in Figs. 5(E1) – 5(E6). The pattern in Fig. 5(E1) can be
solved without the use of an interface scheme. Cases in Figs. 5(E2), 5(E4) and 5(E6) can be
easily solved by using the aforementioned six on-interface schemes. The other two cases,
Figs. 5(E3) and 5(E5) are readily resolved by the disassociation strategy [71].

In the last category, we do not have any pair in the computational domain as illustrated in
Figs. 6. Interface schemes are required to resolve the first three distinguished situations.
Cases in Figs. 6(F1) and 6(F2) can be solved by using the aforementioned six on-interface
schemes. The third case as depicted in Fig. 6(F3) can be resolved by our disassociation
strategy [71]. No interface scheme is needed in the case of Fig. 6(F4).

3 Theory and algorithm for three-material interfaces
This section presents new MIB methods for solving elliptic equations with discontinuous
coefficients in three-material subdomains. These equations are solved in a 2D setting for the
first time.
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The three-material interface problem is that we have two interfaces Γ1 and Γ2 to divide the
open bounded domain Ω ∈ ℝ2 into three subdomains Ωa, Ωb and Ωc, such that Ω = Ωa ∪ Ωb

∪ Ωc. We assumed that the boundary ∂Ω and interfaces Γ1 and Γ2 are Lipschitz continuous
and there are two piecewise smooth level-set functions Φ1 and Φ2 on Ω, such that Γ1 = {x, y|
Φ1 = 0; x, y ∈ Ω}, Γ2 = {x, y|Φ2 = 0; x, y ∈ Ω}, Ωa = {x, y|Φ1 ≥ 0; x, y ∈ Ω}, Ωb = {x, y|Φ2
≥ 0; x, y ∈ Ω} and Ωc = {x, y|Φ1 ≤ 0; Φ2 ≤ 0; x, y ∈ Ω}. We seek the solution of the 2D
elliptical equation with variable coefficient β(x, y)

(34)

where β(x, y) maybe discontinuous at interfaces Γ1 and Γ2. We denoted function β(x, y) in
three different domains Ωa, Ωb and Ωc as βa(x, y), βb(x, y) and βc(x, y), respectively. All the
points on Γ1 are classified into following three categories.

Category 1. The points in this category belong to those parts of Γ1 that do not intersect or
touch Γ2. These points are denoted as o1. Then ∃ ε1 > 0, ∀ ε < ε1, and ε > 0, there exists an
open disk O(o1, ε), such that O(o1, ε) ∈ Ωa ∪ Ωc. Jump conditions are given as

(35)

(36)

Here, superscripts, a and c, denote the limiting values of a function at point o1 from Ωa and
Ωc, respectively.

Category 2. The points in this category locate in the parts of Γ1 that overlap with Γ2 and do
not include the critical initial points where Γ1 just intersects Γ2. These points are denoted as
o2. Then ∃ ε1 > 0, ∀ ε < ε1, and ε > 0, there is a disk O(o2, ε), such that O(o2, ε) ∈ Ωa ∪ Ωb.
Jump conditions are given as

(37)

(38)

Category 3. The points in this category are the initial contacting points when Γ1 and Γ2

intersect, cross or meet each other. In other words, these points are the junction points of
three subdomains. These points are denoted as o3. Then ∀ ε > 0, ∃ oi ∈ Ωi, (i = a, b, c), such
that oi ∈ O(o3, ε). For points in Category 3, we may have six jump conditions, they define
the interface relations between Ωa and Ωb, between Ωa and Ωc, and between Ωb and Ωc. To

make it clear, we use notation . Jump conditions are expressed
as

(39)

Xia et al. Page 13

J Comput Phys. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(40)

(41)

(42)

(43)

(44)

There is no suitable definition for the unit normal vector (or vectors) at these junction points.
It is necessary to have consistent jump conditions at junction points. However, choices of
the unit normal vectors in the jump conditions are not important. Therefore, in our scheme,
we just denote unit normal vectors between different domains as n1, n2, n3.

For all the three categories above, we can differentiate the jump condition [u]ij = ui − uj

along the tangential direction, here i, j represent different domains (i ≠ j; i, j = a, b, c). If the
unit normal vector is defined as n⃗ = (cos θ, sin θ), then the unit tangential vector is τ⃗ = (−sin
θ, cos θ). We can have the third set of jump conditions

(45)

The above discussions are for points on Γ1. For points on Γ2, we can carry out similar
classifications and provide other sets of jump conditions.

In this work, Ωa, Ωb, Ωc are colored in yellow, green and red, respectively. Real challenges
are due to geometric singularities, such as multiple junctions, sharp edges and sharp tips.
Moreover, two interfaces may cross one meshline simultaneously within a grid spacing. In
order to solve different situations encountered in three domain problems, we propose three
different schemes.

3.1 Three-material interface scheme 1
For the three-material interface problems, if irregular points and auxiliary points are all in
adjacent two domains, we just need to use the corresponding two domain schemes based on
the geometry property. However, when irregular points and auxiliary points locate in three
different domains, there is no existing method to deal with these problems yet. We develop
new MIB schemes for these situations. In Fig. 7, the singular point (i, j) is in Ωc and the
adjacent points (i − 1, j) and (i + 1, j) locate in another two different domains, Ωa and Ωb.
We find that there are two interfaces beside point (i, j) and they intersect with the grid
meshline at point o and o′. If we solve the problem by using the central difference scheme,

we need four fictitious values . The superscripts here denote the
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directions of the extension. For example,  denotes the extension of the function value

from Ωc through point o to point (i − 1, j) and  denotes extension of the function value

from Ωb through point o′ to point (i, j). Here  are two different fictitious values.
In Section 2.1, we have constructed three linear equations by enforcing two sets of interface
jump conditions, and one more linear equation is left behind. Therefore, we just need to
incorporate this equation and solve four fictitious values together. We give a detailed
description below.

For point o, using ui−2,j, ui−1,j, ui,j and fictitious values , we can discretize
the uao, uco,  explicitly as

(46)

According to Fig. 7,  is to be discretized. We need six auxiliary points ui−3,j+1, ui−2,j+1,
ui−1,j+1, ui−3,j+2, ui−2,j+2 and ui−1,j+2. The value of  can be represented as

(47)

Substituting Eq. (46) and Eq. (47) into Eq. (7), we attain two different linear equations as

(48)
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(49)

Here the unit normal vector at point o is n⃗ = (cos θo, sin θo),
.

Therefore, we obtain two linear equations by using the jump conditions of interface
intersecting point o. For point o′, we can implement the same idea, and discretize ubo′, uco′,

 explicitly as

(50)

According to Fig. 7,  is to be discretized. We need other six auxiliary points ui+1,j+1,

ui+2,j+1, ui+3,j+1, ui+1,j+2, ui+2,j+2 and ui+3,j+2. Then  can be represented as

(51)

Substituting Eq. (50) and Eq. (51) into Eq. (7), we attain other different two linear equations
as

(52)
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(53)

Here the unit normal vector at point o′ is . Interpretations for

, etc. are very similar to their counterparts in earlier descriptions and are
omitted here. Therefore, we have four equations, Eqs. (48), (49), (52) and (53). We can
solve four fictitious values from these four equations and attain the expressions of node
values and jump conditions as

(54)

where vector {U}23×1 consists of 17 function values and 6 jump conditions

(55)

Here, {C}3×23 is the coefficient matrix and its components are the combination of weights
and trigonometric functions of unit normal vectors at points o and o′. Finally, one can
discretize (βux)x at irregular points (i − 1, j), (i, j), and (i + 1, j) as
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(56)

The main idea of Three-material interface scheme 1 is to use the information at two interface
intersecting points together to extend the function values beyond each individual subdomain
and attain fictitious values. More attention should be paid to fictitious values at the central
point like (i, j) in Fig. 7 as two fictitious values at this point are different. We need to be
careful to use correct fictitious values to discretize (βux)x.

3.2 Three-material interface scheme 2
In three-material interface problem, when interfaces intersect with the grid mesh, we can
make use of the disassociation strategy [71] and/or on-interface schemes [66], depending on
the geometry. The disassociation strategy can be used to solve fictitious values for
discretization no matter how they are calculated. Therefore, if we can compute the fictitious
values by using interface conditions at nearby locations, we can directly implement the
central difference scheme. For example, for situations in Fig. 8(a) and Fig. 8(b), we just
need to treat the interface intersecting node as a node in Ωc and make use of the
disassociation strategy at points (i − 1, j) and (i + 1, j). However, for situations in Fig. 9(a)
and Fig. 9(b), the simple disassociation approach dose not work. To solve this kind of
problems, a disassociation approach should be implemented at points (i, j + 1) and (i, j − 1).
Two fictitious values (i, j + 1) and (i, j − 1) are then treated as secondary auxiliary points.
Additionally, On-interface scheme 4 is used to attain the fictitious values we need. We give
a detailed description below. In Fig. 9(b), if we treat the interface intersecting node (i, j) as a
point in Ωa, that is , then using the jump condition between Ωa and Ωb, we can obtain

. The  here means the jump value between Ωa and Ωb at point o. When
we introduce a fictitious value fi+1,j, which is the extension of function in Ωa to point (i + 1,
j), we can discretize  explicitly as

(57)

For points (i, j + 1) and (i, j − 1), we can calculate their fictitious values from both sides of
the interface using two sets of jump conditions, as we have mentioned in Three-material
interface scheme 1. We only choose the fictitious values from one side, so that fi,j−1 and
fi,j+1 are the extensions of the function values from the same domain. Here we choose two
fictitious values from Ωa. As a result, it is easy for us to obtain an explicit representation of

 in terms of fi,j−1, fi,j+1 and ui,j as

(58)

By substituting Eq. (57) and Eq. (58) into Eq. (7), we have
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(59)

here . We
can calculate fi+1,j from Eq. (59) as

(60)

where {C} = {{C1}, {C2}, {C3}} and .
Although we write {U′} as a vector {U′}54×1 including 45 function values and 9 jump
conditions, some of the function values may have been repeated counted, as we have
different ways of choosing auxiliary points for fictitious value fi,j−1 and fi,j+1. Therefore, the
number of the independent components is usually less than 54. Moreover, if we pay more
attention to Fig. 9(b), we can find out that if the unit normal vector at the point o from Ωa is
defined as n⃗ = (cos θ, sin θ) = (1, 0), Eq. (59) can be simplified as:

(61)

We can easily solve fi+1,j from the equation,

(62)

So one can discretize (βux)x and (βuy)y at Ωa point (i, j) as

(63)

3.3 Three-material interface scheme 3
When two interfaces intersect with meshlines within a grid spacing, there will be a smallest
acute angle limitation in the 2D domain for three-material situation as depicted in Fig. 10.
When the angle is smaller than 2 arctan(1/2), it is always difficult for us to find enough
auxiliary points even when we implement the disassociation strategy. However, if the angle
is bigger than 2 arctan(1/2), we can find out that at least one of points (i − 1, j + 1), (i, j + 1),
(i + 1, j + 1), (i + 2, j + 1), (i − 1, j − 1), (i, j − 1), (i + 1, j − 1) and (i + 2, j − 1) must locate
in Ωc. For example, here point (i, j − 1) locates in Ωc. Since point (i, j) is an irregular point
in Ωa, we can obtain fictitious value . Then we implement the disassociation strategy and
create a new scheme as follows.
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For situation in Fig. 10, we can obtain fictitious value  by using the information of a pair
of irregular points (i, j − 1) and (i, j). In order to use the jump condition at o and o′ to
implement the center difference scheme, we need to calculate two fictitious values

. To make it clear,  means the fictitious value at point (i + 1, j) and it is an
extension of the function value from domain Ωa. Two more fictitious values from Ωc are
needed and they are combined with fictitious value  to interpolate uco, uco′, .
These two fictitious values are located adjacent to  and they can be either

. Let us just choose  in the computation
below.

For point o, we can discretize uao, uco,  by using function values ui−1,j and ui,j,
and fictitious values .

(64)

Depending on the geometry, we can choose suitable auxiliary points to discretize .
Here we need six more auxiliary values ui−3,j−1, ui−2,j−1, ui−1,j−1, ui−2,j+1, ui−1,j+1 and ui,j+1.
Value  can be represented as follows

(65)

By substituting Eq. (64) and Eq. (65) into Eq. (7), we attain two different linear equations as

(66)
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(67)

Therefore, we obtain two linear equations by using the information of interface intersecting
point o. For point o′, we can make use a similar idea and discretize ubo′, uco′, 
explicitly as

(68)

According to Fig. 10,  is to be discretized. We need other six auxiliary points ui+2,j−1,

ui+3,j−1, ui+4,j−1, ui+1,j+1 ui+2,j+1 and ui+3,j+1. Then  can be represented as

(69)

(70)

Substituting Eq. (68) and Eq. (69) into Eq. (7), we attain other two linear equations

(71)
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(72)

As such, we have attained four equations Eq. (66), Eq. (67), Eq. (71) and Eq. (72). Here 
has already been expressed in terms of function values and jump conditions. So we just need
to calculate four other fictitious values and their expressions can be written as

(73)

Here vector {U}45×1 consists of 17 function values and 6 jump conditions from , and
other 16 function values and 6 jump conditions as

(74)

If we denote . Here
{C}4×45 is the coefficient matrix and its components are the combination of weights and
trigonometric functions of the unit normal vectors. Finally, one can discretize (βux)x at
irregular points (i − 1, j), (i, j) and (i + 1, j) as
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(75)

4 Numerical studies
In this section, we examine the performance of the proposed MIB schemes for solving the
Poisson equation with geometric singularities of two-material interfaces and three-material
interfaces. Section 4.1 presents two case studies about two-material interfaces. The
geometry of Case 1 has many sharp tips and it is designed to test the proposed two-material
interface scheme. In Case 2, the vertex of the triangular interface intersects with a grid node.
This case is used to examine the on-interface schemes proposed in this work. Five numerical
tests of three-material interfaces are presented in Section 4.2. We construct a number of
different geometric shapes, solution functions and coefficient contrasts to test the robustness
and demonstrate the efficiency of our three-material MIB schemes.

The standard L∞ and L2 error measurements are employed in this section. For all test cases,
the computational domains are set to be the square of Ω = [−1, 1] × [−1, 1]. Basic
geometries are depicted on 20 × 20 meshes and our numerical results are presented on 80 ×
80 meshes. The Dirichlet boundary condition is assumed in all the cases, although it is also
easy to implement other boundary conditions. In all the test studies, the designed second
order accuracy is confirmed.

4.1 Two-material interface problems
New two-material interface schemes are validated in this subsection. We designed two test
examples to demonstrate the performance of our MIB method.

Case 1. In this case, the 2D Poisson equation (1) is solved. To specify the interface, we
design the level set function ϕ(x, y)

(76)

so that Γ = {(x, y)|Φ = 0; x, y, ∈ Ω}, Ωa = {(x, y)|Φ ≥ 0; x, y, ∈ Ω}, Ωb = {(x, y)|Φ ≤ 0; x, y,
∈ Ω}. The discontinuous coefficients are given by

(77)

The solution at two different domains is designed as

(78)

In this case, we test our two-material interface schemes. Figure 11 presents the geometric
shape and computed results for this problem. It is seen that on a 20 × 20 grid, except for the
origin, which is an on-interface node and treated as an point in Ωa, all the points on the xy
coordinates are irregular points. No matter how one decreases the mesh size, grid points near
the origin are still irregular and need special treatments. Table 1 lists L∞ and L2 errors and
their numerical orders. It is seen that the second order accuracy is confirmed.
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Case 2. In this case, the 2D Poisson equation (1) is solved and Ωa consists of two parts
which can be described by two level set functions

(79)

(80)

Ωa = {(x, y)|ϕ1(x, y) ≥ 0; x, y, ∈ Ω}∪{(x, y)|ϕ2(x, y) ≥ 0; x, y, ∈ Ω}, and Ωb = {(x, y)|ϕ1(x, y)
≤ 0; x, y, ∈ Ω}∩{(x, y)|ϕ2(x, y) ≤ 0; x, y, ∈ Ω}. The basic geometry is illustrated in Fig. 12.
The discontinuous coefficients are given by

(81)

The solution at two different domains is designed as

(82)

When the grid is 20 × 20, On-interface scheme 4 is needed because the interface intersects
with a node point of the mesh. As for the unit normal vector of the interface intersecting
node, we use  in our computation. However, for the singular point, the
way of choosing the unit normal vector does not matter too much as long as the
corresponding jump condition at normal vector is given accordingly. In a 20 × 20 grid if we
change the unit normal vector to n⃗ = (0, −1), L∞ error changes from 0.1973 to 0.1956.
Therefore, we conclude that On-interface scheme 4 works well for the singular point. Table
2 lists computed L∞ and L2 errors. The second order convergence is observed.

4.2 Three-material interface problems
This subsection is devoted to validate the proposed MIB schemes for three-material
interfaces. We consider a variety of geometric situations, topological variations, coefficient
contrasts and solution types to illustrate the utility, test robustness, and demonstrate the
accuracy of our method in five cases.

Case 3. In this case, the 2D Poisson equation (34) is solved. Now domain Ω is divided into
three subdomains Ωa, Ωb and Ωc by two interfaces Γ1 and Γ2, which can be described by
two level set functions ϕ1(x, y) and ϕ2(x, y)

(83)

(84)
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such that Ωa = {(x, y)|ϕ1(x, y) ≥ 0; x, y, ∈ Ω}, Ωb = {(x, y)|ϕ2(x, y) ≥ 0; x, y ∈ Ω}, and Ωc =
{(x, y)|ϕ1(x, y) ≤ 0; ϕ2(x, y) ≤ 0; x, y, ∈ Ω}. We test the robustness of our scheme by
choosing different combinations of β values and solution types. Here six different
combinations of solutions and β values are studied

• Case 3(a):

(85)

(86)

(87)

(88)

• Case 3(b):

(89)

(90)

(91)

(92)

• Case 3(c):

(93)

(94)

(95)

(96)
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• Case 3(d):

(97)

(98)

(99)

(100)

• Case 3(e):

(101)

(102)

(103)

(104)

• Case 3(f):

(105)

(106)

(107)

(108)

The geometry and solutions are illustrated in Fig. 14. Normally, when the singular point is
located on a mesh node, the definition of its unit normal vector is necessary for our
computation. So for the origin, the unit normal vector should be specified for three sets of
jump conditions (between Ωa and Ωb, between Ωa and Ωc, and between Ωb and Ωc) as
indicated in Eqs. (39)–(44). However, Three-material interface scheme 2 only makes use of
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the normal jump condition between Ωa and Ωb. Based on the geometry, we choose the unit
normal vector to be n⃗ = (1, 0). We have test different choices of the unit normal vector. For
example, if we change it to  for Case 3(a), the L∞ error will change from
0.5172 to 0.5177. Therefore, we conclude that our scheme works well for the singular point.

Case 3(a) is used to demonstrate that the proposed three-material interface schemes are
stable for highly oscillatory solutions. In Case 3(b), we study the situation when the beta
value in different subdomains is position dependent, and it may be discontinuous at the
interfaces. From Case 3(c) to Case 3(f), we test the potential of our schemes for highly
oscillatory solution and high coefficient contrast ratios. In Case 3(c), it is seen that for
slowly oscillatory solutions, even when the coefficient contrast ratios between different
domains are very high, the proposed schemes can achieve second order accuracy as
indicated by Tables 3 and 4.

Case 3(d) is used to test moderately oscillatory solution situations. In Case 3(e) and Case
3(f), we test sensitivity of the solutions in subdomains. It is seen that Ωc can have more
potential for highly oscillatory solutions combined with high contrast coefficients. This is
mainly due to the reason that in There-material scheme 2, the singular point on a grid node
is treated as a point in Ωa, which decreases the accuracy when the solution and coefficient in
Ωa are challenging. For each case, computed L∞ and L2 errors are given. The designed
second order accuracy is observed for all the situations.

Case 4. In this case, one solves the 2D Poisson equation (34). Interfaces and subdomains are
prescribed by two piecewise smooth level set functions to outline

(109)

and

(110)

We employ the following discontinuous coefficients

(111)

The solution at three different domains is designed as

(112)

Case 4 is designed to test the disassociation strategy of resolving fictitious values. The
geometry of the problem is illustrated in Fig. 15. Two vertexes of Ωa are treated as points in
Ωc and suitable disassociation schemes are used. Presented in Table 5, computed L∞ and L2
errors indicate the second order accuracy.
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Case 5. In this case, the 2D Poisson equation (34) is solved. We design two piecewise
smooth level set functions as

(113)

and

(114)

for interfaces and subdomains. Let us choose the discontinuous coefficients as

(115)

The solution at three different domains is given by

(116)

In this case, the performance of Three-material interface scheme 3 is tested. It is seen that,
on a 20 × 20 grid, the meshline between points (1, 1) and (2, 1) goes through three
subdomains, as depicted in Fig. 16. Therefore, we need to employ the disassociation strategy
and make use of four fictitious values together. Table 6 confirms the designed accuracy.

Case 6. In this case, we solve the 2D Poisson equation (34) with two piecewise smooth level
set functions

(117)

and

(118)

The domain geometry and interfaces are depicted Fig. 17. The discontinuous coefficients are
prescribed by

(119)

The solution at three different domains is designed as

(120)
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In this case, two singular points locate on the same meshline as shown in Fig. 17. Therefore,
no special scheme is needed. But it is difficult to find suitable auxiliary points to
approximate uy. This case is also used to show that the challenging situation when two
interfaces intersect with same meshline within a grid spacing can be avoid by choosing a
suitable grid. However, more general situations are discussed in earlier test cases. Table 7
lists computed L∞ and L2 errors. Obviously, the second order accuracy is achieved.

Case 7. In this case, we solve the 2D Poisson equation (34). Let us choose piecewise smooth
level set functions as

(121)

and

(122)

The discontinuous coefficients are allowed to vary over different subdomains

(123)

The solution at three different domains is designed as

(124)

In this case, two interfaces intersect with same meshline in a grid spacing. We have to use
Three-material interface scheme 3. As shown in Fig. 18, this case is used to test the critical
angle of 2 tan−1(1/2) and the situations when beta value in different domains is position
dependent and may be discontinuous at the interfaces. Table. 8 lists computed L∞ and L2
errors. Our results demonstrate the second order accuracy of the MIB method.

Case 8. According to Grisvard [21], when the interface has geometric singularities, such as
corners, tips, and wedges, the solution of the Poisson equation is usually singular too

(125)

where k is a wavenumber and ω is the angle parameter of the singular geometry. This
solution diverges for certain k values as r → 0.

To test the performance of the present MIB method for this class of problems, we use a pair
of level set functions to define three-material domains as shown in Fig. 19
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(126)

and

(127)

The discontinuous coefficients in different subdomains are

(128)

We consider a solution that takes the form of Eq. (125)

(129)

where we choose  and ω = π/3. Obviously, this solution has an unbound first order
derivative. For this kind of problems, Galerkin formulations can handle it directly but
collocation formulations can not. A standard technique is to multiply the solution with an
appropriate polynomial factor [66], which can be viewed as a transformation of the solution.
This approach is also employed in the present work to deal with the singular solution at the
geometric singularity.

We define a complex functions w in subdomain Ωb with real part,

(130)

and imaginary part,

(131)

Then the ub can be calculated through the expression:

(132)

Functions w1 and w2 are harmonic functions. After taking care of the geometry singularity
by the proposed MIB method, the solution u and w can be easily obtained. We list the
computed L∞ and L2 errors of w2 in Table 9. Clearly, the second order accuracy is achieved.
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5 Concluding remarks
The present paper presents the first known second order method for solving two-
dimensional (2D) elliptic partial differential equations with discontinuous coefficients
resulted from modeling three-material interfaces. The matched interface and boundary
(MIB) method is developed for this class of problems. We start from a completion of our
earlier 2D MIB schemes for all possible geometric situations and topological variations.
This completion lays some required technical foundations for us to construct new MIB
schemes for three-material interface problems. Three new three-material interface schemes
are proposed. We consider a number of topological variations in three-material settings. The
validity of our new algorithms are extensively tested over a large number of test cases with
various geometric singularities, material coefficients and solution types. The designed
second order accuracy in both L∞ and L2 norms are confirmed in our numerical
experiments.

Due to the enormous practical importance of multi-material interface problems, it is
expected that there will be more attention to this class of problems. First, second order
methods for solving elliptic PDEs with four- and five-material interfaces can be constructed
at some special interface geometries. However, for general geometric singularities, it will be
very difficult to design second order schemes. We expect that four- and five-material
interfaces do not occur as frequently as three-material interfaces in practical applications.
Additionally, for real-world applications, it is important to develop elliptic interface schemes
for multi-material interfaces in 3D domains. This problem is under our consideration.

The remaining major challenges in the field are as follows. First, it is still enormously
challenging to construct higher-order elliptic interface schemes in 1D, 2D and particularly in
3D domains. It is well known that stable and robust high order schemes are especially
important to numerical efficiency. In 1D domains, schemes of orders up to sixteen were
demonstrated in the MIB method [68, 72]. No higher order schemes were reported to our
knowledge. It appears that interface schemes of orders higher than 16 may not be
numerically stable. This aspect needs to be investigated further. In 2D domains, schemes of
orders up six have been reported for curved interfaces [72]. The MIB method may be able to
provide even higher-order 2D elliptic schemes for some interfaces with relatively small
curvatures, however, no such result has been constructed yet. We expect that it will be
extremely difficult, if not impossible, to construct 6th order schemes for 2D elliptic
equations with arbitrarily curved interfaces. In 3D domains, the highest order elliptic
interface schemes constructed so far is the 6th order MIB method for some special
geometries, i.e., spherical and ellipsoid interfaces [65], to our knowledge. The construction
of elliptic interface methods of orders higher than six for 3D arbitrarily curved smooth
interfaces is still a challenging open problem. We are not sure whether such a scheme is
feasible numerically. If it is indeed feasible, it is interesting to know whether it is stable. As
most real-world applications are in 3D domains, it is essentially important to make progress
in this open problem.
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Figure 1.
Scheme for two-material interfaces. In this figure as well as all other figures Ωa is marked
with yellow color and Ωb is denoted by green color.
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Figure 2.
On-interface schemes 1, 2 and 3 proposed in our earlier work [66]. The interface passes
through point (i, j). All the green dots are on the same side of the interface and all the red
dots are on the other side of the interface.

Xia et al. Page 36

J Comput Phys. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
On-interface schemes 4, 5 and 6. The interface passes through node point (i, j). All the green
dots are on the same side of the interface and all the red dots are on the other side of the
interface.
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Figure 4.
The situations that there are two pairs of grid points surrounding the interface intersecting
node of the grid. The cases encircled by manganviolett dash lines can be resolved by using
one of six on-interface schemes.
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Figure 5.
The situations that there is one pair of grid points surrounding the interface intersecting node
of the grid. The cases encircled by manganviolett dash lines can be resolved by using one of
six on-interface schemes.
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Figure 6.
The situations that there is no pair of grid points surrounding the interface intersecting node
of the grid. The cases encircled by manganviolett dash lines can be resolved by using one of
six on-interface schemes.
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Figure 7.
Three-material interface scheme 1. The left yellow area is Ωa, the right green area is Ωb, the
middle red area is Ωc.
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Figure 8.
Three-material interface scheme 2. The left yellow area is Ωa, the right green area is Ωb, the
middle red area is Ωc.
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Figure 9.
Three-material interface scheme 2. The left yellow area is Ωa, the right green area is Ωb, the
middle red area is Ωc.
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Figure 10.
Three-material interface scheme 3: The left yellow area is Ωa, the right green area is Ωb, the
middle red area is Ωc.
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Figure 11.
Basic geometry on a 20 × 20 grid (Left) and the computed solution on 80 × 80 grid (Right)
for Case 1.
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Figure 12.
Basic geometry on a 20 × 20 grid (Left) and the computed solution on a 80 × 80 grid (Right)
for Case 2.
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Figure 13.
Basic geometry on 20 × 20 mesh for Case 3.
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Figure 14.
Illustration of numerical solutions on the 80 × 80 mesh for Case 3.
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Figure 15.
Basic geometry on a 20 × 20 grid (Left) and the computed solution on a 80 × 80 grid (Right)
for Case 4.

Xia et al. Page 49

J Comput Phys. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 16.
Basic geometry on a 20 × 20 grid (left) and the computed solution on a 80 × 80 grid (right)
for Case 5.
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Figure 17.
Basic geometry on a 20 × 20 mesh (left) and the numerical solution on 80 × 80 mesh (right)
for Case 6.
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Figure 18.
Basic geometry on 20 × 20 mesh (left) and the computed solution on 80 × 80 mesh (right)
for Case 7.
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Figure 19.
Basic geometry on 20 × 20 mesh (left) and the computed solution on 80 × 80 mesh (right)
for Case 8.
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Table 1

Numerical test of new two-material interface schemes (Case 1).

nx × ny L∞ Order L2 Order

20 × 20 3.762e-1 8.605e-2

40 × 40 6.804e-2 2.47 1.778e-2 2.27

80 × 80 2.413e-2 1.50 6.302e-3 1.50

160 × 160 4.653e-3 2.37 9.777e-4 2.69
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Table 2

Numerical test of new two-material interface schemes (Case 2).

nx × ny L∞ Order L2 Order

20 × 20 1.973e-1 3.504e-2

40 × 40 1.645e-2 3.58 4.666e-3 2.91

80 × 80 2.202e-3 2.90 9.389e-4 2.31

160 × 160 8.049e-4 1.45 3.093e-4 1.60
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Table 5

Errors for three-material interface schemes (Case 4).

nx × ny L∞ Order L2 Order

20 × 20 2.334e-1 7.432e-2

40 × 40 4.102e-2 2.51 1.246e-2 2.58

80 × 80 9.859e-3 2.06 3.116e-3 2.00

160 × 160 2.429e-3 2.02 8.104e-4 1.94
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Table 6

Errors for three-material interface schemes (Case 5).

nx × ny L∞ Order L2 Order

20 × 20 2.000e-1 2.924e-2

40 × 40 5.010e-2 2.00 6.851e-3 2.09

80 × 80 6.168e-3 3.02 1.328e-3 2.37

160 × 160 6.443e-4 3.26 1.621e-4 3.03
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Table 7

Errors for three-material interface schemes (Case 6).

nx × ny L∞ Order L2 Order

20 × 20 3.786e-2 1.086e-2

40 × 40 8.523e-3 2.15 2.824e-3 1.94

80 × 80 2.083e-3 2.03 7.504e-4 1.91

160 × 160 5.492e-4 1.92 2.014e-4 1.90
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Table 8

Errors for three-material interface schemes (Case 7).

nx × ny L∞ Order L2 Order

20 × 20 7.466e-2 2.114e-2

40 × 40 1.334e-2 2.48 3.095e-3 2.77

80 × 80 3.200e-3 2.06 9.461e-4 1.71

160 × 160 7.596e-4 2.07 2.548e-4 1.89
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Table 9

Errors for three-material interface schemes (Case 8).

nx × ny L∞ Order L2 Order

20 × 20 1.646e-1 2.536e-2

40 × 40 4.062e-2 2.02 6.217e-3 2.03

80 × 80 1.057e-2 1.94 1.858e-3 1.74

160 × 160 2.781e-3 1.93 5.038e-4 1.88
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