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Abstract
Importance of the field—PubChem is a public molecular information repository, a scientific
showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of
unique chemical structures of compounds (CID) derived from nearly 70 million substance
depositions (SID), and contains more than 449,000 bioassay records with over thousands of in
vitro biochemical and cell-based screening bioassays established, with targeting more than 7000
proteins and genes linking to over 1.8 million of substances.

Areas covered in this review—This review builds on recent PubChem-related computational
chemistry research reported by other authors while providing readers with an overview of the
PubChem database, focusing on its increasing role in cheminformatics, virtual screening and
toxicity prediction modeling.

What the reader will gain—These publicly available datasets in PubChem provide great
opportunities for scientists to perform cheminformatics and virtual screening research for
computer-aided drug design. However, the high volume and complexity of the datasets, in
particular the bioassay-associated false positives/negatives and highly imbalanced datasets in
PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem
datasets and development of virtual screening models for bioactivity and toxicity predictions are
also reviewed.

Take home message—Novel data-mining cheminformatics tools and virtual screening
algorithms are being developed and used to retrieve, annotate and analyze the large-scale and
highly complex PubChem biological screening data for drug design.
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1. Introduction
PubChem is a scientific showcase of the Molecular Libraries Program (MLP), a US National
Institutes of Health (NIH) Roadmap Initiative (http://mli.nih.gov/mli/) that aims to enhance
chemical biology efforts through high-throughput screening (HTS) so as to identify small
molecule probes effective at modulating a given biological process or disease. The
PubChem database (http://PubChem.ncbi.nlm.nih.gov) was constructed in 2004 to facilitate
information exchange and data sharing among the ten NIH-funded centers of the Molecular
Libraries Screening Centers Network (MLSCN), which later was transformed to Molecular
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Libraries Probe Production Centers Network (MLPCN) in 2008. The MLPCN is composed
of three different types of centers, i.e., Comprehensive Centers, Specialized Screening
Centers and Specialized Chemistry Centers1.

Along with comprehensive online information on small molecule chemical structures and
corresponding biological activity data, the PubChem database has now grown into a
powerful public molecular information resource with online data analysis and subsetting
tools to facilitate high-throughput/high-content screening (HTS/HCS) of small molecules
that modulate the bioactivity of various targets. Maintained by the National Center for
Biotechnological Information (NCBI)2, the PubChem database system consists of three
primary relational databases: Substance (substance ID or SID), Compound (compound ID or
CID) and Bioassay (assay ID or AID), which correspond to the three major query functions
as shown in Figure 1. As of July 2010, the PubChem Substance database contains
69,170,468 entries of mixtures, extracts, complexes and uncharacterized substances; the
PubChem Compound database contains 27,443,646 records of unique chemical structure
compounds derived from the substance depositions; and the PubChem Bioassay database
has 449,401 records. These data records were deposited by screening centers funded by the
NIH Molecular Library Program, academic institutions, and industrial research
organizations as illustrated in Figure 1A. The update list is referred to see the PubChem
substance and bioassay data source information website 3.

As PubChem continues to grow rapidly in the data collections as well as online data-mining
analysis capability, research opportunities also emerge for the scientific community to
exploit the available structural and biological data to enhance understanding and
investigating the structure activity relationships (SAR), pharmacology, metabolism and
toxicology profiles of target compounds, both in vitro and in silico. In the meantime, novel
data-mining cheminformatics tools and virtual screening algorithms are being developed and
used to retrieve, annotate and analyze the large-scale and highly complex PubChem
biological screening data.

Since PubChem was launched, there has been rapidly increasing the number of research
publications using PubChem chemical library and bioassay data for cheminformatics data-
mining studies, virtual screening, SAR, in silico design, and on the like (Figure 2). The
numbers of the PubChem-related research publications quickly increased from only a total
of 32 PubChem-related articles in 2005 to 119 in 2009. A total of 459 PubChem-related
articles have been published as of July 2010. Figure 2 provides a brief look at all 459
research publications (405 journal articles and 52 meeting abstracts) published where the
word “PubChem” is used as a query. The associated research subjects were also used to
survey the PubChem-related research fields. Until July 2010, there have been approximately
68 publications related to computational studies of PubChem data in the interested fields
related to cheminformatics, data annotation, virtual screening and toxicity prediction
research studies. There have also been a few PubChem review publications for which the
reader is referred to the detailed reports on the PubChem database platform 4-6, chemical
probe identities 7, 8, bioassay resources and bioactivity results 4, 9. The focus of this present
review article is to give readers a most recent review of the PubChem database and the
published PubChem library data-mining and virtual screening/in silico design research
studies.

2. PubChem dataset collections
Currently (July, 2010), the PubChem databases hold records for over 69 million substances
(SID) containing 27 million unique chemical structures (or CID records) and 449,401
bioassays (AID). More than1.8 millions of these substances and 1.5 millions of compounds
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have bioactivity data in at least one of the thousands in vitro biochemical and cell-based
screening assays, targeting more than 7,000 proteins and genes. The millions of compound
records and bioassay data collections provide great opportunities for drug discovery
research. They also, however, create a major challenge for scientists for the development of
cheminformatics tools and modeling algorithms that are suitable to handle such high
volumef of PubChem compound and bioactivity datasets for virtual screening and in silico
drug design.

Over the past few years, PubChem developer teams, cheminformatics research centers and
many researchers from academic institutes and industries have developed a variety of online
tools to access and analyze the PubChem Compound and Bioassay data records, including
online search, FTP, and automated access to the data through the Entrez Utilities 10. Several
review and research articles 4, 6, 11-14 have reported the current cheminformatics tools
available to annotate and mine PubChem database via integrating PubChem with
transcriptomic, proteomic and metabolomic datasets and ultimately translate chemical
genomics screening data into information that will be benefit biomedical scientists and
clinician who do not have extensive training in cheminformatics. The following sections
cover the PubChem data sources and download information as well as how to construct
high-quality structurally diverse compound libraries from PubChem database for virtual
screening studies.

2.1. PubChem data sources and download formats
For computational chemistry, one of the important steps is to obtain reliable datasets for
computer modeling studies, which requires an understanding of the biological targets within
the data and knowledge of the data source. The PubChem Bioassay datasets available for
cheminformatics modeling studies were deposited by NIH-funded screening centers with
data records of 3.95 million substance counts (79.3% of the total substance counts) and 2315
bioassay counts (0.5% of total bioassay counts) 1, by European Bioinformatics Institute
(ChEMBL) with data records of 551,496 substance counts (11% counts) and 446,639
bioassay counts (99.4%) 15, and also contributed by more than 40 of US agencies and
various academic institutions and individual research laboratories (Figure 1).

Specifically, human tumor cell line screening data were deposited from the Developmental
Therapeutic Program (DTP) 16 at the US National Cancer Institute (NCI), toxicology data
from the DSSTox 17 program at the US Environmental Protection Agency (EPA),
neurobiology and anticonvulsant data from the US National Institute of Neurological
Disorders and Stroke (NINDS), Approved Drug Screening Program (ADSP) and the US
National Institute of Mental Health (NIMH) Psychoactive Drug Screening Program (PDSP),
high-throughput screening results from ChemBank 18, and target profiling and phenotypic
assays from commercial vendors. In addition, a variety literature-extracted ligand-protein
binding and bioactivity data are from the BindingDB 19, the IUPHAR 20, and the
PDBBind 21 projects etc.

To date, PubChem BioAssay has biological activity data for more than millions of unique
small molecule chemical structures and tens of thousands of siRNA probes annotated for
several thousand different protein and gene targets from thousands of biochemical and cell-
based bioassays. For a given PubChem Bioassay, all related data objects are stored in ASN.1
format (gzipped) and also available in XML and CSV file formats under Microsoft SQL
relational database server with optimal database architecture for efficient storage, tracking
and fast retrieval of large-scale biological test results. PubChem BioAssay datasets can be
downloaded free via the PubChem FTP site 22. Assay data table and descriptions can also be
retrieved and downloaded through a programmatic interface using the PubChem Power User
Gateway (PUG/SOAP) facilities 4, 23. The various query functions are available for searches
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of compounds, substances, or bioactivity data information using either text or structure
queries. Text searches include compound names, molecular formulas, keywords, descriptors
or MeSH terms, etc. Structure searches include identity or similarity search as well as
substructure or superstructure query with online structure-drawing tool, or using SMILES,
SMARTS or InChI as a structure identifier (Figure 1). Users can search using any
combination of Entrez and PubChem search tools, and then download data for further
analyses and computational studies.

The various download export formats for chemical structures include SDF, SMILES, XML,
InChI, images and ASN.1. Note that ASN.1 (Abstract Syntax Notation One) is a binary
format. NCBI utilizes a textural description translated from ASN.1 as the PubChem native
archive data format that is both computer and human readable 6. All other data formats (such
as SDF) are converted from the original ASN.1. SDF file format is the industry standard 24

for conveyance of chemical structure information. SDF format, however, does not provide
all aspects of the ASN.1 data and may not contain all archived information in ASN.1 data
format. For the extensive description of PubChem data structure systems as well as
annotation and analysis tools that link phenotypic outcome to the chemical structures of
molecules screened, the reader is referred to the comprehensive description articles
published by S. Bryant and NCBI scientists 4-6, 25. Furthermore, the quantitative assessment
of the PubChem and other public databases as well as commercial databases of bioactive
compounds was reported in a recent review 26.

In addition to the full records of PubChem compound library, several laboratories have
developed cheminformatics tools to generated structurally diverse or 3D shape diverse
sublibraries from the large PubChem database 27-29. These subset libraries are much smaller
but representative to the parent library, showing minimum similarity and redundancy. Xie et
al. at the Pittsburgh Molecular Library Screening Center (PMLSC) reported their studies on
data-mined PubChem using a chemistry space based compound profiling algorithm to create
a representative subset of compounds from PubChem 27. The total number of compounds
was reduced to 540,000 from approximately 5.3 million to make in silico or in vitro
screening of PubChem more manageable 27. In addition, 3D shape topology diversity 28, 29

and scaffold topology diversity 30 analyses were also applied to modeling PubChem
chemical library, which are reviewed below.

2.2. PubChem representative subsets
PubChem as a valuable public molecular information resource repository has attracted many
cheminformaticians and biologists to carry out in silico or in vitro high throughput screening
(HTS) to identify novel hits with new chemical scaffolds and high affinity but low toxicity.
One of the challenges for the scientists is to handle the multiple millions of compounds. It
may be unrealistic to conduct direct HTS experiments to screen multi-millions of
compounds in PubChem for each biological target on a weekly or monthly basis. For
example, the NIH MLP only requires MLPCN comprehensive centers to perform 20 assays
per year for screening about 300,000 compounds and then deposit the screening data into the
PubChem database. Of course, modern HTS technologies can now screen millions of
compounds more quickly and cheaply at costs much less than earlier HTS methods31

However, at screening rates of 300,000 compounds/week, it may still be a challenge for an
academic institution to support on a weekly basis without the major funding support to cover
the costs of HTS programs and resources as well as the assays development. Overcoming
these limitations requires innovative approaches, either through development of fast and
low-cost HTS experiments or by employing a cheminformatics approach to taper down the
large compound library without losing its information of original molecular properties as
well as structural diversity. A few of such representative sub libraries have been reported as
discussed below.
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2.2.1. Structurally-diverse representative subsets from PubChem—Xie et al. 27

have established a computational method of building representative sub-libraries from large
PubChem compound database by combining a partitioning cell-based BCUT metric
algorithm with pair-wise 2D fingerprint similarity search as illustrated in Figure 3. In their
studies, they applied the established diversity analysis method to generate a representative
sublibrary with ∼10% of the size of the parent compound library. Their results show the new
subset has minimum similarity and redundancy, but greater structural diversity, and no loss
of the molecular properties based upon distribution analyses of HB donor/acceptors,
rotatable bonds, hydrophobes, MW, and logP, relative to the parent library PubChem 27. The
generated representative subset (rePubChem) is made available to the cheminformatics
community through former PMLSC websites.

Xie's laboratory has further developed the representative subset selection algorithm into a
compound library profiling (CLP) method, and applied it to perform diversity analysis of
newly synthesized cyclic ether compound library in comparison to the existing PMLSC
compound collection and the PubChem database32, and also to characterize the diversity
attributes of the synthesized bicyclic β-benzyloxy and β-hydroxy amide library in
comparison to NIH small molecular repository (SMR) to which these new compounds are
deposited 33. In these publications, the developed compound library profiling (CLP)
algorithms provides valuable cheminformatics data mining tools to evaluate whether the
newly synthesized compounds contribute to increase the diversity value of the existing NIH
SMR compound libraries or commercial chemical library. It is anticipated that these
methods and compound subsets will be valuable to a broad scientific community interested
in acquiring/synthesizing structure-diverse compounds for efficient drug screening, and for
more general applications requiring representative virtual compound libraries.

Additionally, Xie et al have applied the BCUT-based chemistry-space matrix calculation
algorithm established above to build target-focused sub-libraries based on the few known
active leads identified by PMLSC HTS experiments. Such a knowledge-based
“cherrypicking” approach used a few known active compounds (or the corresponding
chemistry-space matrices) to select additional compounds that have similar chemical-space
matrices, and then cluster them to build target-focused sub-libraries. In these studies, the
unbiased modeling of PMLSC datasets has demonstrated that the clustered libraries
generated by this approach have hit rates remarkably better than classical HTS experiments
as shown in Figure 4 (unpublished data). 3D diversity matrix plot shows the parent library
(green dots: 65K compounds distributed to PMLSC from DPI) (Discovery Partners
International, BioFocus Inc) and a generated sublibrary (targeting West Nile Virus
NS2bNS3 Proteinase, NS2B) (blue dots: 220 compounds), computed by chemistry-space
BCUT metrics diversity analysis approach 27. As shown in Figure 4, the focused library
(220 compounds) (blue dots) were generated based on the two compounds known to bind
NS2B (yellow dots) that were originally identified from a representative subset of 9013
compounds (above). There are 11 hits (red dots) in the focused library that match 11 of the
15 hits from HTS experiments on the full 65K compound library. The focused library thus
gives a 5% (11/220) hit rate, which is 250 times higher than the 0.02% (15/65k) hit rate of
the initial HTS experiments. In addition, the focused subset provides a concentrated subset
for the secondary HTS experimental screening to further examine any possible false
negative hits.

2.2.2. Other diverse sublibraries from PubChem—In addition to the chemistry space
matrix compound profiling algorithm to mine PubChem library above, Fontaine et al.
reported a 3D shape fingerprint similarity selection method using ROCS shape overlay
comparison algorithm to mine PubChem database 28. In their studies, approximately 1.04
million PubChem compounds were obtained with filtering criteria: heavy atoms <28,
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rotatable bonds <6, and removing the structures with incomplete stereochemistry, ionized
forms. Then, a set of a few thousands diverse structures was generated using 3D shape
Tanimoto similarity (Tc) values of 0.75, and also analyzed under different 3D shape Tc
values of 0.8 and 0.85. These calculated shape diverse subsets cover entirely the 3D shape
space of the conformers of the 1.04 million PubChem compounds. Similar work 29 was also
reported for assessment of conformational space of PubChem compounds by using
conformation generation program Omega 34 and regression equation prediction as a function
of RMSD.

The advantage of the above 3D shape overlap subset library selection methods is that it
allows visualization of the superimposed compounds and a better understanding of the
compound similarity. For millions or billions of conformers, however, 3D alignmentbased
shape similarity searches in comparing with 3D shape fingerprint similarity method
demands substantial computing capabilities and modeling resources in addition to the pre-
computation requirements.

Furthermore, Wester and Oprea have reported their work using scaffold topologies to model
various datasets from PubChem and DSSTox for toxicity studies 30. In their studies, they
compared the results of different algorithms including the ring scaffold topology distribution
in comparing to coarser-grained classification against several databases, including
ChemNavigator (commercial chemicals), DNP (the Dictionary of Natural Products),
WOMBAT (medicinal chemistry compounds with known bioactivity), and two subsets
“active” from PubChem and DSSTox (toxic compounds) as well as GDB11 (General
Database of Chemical Space of virtual small organic molecules with major atoms less than
11 or MW less than 160 Da)35. The topological results show that nearly ¾ of the scaffolds
of toxic substances have two or less rings but 25% of DSStox and 4% of the PubChem
actives do not contain rings (note: the DDSTOX chemical-index files have now been
deposited into PubChem under “PubChem Substance”). The maximum topological diversity
is observed in PubChem and 55% of PubChem's have less or equal to 8 ring size topologies.

In general, the subset chemical library will allow biologists and computational chemists to
efficiently screen the sets of compounds that are small enough to be tractable, yet
representative of the full set. Hits obtained from such a representative library can then be
used to rationally parse the parent library, and generate a compound cluster or focus (similar
compounds or analogs) for further bioassay validation, resulting in the rapid development of
informative structure-activity relationships (SAR). The basic idea underlying the diverse
subset selection strategy is based on a central premise of medicinal chemistry that
structurally similar molecules have similar physicochemical properties and possibly similar
biological activities, which premise has been enunciated in many computational chemistry
and similarity-based virtual screening drug design studies.36-38 Of course, very similar
molecules may in some cases possess very different activities, so called activity cliff that is
defined as the ratio of the difference in activity of two compounds to their distance of
separation in a given chemical space. The detailed discussions of outliers or activity cliffs
are beyond this review but available in literature 39, 40.

3. PubChem Benchmark Datasets and Virtual Screening Models
3.1. Opportunities and challenges of modeling PubChem library

There are many successful virtual screening methods reported for chemical probes or drug
leads discovery, either based on ligand pharmacophores or receptor docking
approaches 41-45. However, one of the basic preconditions to develop virtual screening
approach for a drug target or conduct in silico validation studies is to ensure the availability
of reliable bioassay datasets. The dataset is often randomly divided into training set and
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testing set, each may consist of known numbers of active and inactive data. The known
datasets are used to assess the virtual screening methods according to their capability to
separate the actives from inactive in the final ranking, or calculate the enrichment factor of
the different in silico methods. Thus, dataset selection and model training/validation are
another important step for virtual screening in addition to construct high-quality structurally
diverse compound library as reviewed in the previous section.

As discussed above, the PubChem bioassay collection has rich data information. It provides
great opportunities and also challenges for computational studies to reveal relationships
between chemical structures and biological activities in order to assist virtual screening and
computer-aided drug design. A common exercise for dataset extraction from PubChem is to
first extract all bioassays that have defined the specific protein targets from PubChem and
then extract the datasets that were screened by primary bioassays and also confirmed by
secondary dose-response bioassays (Ki or EC50).

However, like other HTS/HCS screening experiments, the PubChem bioassay data may also
suffer from the experimental noise and artifacts, such as false positives or false negatives.
For example, bioassays are prone to a range of artifact caused by unspecific binding activity
of the screened chemical compounds, such as off-target or cytotoxic effects in cell-based
receptor bioassays 46. Thus, cautions should be taken when extracting bioactivity data from
PubChem for computational studies. Usually, the secondary and confirmatory bioactivity
data should be used in the computer modeling. In addition, the datasets extracted from
PubChem or from the literature may also suffer from issues of compound analogues bias
that are often prone to over-representation of certain scaffolds or chemical entities 47. The
analog bias issue may cause overoptimistic estimates of virtual screening performance.

Thus, it is essential and important to have trust-worthy bioactivity datasets extracted from
PubChem in order to develop reliable predictive models for virtual screening and method
development in terms of performance assessment and algorithm validation.

While PubChem curators do check assay depositions, however there is no way to completely
avoid erroneous data in PubChem as HTS data is prone to experimental noise. To deal with
these complications of the large bioassay data in PubChem, several research laboratories
have developed various cheminformatics tools and filtering methods to construct so called
benchmark datasets by careful selection of the raw data sets from PubChem. These subsets
will be great value for library design and virtual screening method development and
validation. These reported studies include: developing predictive decision tree models from
HTS data in PubChem 48, data mining PubChem using support vector machine (SVM) for
inhibitor or ligand classifications 49-54 and aggregator identification 55, establishing GPU
accelerated SVM for mining HTS data 56, and developing naïve Bayesian predictive models
from PubChem Bioassay datasets 13. Figure 5 illustrates a Web-interfaced machine learning
algorithm based ligand activity predictor and function classifier that were developed by Xie
et al to predict active/inactive ligands and agonist/antagonist of 5HT1A using naïve
Bayesian and SVM algorithms, respectively 57. The prediction models were constructed
from over 1600 of known 5HT1A ligand datasets from the PubChem database (data source
from GLIDA 58). These established data-mining algorithms provide valuable statistical
approaches to mine large bioassay datasets for virtual screening. Ideally, with the high
volume biological data from PubChem, cheminformaticians and computational chemists/
biologists can use the unbiased datasets to develop and evaluate in silico drug design
algorithms and methods for the best virtual screening performance across a range of datasets
from PubChem. A few examples of the extracted PubChem datasets and cheminformatics
studies are discussed below.
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3.2. Benchmarking of the PubChem datasets and virtual screening models
Roherr and Baumann 59 have reported their cheminformatics research work on developing
the maximum unbiased validation (MUV) datasets for virtual screening. The work was
based on PubChem bioassay data by using refined K nearest neighbor (KNN) analysis
algorithm. In their studies, all datasets and the chemical space samples were encoded by
“simple” descriptors that are a vectorized form of the respective counts of all atoms in each
molecule. The descriptors include the number of H-bonding acceptors and H-bond donors,
the logP, the number of chiral centers and the number of ring systems 59. Subsequently, a
workflow of topological optimization using MUV dataset design strategies, monitored by
refined nearest neighbor analysis functions, was established to generate corresponding
datasets of actives and inactives from PubChem. From the bioactivity data available in
PubChem BioAssay, 18 subsets of bioactivity data, which were primarily screened and then
confirmed by dose response assays, were extracted against 18 pharmaceutically relevant
targets, and each dataset consists of 30 actives and 15000 inactives. The authors concluded
that these benchmarked datasets are unbiased with regard to analogue bias and artificial
enrichment, which can be used to maximize the unbiased validation of virtual screening
methods. Their benchmarked unbiased datasets generated from PubChem and the associated
statistics analysis tools are available for download at author's website 59.

Furthermore, Chen and Wild 13 have generated a Bayesian predictive models using 1133
bioassays in 2008 from the PubChem database. Using their workflow built by Pipeline Pilot
package 14, the naïve Bayesian predictive model was built with the FCFP_6 circular
substructural fingerprints 60 and the molecular descriptors encoded structural features and
properties, including molecular weight, logP, number of H-bond acceptor and donors, the
number of rotatable bonds. The developed models were accessed using Leave-One-Out
validation (or internal validation) and the rational division of training and testing datasets
validation (external validation) 61. Their studies showed that these predictive models are
reasonably accurate by identifying high number of hits with the enrichment factor 3.6 and
5.7, which is much better than either similarity search or random screening. It is a good
practice to build the predictive models using a rich and diverse compound datasets to ensure
the development of a generalizable model with better accuracy. The variability in the
accuracy (ROCV = 0.582–0.995, mean 0.881) is, however, still greater than that for models
built using traditional QSAR data (ROCV = 0.985–0.998, mean 0.992)13. Thus, future work
is necessary to improve the accuracy of predictive model by introducing a more diverse
inactive set as baseline.

Additional machine learning algorithm was also applied to mine PubChem datasets. Weis et
al. 49 established a support vector machine (SVM)-based classification algorithm to screen
and identify the Factor XIa inhibitors from over 12 million compounds in PubChem
database. In their studies, a support vector machine (SVM) classifier was trained to develop
a predictive model using the Signature molecular descriptor on Factor XIa inhibitor HTS
data. The resulting model had a 10-fold cross-validation accuracy. To further evaluate
compounds identified as active by the SVM, docking studies were performed using
AutoDock to generate a focused subset of compounds predicted to be active. It is anticipated
that the established data mining technique for factor XIa inhibitor identification could also
be applied to other bioassays in PubChem for identification of chemical probes.

As shown above, machine learning and statistical inference have provided alternative
solution to model millions PubChem datasets and to develop predictive models for virtual
screening. While these methods still need improvement, they do demonstrate robustness and
predicting power to handle large amount of datasets from PubChem.
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3.3. Virtual Screening based on the imbalanced bioassay data in PubChem
In addition to the given very large, high volume and complicated datasets mentioned above,
another challenge to mining PubChem for virtual screening is the highly imbalanced nature
of the PubChem data with only a small number of active compounds compared to inactive
compounds. To deal with this issue, Bryant et al. reported a method for mining these highly
imbalanced HTS data in PubChem51. In their work, the granular support vector machine
(gSVM) repetitive under sampling method (gSVM-RUS) 62 and PubChem fingerprints 63

were used to build predictive models using the luciferase inhibition bioassay data that has
the imbalanced ratio of active/inactive (1/377). The best predictive model developed showed
hit rate of recognizing the active and inactive compounds at the accuracies of 86.6% and
88.9% with a total accuracy of 87.7% by cross-validation test and blind test, respectively.
Their results demonstrated the robustness of the gSVM-RUS based predictive model in
efficiently computing the highly imbalanced HTS data. It is anticipate that the developed
gSVM-RUS algorithm may also help HTS assays such as luciferase-based HTS to develop a
computational model to screen and identify potential interference compounds for the HTS
assays.

4. PubChem Toxicology Prediction Modeling
4.1. Challenges for modeling of limited toxicity data from PubChem

Identification of hits or leads from HTS or virtual screening approaches is important first
step. However, many screened compounds entering clinical studies do not survive through
the numerous hurdles as a good pharmacological lead to be a drug on the market. Among
many causes for attrition that have been studied, it has been noted that earlier attention to
compound quality related to physical chemistry, drug metabolism and pharmacokinetics
(DMPK), and toxicology/safety is necessary and important. In PubChem bioassay
collection, cell viability studies as an indication of general cellular toxicity were also carried
out using HTS cell proliferation experiments by measuring ATP concentration 64. The study
attempts to correlate generic cell-proliferation to chemical features by analysis of cell
proliferation results from different cell lines. Ideally, the development of predictive cellular
toxicity models would be useful cheminformatics tools to mine the PubChem data in order
to reliably predict compounds whether they are toxic or not. Here, the reviewer would like to
point out that such generic cell proliferation assays do not address any specific mechanisms
or targets involved in toxicity. It only gain some mechanistic insights by analysis of cell
proliferation results from different cell lines in attempts to correlate generic cell proliferation
to chemical features 65.

For modeling PubChem data for toxicology and pharmacology studies, there are several
ADME/Tox databases available free or commercial on the web that can be used to facilitate
computational toxicology model building and assistant drug design 66. A number of
computational toxicology approaches has been developed and reported to predict whether a
compounds that are toxic or have poor ADME properties, including linear regression
models 67, neural networks models 68, Kohonen maps prediction model 69, Bayesian
models 70, expert system models 71, QSAR models 72, target fishing technique 70 and
Prediction of Activity Spectra for Substances (PASS) 73, and public sources for toxicity data
review 17. These toxicology prediction methods are similar in nature but use a variety of
molecular descriptors to derive predictive models either to predict LD50 values
quantitatively or to perform classification of toxic or not toxic qualitatively. Here, the
reviewer should point out that the PubChem toxicity data are still limited on certain species
or specific classes of compounds; in particular it is still a challenge to identify toxic
compounds in the absence of knowledge of toxicity mechanisms. Some of these related
studies are reviewed below.

Xie Page 9

Expert Opin Drug Discov. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2. Cell toxicity predictive models from PubChem
Guha and Schuere investigated various aspects for developing computational models to
predict cell toxicity based on cell proliferation screening data in PubChem 65. Based on the
captured features in the datasets, several predictive models were generated to evaluate cell-
based screening results and were used to identify and eliminate potentially undesired
compounds. In addition, they explored the feasibility of utilizing cell proliferation data to
predict animal toxicity using the datasets from PubChem and MDL databases. In their
studies, human T cell (Jurkat) proliferation data were extracted from PubChem using Assay
ID: AID's 364, 463 and 464, including over 60,000 data points with primary percent
inhibition measured at 4 uM and about 800 IC50 data points. To investigate the generality of
the workflow established, the cell proliferation quantitative HTS (qHTS) IC50 data points
for 1334 compounds against 13 cell lines were extracted from various PubChem BioAssay
collection (AID's). For a given cell line, a criteria was set that compounds with a pIC50
greater than the cutoff are labeled as toxic and those below as non-toxic.

To correlate the in vitro toxic prediction with the animal toxicity datasets, authors extracted
the acute animal toxicity datasets from the Registry of Toxic Effects of Chemical Substances
(RTECS) available through the MDL Toxicity Database (2006.2), including 103,041
chemical structures for 154,019 LD50 (mg/kg) data points (oral, intravenous,
intraperitoneal, subcutaneous). A cutoff of LD50 was selected such that any molecule
having a measured pLD50 of two standard deviations greater than the mean value was
classified as toxic and the rest as non-toxic. To identify toxicity-indication structural pattern
and derive the predictive models, Guha and Schurer used the BCI 1,052-bit structural
descriptors as structural fingerprints, CATS2D descriptors as topological pharmacophoric
fingerprints, and Molconn-Z real-value holistic descriptor for all three of the datasets
mentioned above. Their work showed that the models generated exhibit reasonably good
predictive performance on these highly imbalanced datasets from PubChem and MDL, with
accuracy rates ranging from 56 to 80%. According to their data, simple structural
descriptors, binary fingerprints or topological pharmacophores, do not appear to allow for a
consistent discrimination between toxic and non-toxic classes. This is particularly true when
comparing cell-based and animal toxicity.

Additional toxicity prediction models were also reported using PubChem datasets and
DSSTox database. Edelstein et al. 74 extracted three datasets from the DSSTox database and
integrated the information from PubChem and ChemBank for development of predictive
toxicology models. Their studies showed that the correlated toxicology modeling can
improve predictive performance over using chemical structure alone in a statistically
significant way. Zhu et al. 75 also reported their work of modeling cell viability assay data to
improve the prediction accuracy of conventional QSAR models of animal carcinogenicity.
Their studies concluded that combining NTP-HTS profiles with conventional chemical
descriptors could considerably improve the predictive power of computational approaches in
toxicology.

Clearly, given no target information, modeling toxicity is complicated because of the
multiple mechanisms and biological targets by which a compound may inhibit cell
proliferation. Thus, it is recommended that specific mechanism related descriptors should be
included, such as a variety of physicochemical descriptors (clogP, polar surface area, H-
bonding, charge etc.) and bioactivity-based descriptors (biological descriptors76, target
protein interaction descriptors derived from proteomics and gene expression 77, metabolism
descriptors 78). These mechanism-related descriptors can help to understand specific
mechanisms and possible interactions of a toxicant that may have with a biological systems.
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4.3. Cardiac toxicity prediction models from PubChem
Another reported toxicology virtual screening study is the cardiac toxicity prediction model
development. Li et al. have published their work on cardiac toxicity classification model
using a combination of SVM and GRIND descriptors, and tested the model on a large set of
hERG bioassay data from PubChem (AID:376) 50. Cardiac toxicity of drugs is a major
concern in drug discovery. It often requires elimination or filtering out potential hERG
channel inhibitors in an early stage of drug discovery process. In their studies, a large set of
compounds (1948 compounds) with hERG activity was extracted from PubChem bioassay
database (AID:376), containing 248 active and 1700 inactive compounds. Initially, docking
studies were carried out using 561 molecules (495 from the training set and 66 from the
testing set) on a constructed hERG homology model. Then, a binary classification prediction
models were generated based on the 495 compounds using pharmacophore-based GRid-
Independent Descriptors (GRIND) with a SVM classifier in order to discriminate between
the hERG blockers and nonblockers. According to their studies, the models achieve an
overall accuracy up to 94% with a Matthews coefficient correlation (MCC) of 0.86 (F-
measure of 0.90 for blockers and 0.95 for nonblockers) 35. The models were also applied to
a testing dataset of 66 compounds, showing 72% of the set was correctly predicted (F-
measure of 0.86 and 0.34 for blockers and nonblockers, respectively). Finally, authors also
evaluated the model on a large set of hERG bioassay data in PubChem, showing 73%
accuracy (F-measure of 0.30 and 0.83 for blockers and nonblockers, respectively) and
10-20% improvement in the prediction of blockers compared to other methods. They
concluded that the generated models based on GRIND descriptors and SVM classifier can
be useful to filter potential hERG channel inhibitors.

In general, it is expected that the PubChem biological categorization of datasets is growing
rapidly and it will become a valuable resources to advance the complicated pharmacology
and toxicity prediction. In addition, more ADME data will be available from physical-
chemical and ADMET in vitro assays either in the public and commercial databases or
pharma companies' in-house databases. The current public toxicity databases are:
DrugBank 79 (>4800 drug entries related to over 2500 non-redundant target proteins),
Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity
(DSSTox) Database 80 (over 10,000 unique chemicals), new EPA Aggregated
Computational Toxicology Resource (ACToR) database 81 (over 300 chemicals pertaining
to environmental toxicology). The commercial preclinical ADME/Tox databases include:
Symyx database (metabolite and toxicity data) 82, Aureus AurSCOPE ® ADME/DDI
database 83(drug-drug interaction and metabolic properties of drugs), PharmaPendium
online resource 84 (FDA approved drug data and EMEA EPAR approval documents). These
databases in combining with datasets from PubChem will provide rich molecular toxicology
information for cheminformatics and virtual screening.

5. PubChem across-target polypharmacology network modeling
One of the important features of the PubChem data collection is that it reports the activity of
compounds across multiple Bioassays, which allows to mining across-target bioactivity and
study polypharmacological behaviors in the PubChem collection via cross-assay analysis
studies. An example is given in Figure 6 to show that a PubChem Heatmap and clustering
graphs displaying the cannabinoid ligand CP55940, a known analgesics and
immunosuppressive agent, together with their biological test results that were obtained from
HTS experiments against a group of related protein Targets. The compound CID104895, a
stereoisomer of CP55940, is a a known potent GPCR ligand that has nanomolar binding
affinity to cannabinoid receptors. As shown Figure 6, the compound CID104895 also shows
across-target bioactivities to the other GPCRs proteins, including weak binding (green color:
10-100 uM range) to neuropeptide S receptor isoform A (target identification,
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GI#46395496: a G-protein coupled receptor for asthma susceptibility) and relative strong
binding (yellow color 0.1-1 uM) to thyroid simulating hormone receptor (target
identification, GI#38016895: another GPCR). The across-target multiple bioactivity data
were measured by NIH NCGC using PubChem BioAssays AID1461 and AID926,
respectively. More studies were reported on using PubChem data and online analysis tools
to survey selectivity and across-target bioactivities of small molecules as discussed below.

Chen et al. reported their modeling studies using PubChem as a data source to establish
polypharmacology networks 85 in order to address the issue of high attrition rates arising
from lack of efficacy and high toxicity. In their work, sets of data were extracted from
PubChem bioassays collection, containing 602 bioassays for 506,190 distinct compounds, of
which 90,290 compounds were active in at least one assays. The assays represented 258
unique protein targets, and each target was tested in multiple assays, whereas the assays that
did not have an associated target were ignored. Then, authors derived a network
representation of these assays collection and applied a bipartite mapping between the assays
network and various biological pathways network as well as artificial drug-target network.
The results demonstrated that mapping to a drug-target network can be allowed to prioritize
new selective compounds, whereas mapping to other biological networks can be used to
observe interesting target pairs detected in PubChem cross-assay analyses and the
corresponding compounds in the context of biological systems.

Another similar cross-assay analysis study was reported by Han et al 9 regarding a
datamining survey of across-target bioactivity results of small molecules in PubChem. In
their report, two alternative target-grouping approaches were used to examine a compound's
across-target bioactivity against 588,918 compounds under 660 bioassays. The established
non-redundant target-based compound analysis methods revealed compounds that are
selectively active against groups of protein targets that have identical or similar sequences.
The target clustering analyses identified compounds that are bioactive across unrelated
targets. One of such target compounds studied is myricetin (PubChem CID:5281672), or a
flavonoid commonly found in natural food source. The compound was identified by
PubChem across-target analysis as an inhibitor of multiple target proteins such as aldehyde
dehydrogenase, Leishmania mexicana Pyruvate Kinase, Cytochrome P450, Stress-activated
protein kinase and human RNase H, with a strong potency (IC50 <10 uM).

Clearly, PubChem provide bioactivity report via launching Entrez Bioassay Summary for
scientists to examine and compare biological outcomes across multiple biological tests,
which allows to view all active compounds across each BioAssay. The reviewer believe that
data-mining analyses of bioactivity profile across a wide range of biological targets in
PubChem provides promising statistical models to evaluate target specificity of promiscuous
compounds for their selectivity and across-target properties. The systematic studies of
polypharmacological behaviors in the PubChem collection via cross-assay analyseswill also
offer better understanding of the biological mechanisms of ligand and protein interactions.

6. Expert Opinion
In the reviewer's opinion, PubChem is a powerful small molecule information repository and
has valuable features and multiple functions with advantages over other available public or
commercial databases of bioactivity data. First, all compound structures, bioassay conditions
and experimental readouts are publicly accessible online. Second, most of the compound
collections tested in each bioassay were already pre-selected for maximizing structural
diversity and acquisition of the “druglike” properties. Third, all tested compounds, including
both actives and inactives for each bioassay are archived in the database and available for
structure-activity analyses. Most importantly, millions of unique small molecule chemical
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structures and tens of thousands of siRNA probes were biologically annotated by millions of
biological activity outcomes. In PubChem, these compounds were measured using
thousands biochemical and cell-based bioassays for different protein and gene targets. In
addition, PubChem Substance, Compound, and BioAssay databases are fully integrated
within NCBI's Entrez data retrieval system 86. With the PubChem Power User Gateway
(PUG) programmatic interface 23 and the Entrez Programming Utilities (eUtils) 10, one can
perform automated chemogenomics analysis of the tested compounds and their bioactivities
by correlating with the target proteins or DNA information87 as well as other database
resources25.

However, PubChem data also suffers from the typical tendency of HTS/HCS assays for false
positives and negatives as well as many highly imbalanced datasets. Cautions should be
taken in utilizing these datasets as it may affect the virtual screening baseline noise and
deviate the virtual screening prediction accuracy. It is also noticeable that PubChem toxicity
HTS data is still limited to certain species or specific classes of compounds although more in
vitro cellular toxicity data are becoming available in PubChem. Thus, it is still challenging
to identifying toxic compounds in the absence of knowledge of toxicity mechanisms. It
should be also noted that the in contrast to animal toxicity studies, the generic cell
proliferation assays do not address any specific mechanisms or targets involved in toxicity.
The cell-based toxicity studies, however, can be very cost-effective and suitable for high-
throughput screening.

Taken all together, PubChem datasets can be used as a rich source to aid developing
predictive models for cheminformatics and virtual screening for in silico drug design studies
as reviewed above. Of course, one will not expect the accuracy to be as high as for high-
quality experimental sets. On the other hand, it is always recommended to make sure that
models are built using a rich enough diversity of compounds for a generalizable model to be
derived. It is also notable that the reported machine-learning derived models, as reviewed
above, would be appropriate for virtual screening (or pre-screening) in order to reduce the
number of compounds that need to be experimentally screened from large datasets like
PubChem, but not for prediction on small sets that require very high levels of accuracy.
Overall, the public accessibility to such HTS/HCS assay data is particularly valuable to the
scientific community, since this kind of critical information needed by drug discovery
research is typically held by pharmaceutical companies. The open-access and information-
rich repository will make PubChem an even more valuable and powerful public resource for
cheminformatics data-mining and virtual screening as well as biomedical and drug discovery
research in the future.

Article highlights box

• PubChem is a database of chemical molecules, a component of NIH's Molecular
Libraries Roadmap Initiative.

• PubChem provides information on the biological activities of small molecules
from a multitude of depositors. Currently, it has 69,170,468 entries of
substances (SID), 27,443,646 records of unique chemical structure compounds
(CID), and 449,401 records of Bioassays (AID).

• Multiple million records of PubChem datasets provide great opportunities and
also challenges for developing cheminformatics tools and modeling algorithms
that are suitable to handle high volumes of PubChem compound and bioactivity
records for virtual screening and in silico drug design.

• As other HTS/HCS, PubChem bioactivity data may also suffer from the
experimental noise and artifacts, such as false positives or false negatives. It is
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important to have confirmatory bioactivity datasets extracted from PubChem in
order to develop reliable predictive models for virtual screening method
development and validation

• Novel data-mining cheminformatics tools and virtual screening algorithms are
being developed and used to retrieve, annotate and analyze the large-scale and
highly complex PubChem bioactivity data in order to facilitate computer-aided
drug design.
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Figure 1. Brief overview of the PubChem Database system
(A) The BioAssay data depositor list, including by NIH Molecular Libraries Probe
Production Centers Network (MLPCN) and former Molecular Library Screening Centers
Network (MLSCN) as well as other sources. (B) The PubChem database search window
with online structure drawing/clustering, 3D view and data analysis tools, and the links to
other databases as well as PubMed literature. (C) The query Output window (CID, SID and
AID) and the files upload and download formats and tools
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Figure 2. A literature survey of the research publications related to PubChem and the key
research fields from 2005 to 2010
The insert table shows that the total number of the PubChem publication increases almost
linearly from 2005 to now (The results were searched from SciFinder database).
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Figure 3.
3D chemistry-space matrix plot of a representative sublibrary (green dots) created from
the parent library PubChem database (red dots) by using the Diversity Analysis method
based BCUT metrics calculation.
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Figure 4. 3D matrix plot of the NS2B-focused sub-library (blue dots: 220 compounds) selected
from the parent library (green dots: 65K compounds from PMLSC)
The focused subset was generated based on the two known NS2B-active leads (yellow dots)
from the representative subsets (9013 compounds) by diversity analysis approach using cell-
based chemistry-space BCUT metrics calculation. The focused library gives 5% hit rate (red
dots: 11), which 250 times better than HTS experiments.
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Figure 5. Web-interfaced 5HT1A ligand activity and function prediction server
Input widow has online upload or structure drawing functions, four fingerprint generators
and choice of prediction algorithms. Backend in server has built in file format conversion as
well as naïve Bayecian classifer for ligand activity prediction and SVM classifier for ligand
function prediction functions. Output window displays the result of query compound
AZD7371 (PubChem CID 3055171), showing that the compound is predicted to be an active
5HT1A ligand with antagonistic function to the 5HT1A receptor. The prediction models
were modeled from known 1600 of 5HT1A ligands from PubChem database (GLIDA
depositor).
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Figure 6.
A graph of PubChem Heatmap and BioAssay Cluster showing three isomers of the
compound CP55940 and the correspondent biological test results across multiple targets that
were measured from HTS experiments against a group of related protein targets. The three
stereoisomers are represented as PubChem Compound identifier ‘CID’ and the structures at
the right sides of heatmap. The three compounds were searched based on 2D structure
similarity showing a similarity value of 1.0 (displayed at the left side of the heatmap),
indicating they are identical structure but stereoisomers. Bioassay Clusters of the 11 assays
(represented as PubChem BioAssay identifier ‘AID’) were derived based on the sequence
similarity of the tested protein targets, where the GenBank identifiers of the corresponding
protein targets (gi#) are listed at the bottom of the heatmap view. Each cell in the Heatmap
represents an individual activity outcome of a small molecule for the corresponding target,
with ‘active’ results denoted by red, yellow or green color, and ‘inactive’ results denoted by
blue color.
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