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Abstract

The PITX3 bicoid-type homeodomain transcription factor plays an important role in lens development in vertebrates. PITX3
deficiency results in a spectrum of phenotypes from isolated cataracts to microphthalmia in humans, and lens degeneration
in mice and zebrafish. While identification of downstream targets of PITX3 is vital for understanding the mechanisms of
normal ocular development and human disease, these targets remain largely unknown. To isolate genes that are directly
regulated by PITX3, we performed a search for genomic sequences that contain evolutionarily conserved bicoid/PITX3
binding sites and are located in the proximity of known genes. Two bicoid sites that are conserved from zebrafish to human
were identified within the human promoter of the major intrinsic protein of lens fiber, MIP/AQP0. MIP/AQP0 deficiency was
previously shown to be associated with lens defects in humans and mice. We demonstrate by both chromatin
immunoprecipitation and electrophoretic mobility shift assay that PITX3 binds to MIP/AQP0 promoter region in vivo and is
able to interact with both bicoid sites in vitro. In addition, we show that wild-type PITX3 is able to activate the MIP/AQP0
promoter via interaction with the proximal bicoid site in cotransfection experiments and that the introduction of mutations
disrupting binding to this site abolishes this activation. Furthermore, mutant forms of PITX3 fail to produce the same levels
of transactivation as wild-type when cotransfected with the MIP/AQP0 reporter. Finally, knockdown of pitx3 in zebrafish
affects formation of a DNA-protein complex associated with mip1 promoter sequences; and examination of expression in
pitx3 morphant and control zebrafish revealed a delay in and reduction of mip1 expression in pitx3-deficient embryos.
Therefore, our data suggest that PITX3 is involved in direct regulation of MIP/AQP0 expression and that the alteration of MIP/
AQP0 expression is likely to contribute to the lens phenotype in cataract patients with PITX3 mutations.
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Introduction

The PITX3 bicoid-related homeodomain transcription factor

represents an important regulator of lens development in

vertebrates. Mutations in PITX3 result in congenital cataracts,

anterior segment mesenchymal dysgenesis (ASMD), Peter’s

anomaly, and microphthalmia in humans [1–6]. Deletions within

the Pitx3 promoter region in mice produce the aphakia phenotype,

which is characterized by small eyes lacking a lens [7,8]. In lower

vertebrates (zebrafish and frog), pitx3 was shown to be essential to

normal lens and retina formation [9–13]. Knockdown of pitx3

protein in zebrafish embryos via translational morpholino results

in small eyes, lens degeneration, misshapen head and reduced jaw

and fins [9,10,12]. In vertebrates, expression of Pitx3/pitx3 is first

detected in the lens placode and then the lens vesicle; early

expression is observed in the lens epithelial cells and primary fibers

while later expression is restricted to the equator regions of the

developing lens [1,14].

Despite its vital importance for eye development, little is

currently known about the ocular function of PITX3/Pitx3 and its

downstream targets. Expression of several genes/proteins was

found to be altered in the lenses of Pitx3-deficient mice. Some early

reports demonstrated that expression of b- and c -crystallins is

completely absent at developmental stages 10–18 days as well as in

newborn aphakia mice [15–17]. Two recent publications provided

additional data on this matter; Ho and colleagues detected

precocious activation of both b- and c-crystallins in the eyes of

10.5–11.5-dpc Pitx3–knockout mice [18] while Medina-Martinez

and coauthors reported deregulation of crystallin expression in

aphakia mice with a- and b- crystallin expression being reduced at

both transcript and protein levels and c –crystallin expression

being downregulated at the protein level [19]. In addition to

crystallins, expression of the transcription factors Foxe3 [18–20]

and Prox1 [19] as well as the cell cycle regulator p57KIP2 [19] were

found to be affected in Pitx3-deficient animals, which seems more

likely to be related to the overall abnormal lens development in

aphakia mice rather than direct involvement of Pitx3 in

transcriptional regulation of these genes [19].

PITX3 belongs to the PITX family of bicoid-type homeodomain-

containing proteins that regulate expression of other genes during

development and, possibly, in adult organisms. Other members of

this family were shown to be involved in developmental disorders

such as idiopathic clubfoot [PITX1; 21] and Axenfeld-Rieger

syndrome [PITX2; 22]. PITX factors are known to interact with
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bicoid-type DNA sequences and to regulate downstream gene

expression through these interactions [23–28]. PITX factors are

primarily known as activators of transcription, though they may

also act as repressors [29,30]. Several transcriptional targets of

PITX homeoproteins have been identified and bicoid sequences

located in the regulatory regions of these downstream genes were

shown to mediate these interactions; two or more bicoid sites were

found in some promoters [25,26,28,31,32], although a single bicoid

element was demonstrated to be sufficient in several other cases

[24,33–35]. Interspecies conservation of bicoid sequences has been

reported for some promoters [26,32]. Preservation of regulatory

sequences is frequently observed for developmental genes which

demonstrate a conserved expression pattern; therefore, identifica-

tion of regulatory sequences represents a useful tool in uncovering

genetic pathways [36,37].

In order to isolate downstream targets of the PITX3

homeodomain transcription factor we performed a search for

evolutionarily conserved non-coding sequences containing bicoid

sites and located in proximity to known genes, therefore potentially

interacting with PITX3 to regulate expression of that gene. As a

result, we identified two bicoid sites located in the promoter of Major

Intrinsic Protein of lens fiber (MIP) or Aquaporin 0 (AQP0) that are

conserved between human, mouse, zebrafish and several other

species. We further demonstrated that PITX3 is able to specifically

interact with the identified sequences both in vitro and in vivo and to

transactivate gene expression as a result of this interaction. In

addition to this, expression of mip1 was found to be altered in pitx3

deficient zebrafish morphants. Our data suggest that PITX3 is

involved in direct regulation of MIP/AQP0 expression and provide

new insight into the PITX3 pathway as well as mechanisms of lens

development.

Materials and Methods

Ethics statement
The study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The protocol was approved by

the Institutional Animal Care and Use Committee at the Medical

College of Wisconsin (protocol number AUA00000352).

In silico analysis
ECR Browser web-based tool (http://ecrbrowser.dcode.org)

was used to identify conserved paired bicoid sites in the promoters/

intronic regions of genes with known expression/function. Paired

comparison of human and mouse genomes was performed using

the following parameters: presence of two conserved bicoid sites

with distance between the sites not to exceed 650-bp. Secondary

analysis of identified regions for sequence conservation was

performed using the UCSC Genome Brower multiple alignment

module (http://genome.ucsc.edu) as well as the BLAST tool

(http://blast.ncbi.nlm.nih.gov), including examination of the

corresponding genes in lower vertebrates when available.

Cell culture
Human lens epithelial cells (B3) and human embryonic kidney cells

(293HEK) were obtained from ATCC (Manassas, VA). B3 cells were

cultured in MEM medium (Invitrogen; Carlsbad, CA) supplemented

with heat-inactivated 20% fetal calf serum (FBS), glutamine, sodium

pyruvate to a final concentration of 1 mM, non-essential amino acids

and antibiotic-antimycotic (Invitrogen; Carlsbad, CA). 293HEK cells

were maintained in DMEM medium containing 10% FBS,

glutamine and antibiotic-antimycotic solution.

Electrophoretic Mobility Shift Assay (EMSA)
Nuclear extracts were prepared from B3 cells transiently

transfected with PITX3-pcDNA3.1 vector with CelLytic NuCLE-

AR extraction kit (Sigma, St. Louis, MO). Cells were harvested

after 48 hours with a cell scraper and the compact cellular pellet

was re-suspended in 5 volumes of Hypotonic lysis buffer (10 mM

HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl) with Protease

inhibitor cocktail (Sigma; St. Louis, MO). After 15 minutes of

incubation on ice, Igepal CA-630 was added to a final

concentration 0.6%, then the cells were vortexed and spun down

for 30 seconds at 10000 g. Crude nuclear pellet was extracted with

about 2/3 of the original packed cell volume of Extraction buffer

(20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 0.42 M NaCl, 0.2 mM

EDTA, 1 mM DTT and 25% Glycerol) in the presence of

protease inhibitors for 30 minutes on ice. 32-mer 59-GGA-

GAAAGGCTTCTAATCCCTGGGAACTAAAG oligonucleo-

tide spanning region 2533/2502 from transcriptional start site

(tss) of MIP/AQP0 promoter, 32-mer 59-CTGCCCCTCCCAGG-

GATTAAGAGTCCTCTATA corresponding to the promoter

sequence 271/240 and their complement oligonucletides as well

as both sets of oligonucleotides with TAATCC (GGATTA) bicoid

sites replaced by TAATTT (AAATTA) (see above) were labeled

with Biotin 39 End DNA Labeling kit (PIERCE) and annealed.

Electrophoretic mobility shift assays (EMSA) were performed with

LightShift Chemiluminescent EMSA kit (Pierce; Rockford, IL) in

accordance with the manufacturer’s protocol and using 50 ng/ml

of Poly(dI-dC), 20 fmol of labeled DNA and 2 ml of nuclear

extracts. After 20 minutes of incubation at room temperature,

reactions were either diluted with 56 Loading buffer or further

incubated for 30 minutes in presence of 1 mg of polyclonal Pitx3

antibody for supershift assay. Binding reactions and free probe

were run on 5% native polyacrylamide gel in 0.56TBE buffer.

For EMSA experiments performed using whole zebrafish

embryo nuclear extracts, the 32-mer and its compliment

corresponding to the region from 244 to 276 of zebrafish mip1

promoter were utilized: 59-CAA TTC AGC CAA AGG ATT

ACA GTG TCA CAG AG. In addition to this, both sets of

oligonucleotides were made with TAATCC (GGATTA) bicoid sites

replaced by TAATTT (AAATTA) to be used as a control for bicoid

site binding specificity. Nuclear extracts were generated from sixty

48-hpf zebrafish pitx3 morphant or wild-type embryos that

demonstrated normal body length and morphology; the prepara-

tion was carried out as described above except for that the

embryos were first grinded with glass tissue homogenizer equipped

with type B pestle in hypotonic detergent-less lysis buffer to assist

nuclei release. Binding reaction was performed in the presence of

2.5% glycerol, 5 mM MgCl2 and 0.05% NP-40 in addition to the

buffer composition described above; 3 ml of extract was used in

each binding reaction. Five embryos from each group were

analyzed for pitx3 transcript presence to verify the degree of

morpholino-mediated knockdown.

Chromatin immunoprecipitation (ChIP)
ChIP was performed with ChIP-IT enzymatic kit or ChIP-IT

Express enzymatic kit (Active Motif; Carlsbad CA) according to

manufacturer recommendations.

B3 human lens epithelial (HLE) cells were grown in 100 mm

tissue culture dish to 90–95% confluence and utilized for ChIP

assays; experiments were performed using native untransfected cells

as well as cells transfected with PITX3 expression plasmids. Cells

were transfected with 7.5–10 mg of pcDNA3.1_PITX3_FLAG or

empty pcDNA3.1 plasmid and cross-linked after 48 hours with 1%

formaldehyde for 10 minutes at room temperature with agitation.

Following this, the monolayers were washed with 125 mM of
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glycine and lysed. The nuclear pellet was resuspended in digestion

buffer and DNA was sheared with Enzymatic shearing cocktail for

10 minutes at 37uC in a water bath. The resulting fragments ranged

between 200- and 1000-bp in size. The quality of chromatin was

verified in a control experiment of immunoprecipitation with the

Polymerase II antibody followed by PCR with primers specific for

the GADPH promoter. Only those chromatin preparations that

demonstrated significant enrichment in these control experiments

were used in further analysis. Immunoprecipitation was performed

with 2 mg of Pitx3, FLAG or control IgG antibody overnight in a

cold room and, after washing and de-crosslinking, the precipitated

DNA was analyzed by PCR. Goat polyclonal PITX3 (N-20) and

normal goat IgG were purchased from Santa Cruz Biotechnology,

Inc. (Santa Cruz, CA) and FLAG-M2 mouse monoclonal antibody

from Sigma (St. Louis, MO). For PCR amplification of MIP/AQP0

promoter, the following primers were utilized: set 1 (spanning region

2110/+95) forward, 59-GCTGTGAAGGGGTTAAGAGG-39

and reverse 59-GAGGGTGGCAAAGAACTCAG-39 and set 2

(spanning region 2473/2275) forward, 59-CTGAACCC-

CACTCCTTACCA-39 and reverse, 59- TCTGCCCTTCTGT-

GTGTGTC-39. For control experiments, the following primers

were used: GAPDH forward 59- TACTAGCGGTTTTACG-

GGCG-39 and reverse 59-TCGAACAGGAGGAGCAGAGA-

GCGA-39, product = 166 bp (provided as positive control as part

of ChIP-IT Express Enzymatic kit (Active Motif; Carlsbad, CA);

forward 59-ATGGTTGCCACTGGGGATCT-39 and reverse 59-

TGCCAAAGCCTAGGGGAAGA-39, product = 174 bp (provid-

ed as negative control as part of ChIP-IT Express Enzymatic kit,

Active Motif, Carlsbad CA). The PCR reactions were repeated at

least three times using precipitated DNA from independent

chromatin immunoprecipitation experiments. Quantification of

ChIP PCR products was performed by densitometry using the

ImageJ program developed by Dr. Rasband, NIH (http://rsbweb.

nih.gov/ij/). The measurements obtained for ChIP PCR results

were normalized by input DNA and expressed as percent of its

value. Data from at least three independent experiments were

combined to calculate mean and standard deviation. Statistical

significance was determined using the homoscedastic Student’s t-

test with two-tailed distribution.

Expression and reporter plasmids
PITX3 wild type, PITX3-WT, and mutant expression con-

structs, PITX3-K111E, PITX3-S13N and PITX3- G219f, were

previously described [27]. To produce the MIP656-bcd1,2 reporter

plasmid, a 656-bp fragment containing 597-bp of upstream and

59-bp of downstream sequence from the transcriptional start site

(tss) of MIP/AQP0 was amplified by PCR and cloned into the

pCRII-TOPO vector (Invitrogen; Carlsbad, CA) and then

subcloned into basic pGL3 luciferase reporter vector (Promega,

Madison, WI). The transcriptional start site (tss) of MIP/AQP0 was

designated based on the ENST00000257979 entry in Ensemble

Database. Site-directed mutagenesis was performed with Quik-

Change II Site-Directed mutagenesis kit (Stratagene, La Jolla,

CA), oligonucleotide 59-CTCAGCCTGCCCCTCCCAGAAAT-

TAAGAGTCCTCTATAAA-39 and its complement for the

proximal bicoid site and oligonucleotide 59-CTAGCCAATGG-

GAGAAAGGCTTCTAATTTCTGGGAACTAAAGAATT-39

and its compliment for the distal site on MIP/AQP0 promoter.

Therefore, in both bicoid sites the consensus recognition sequence

TAATCC was replaced by TAATTT and three additional

constructs were produced: MIP656-bcd1 (carrying mutant bcd2

site), MIP656-bcd2 (carrying mutant bcd1 site) and MIP656-bcd0

(carrying mutations in both bicoid sites). All constructs were verified

by sequencing.

Reporter assays
Human embryonic kidney cells (293HEK) were plated in 24-

well plates and transfected using Lipofectamine 2000 (Invitro-

gen; Carlsbad, CA) according to the manufacturer’s protocol.

Equimolar amounts of basic pGL3 reporter plasmid (100 ng)

and MIP656 wild-type and mutant reporters (114 ng) were used.

Each cotransfection included 300 ng of effector (PITX3 wild

type and mutant expression constructs) and 60 ng of b-

galactosidase in pcDNA3.1 vector (internal control for efficiency

of transfection); the total DNA amount was kept the same in all

transfections by adding empty pcDNA3.1 vector when needed.

Cells were harvested after 48 hours; luciferase and b-galactosi-

dase activities were determined using Luciferase assay and

Enzyme Assay systems (Promega, Madison, WI), respectively.

Every experiment was performed at least three times in

triplicate. Student’s paired t-Test with a one-tailed distribution

was utilized to determine the statistical significance of any

differences in activity level.

Zebrafish care and morpholino injections
Zebrafish (Danio rerio) were maintained on a 14-hour light/ 10-

hour dark cycle. The embryos were obtained by natural spawning

and maintained at 28.5uC. The pitx3 morpholino, 59-AGGT-

TAAAATCCATCACCTCTACCG-39, that was previously re-

ported [9] or control morpholino (Gene Tools, Philomath, OR)

were suspended at 250 mM in injection buffer [0.1% (w/v) phenol

red (Sigma) in 0.36 Danieau buffer (17 mM NaCl, 2 mM KCl,

0.12 mM MgSO4, 1.8 mM Ca(NO3)2 and 1.5 mM HEPES,

pH 7.6) and 19.2 ng was injected into zebrafish embryos

immediately after fertilization at the 1–2 cell stage. Microinjections

were performed using the Nanoject II injector (Drummond

Scientific, Broomall, PA). Embryos were incubated at 28.5uC in

0.2 mM 1-phenyl-2-thiourea (PTU) to inhibit pigment formation

and anesthetized with 0.05% Tricane before imaging. The

developmental stage was determined by time (hours post

fertilization (hpf)) and by morphological criteria [38]. Nikon

SMZ 1500 and Zeiss M2 Discovery microscopes were utilized for

embryo imaging.

RNA isolation, RT-PCR and in situ hybridization
For RNA isolation, the embryos were homogenized in TRI

reagent (Sigma) in the presence of glycogen and processed using a

standard extraction protocol. The cDNA was generated using

equal amounts of RNA for every sample and SuperScript III First-

Strand Synthesis system (Invitrogen, Carlsbad, CA) according to

manufacturer recommendations. Semi-quantitative PCR was

performed using gene-specific oligonucleotides for mip1, exon_1F,

59- CTCCCAGATGTCCCTGTTTC-39, and exon_2R, 59-

CATACTGATGCCAGGCTGAA-39, (PCR product = 148 bp);

for pitx3, exon_1F, 59-CTCCACTAGACCGGGATTCA-39, and

exon_3R, 59- AAAGGTGGCTTCCAGTTCCT-39 (PCR pro-

duct = 276 bp); and for b-actin, exon2F, 59-GAGAAGATCTGG-

CATCACAC-39 and exon_3R, 59-ATCAGGTAGTCTGT-

CAGGTC-39 (PCR product = 323 bp). The PCR conditions

were as follows: initial denaturation at 94uC for 3 min followed

by 23–32 cycles of 94uC for 20 seconds, 59uC for 30 seconds and

72uC for 30 seconds and final extension at 72uC for 7 min. The

number of cycles was optimized to maintain PCR reaction in

linear range.

To construct an antisense riboprobe for in situ hybridization

experiments, a 368-bp fragment specific to zebrafish mip1 transcript

was generated using the following primers, forward, 59-CTGCAG-

GACATGCTCATCAC-39 and reverse, 59-GGCTGCAAAAAGT-

CAACAGA-39, and inserted into pCRII-TOPO plasmid vector. An
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antisense RNA probe was generated using DIG RNA Labeling Kit

(Roche Applied Science, Indianapolis, IN) following manufacturer

recommendation; in situ hybridization was performed as previously

described [39].

Results

Genome search for regulatory regions containing
conserved PITX3 binding sites identifies MIP/AQP0
promoter

Examination of the ECR Browser web-based tool for clusters of

PITX3 binding sites conserved between different species yielded a

total of 976 genomic regions: 511 sequences were found inside of

intergenic regions, 454 elements were located within genes (309 in

intronic, 90 in coding and 55 in untranslated regions), and only 11

were positioned within 1500 bp from a transcriptional start site.

The eleven identified promoter regions were subjected to a

secondary analysis of sequence conservation that included

examination of the corresponding genes in lower vertebrates

when available. One sequence demonstrated the strongest level of

conservation of bicoid sites across multiple species- the promoter

region of the gene encoding for the major intrinsic protein of lens

fiber or aquaporin 0 (MIP/AQP0).

The MIP/AQP0 promoter region contains two bicoid sites

separated by 456 base pairs at positions 258 (bcd1) and 2520

(bcd2) from the transcriptional start site. Alignment of MIP/AQP0

promoters from different species demonstrates high conservation

of both bicoid sites in nine mammalian/vertebrate species from

human to zebrafish (Figure 1). Zebrafish (Danio rerio) has two

orthologs of the human MIP/AQP0 gene designated mip1 and mip2

[40]. The promoter sequence/structure of zebrafish mip1 appears

to be more similar to mammalian species showing conservation for

both bicoid sites (positions 259 (bcd1) and 2442 (bcd2)) and

surrounding sequence (Figure 1).

Conservation of the bicoid sites in MIP promoters of different

species points to the potential importance of these sequences in the

regulation of MIP/AQP0 expression.

The conserved bicoid sequences within the MIP/AQP0
promoter are capable of binding PITX3

We first performed electrophoretic mobility shift assay (EMSA) to

examine whether these putative bicoid sequences are able to bind

PITX3 in vitro. Nuclear extracts were isolated from human lens

epithelial cells transiently transfected with either a PITX3 expression

plasmid or an empty pcDNA vector and incubated with labeled

oligonucleotides containing the TAATCC motif and 13-bp of

flanking sequences on either side of each bicoid site. The samples

derived from PITX3-enriched nuclear extracts produced clearly

visible shifts with both probes which were not observed with samples

prepared from mock-transfected cells (Figure 2). The PITX3-DNA

complexes were further verified by addition of PITX3 polyclonal

antibody, which resulted in reduction of the intensities of the shifted

bands and formation of supershifts (Figure 2). In addition to this, the

specificity of binding was confirmed by EMSA analysis using

modified oligonucleotides carrying a 2-nt mutation within the bicoid

sites: the TAATCC sequence was replaced with TAATTT in both

probes to abolish PITX3 binding [27]. Mutations in the bicoid sites

resulted in the disappearance of protein-DNA complexes, confirm-

ing that these bands are the product of specific PITX3-DNA

interactions (Figure 2).

These results demonstrate that PITX3 is capable of binding to

both bicoid sites located in the human MIP/AQP0 promoter in vitro.

PITX3 interacts with MIP/AQP0 promoter in human lens
epithelial cells in vivo

To investigate whether PITX3 interacts with the MIP/AQP0

promoter in vivo, we performed chromatin immunoprecipitation

(ChIP) assays. Native untransfected human lens epithelial (HLE)

cells or HLE cells following transfection with pcDNA3.1_PITX3_-

FLAG expression plasmid or pcDNA3.1 empty vector were used

in these experiments.

Immunoprecipitations with PITX3 antibody that used nuclear

extracts from native untransfected HLE cells resulted in

enrichment of MIP/AQP0 promoter sequences in the precipitated

DNA in comparison to ChIP samples produced with control

antibody (IgG) (Figure 3A). Immunoprecipitation with FLAG

antibodies that used nuclear extracts from pcDNA3.1_PITX3_-

FLAG transfected cells resulted in enrichment of MIP/AQP0

promoter sequences in the precipitated DNA in comparison to

ChIP samples produced with control antibody (IgG)/same

nuclear extracts as well as precipitations that utilized the same

antibody (FLAG) but employed mock-transfected cells (Figure 3B).

This enrichment for MIP/AQP0 promoter sequences in the

precipitated DNA was demonstrated by semi-quantitative PCR

using specific MIP/AQP0 and control primers (described in

Materials and Methods) and calculated to be ,2.2 times in

experiments performed in native untransfected HLE cells and

,4.5 times in assays that used transfected HLE cells; the

observed differences were found to be statistically significant with

P,0.05 based on t-test (Figure 3C and D). The chromatin

immunoprecipitation and PCR-based enrichment analysis was

repeated eight times using independently transfected cells with

consistent results.

These experiments demonstrated the specific association of

PITX3 with the MIP/AQP0 promoter region in vivo.

Mutations in bicoid sites located in the MIP/AQP0
promoter affect the activity of the promoter

To examine whether the conserved bicoid sites within the MIP/

AQP0 promoter are involved in regulation of its activity, we

created several reporter constructs: MIP656-bcd1,2, which con-

tained a 656-bp fragment of the MIP/AQP0 wild-type promoter

encompassing both bicoid sites and nucleotides from positions

2597 to +59 in relation to the MIP/AQP0 transcriptional start site

inserted into a basic pGL3 plasmid containing the luciferase

reporter gene; MIP656-bcd1, which contained a mutation in the

bcd2 site that changed the 59-TAATCC-39 sequence to 59-

TAATTT-39, thus abolishing its interaction with wild-type PITX3

[27]; MIP656-bcd2, which contained a similar mutation in the bcd1

site changing the 59-GGATTA-39 sequence into 59-AAATTA-39;

and MIP656-bcd0, which included both of the above described

mutations.

Reporter assays demonstrated a 5.2-fold upregulation of

luciferase expression in the presence of the MIP656-bcd1,2

promoter fragment in comparison to the empty vector in human

embryonic kidney cells (Figure 4A). Mutations in either the bcd1

or bcd2 sites resulted in a decrease in MIP/AQP0 promoter

activity compared to the wild-type promoter: to 3.5-fold (67% of

MIP656-bcd1,2 activity; P,0.001) when the bcd1 site was

mutated, to 4.3-fold (83%; P = 0.014) when the bcd2 site was

abolished and to 3.4-fold (65%; P,0.001) when both sites were

disrupted.

Based upon these results, both bicoid sites appear to be involved

in regulation of MIP/AQP0 expression with the proximal site, bcd1,

playing a more significant role in its activation.

MIP Is a Target of PITX3
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PITX3 is capable of transactivating the MIP/AQP0
promoter via the bcd1 bicoid site

In order to investigate the effect of PITX3 on the transcriptional

activity of the MIP/AQP0 promoter, we performed cotransfection

assays using the above described MIP656-bcd1,2, MIP656-bcd1,

MIP656-bcd2 and MIP656-bcd0 reporter constructs and a PITX3

expression plasmid.

Cotransfection of the PITX3-WT expression plasmid with the

MIP656-bcd1,2 luciferase reporter into human embryonic kidney

cells resulted in a ,4.8-fold normalized activation in comparison

to the cotransfection of the PITX3-WT plasmid with the promoter-

less reporter (Figure 4B). In contrast, cotransfection of the

MIP656-bcd1,2 luciferase reporter with an expression plasmid

carrying PITX3 mutants produced a ,2-fold increase over the

same control for the G219f s mutant (42% of wild-type activity;

P,0.001), ,3.1-fold for S13N (65%; P = 0.015) and no transacti-

vation was observed for the K111E mutant. These results are

consistent with the previously reported data on the residual

activities of the corresponding mutant PITX3 forms [27].

We next examined the two bicoid sites present in the MIP/AQP0

promoter for their role in this observed transactivation. The

PITX3-WT expression plasmid and mutant MIP/AQP0 promoter

constructs, MIP656-bcd1 (carrying mutant bcd2 site), MIP656-bcd2

(carrying mutant bcd1 site) and MIP656-bcd0 (carrying mutations in

both bicoid sites) were cotransfected into human embryonic kidney

cells and the resultant luciferase activities were compared to values

observed in experiments involving cotransfection of wild-type

MIP/AQP0 promoter (MIP656-bcd1,2) and PITX3-WT. The

Figure 1. Human MIP/AQP0 genomic region and bicoid elements. A. Schematic representation of the MIP/AQP0 gene and promoter region;
bcd1 and bcd2 sites are indicated. B. Multiple species alignment of genomic sequences surrounding the bcd1 and bcd2 sites (highlighted in grey).
GenBank accession numbers are as follows: NT_029419.12 (Homo sapiens); NC_007868.1 (rhesus, Macaca mulatta), NT_039500.7 (mouse, Mus
musculus), NC_005106.2 (rat, Rattus Norvegicus), NC_006592.2 (dog, Canis lupus familiaris), AAKN02014837.1 G.Pig, Cavia porcellus), NC_009149.2
(horse, Equus caballus), NC_007303.4 (cow, Bos taurus), NC_007134.4 (zebrafish, Danio rerio).
doi:10.1371/journal.pone.0021122.g001

Figure 2. Electrophoretic mobility shift assays (EMSA) demon-
strate interaction between PITX3 and bcd1 and bcd2 sites. EMSA
performed with bcd1 and bcd2 oligonucleotides. DNA-PITX3 complexes
are indicated with a full arrow; supershifts are shown with an
arrowhead. ab = antibody, NE = Nuclear extracts, wt = wild type.
doi:10.1371/journal.pone.0021122.g002
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transactivation of the MIP656-bcd1,2 promoter by PITX3-WT

decreased to ,2-fold (42% of PITX3 induced wild-type promoter

transactivation) when the mutation in the proximal bicoid site, bcd1,

was introduced; increased to ,6-fold (125%; P = 0.03) when the

distal bicoid site, bcd2, was mutated; and produced ,2.2-folds

(46%; P,0.001) when both bicoid sites were disrupted (Figure 4B).

These data suggest that PITX3 is involved in activation of the

MIP/AQP0 promoter via its proximal bicoid site, bcd1.

Figure 3. MIP/AQP0 region demonstrates enrichment in chromatin immunoprecipitation experiments with PITX3 or FLAG antibody.
A. Endogenous PITX3 is bound to the proximal MIP/AQP0 promoter in human lens epithelial (HLE) cell cultures. Chromatin immunoprecipitation
assays were performed using untransfected HLE cells and human PITX3 or IgG (control) antibodies. The samples were analyzed by semi-quantitative
PCR using MIP/AQP0 proximal promoter- specific primers and negative control primers. Please note robust amplification of MIP/AQP0 promoter
region from ChIP sample precipitated with PITX3 but not with control IgG antibody (red arrow) and equal levels of DNA amplification for negative
control region in both samples (black arrowhead). B. PITX3_FLAG is bound to proximal MIP/AQP0 promoter in HLE cell cultures following transfection
with PITX3-FLAG expression plasmid. HLE cells were transfected with either PITX3-FLAG expression plasmid or control pcDNA3.1 expression vector.
ChIP assays were performed with FLAG-M2 or control IgG antibody. The ChIP samples were analyzed by semi-quantitative PCR as described in A.
Please note enrichment of MIP/AQP0 promoter region in ChIP sample obtained from PITX3-FLAG transfected cells and precipitated with FLAG
antibody in comparison to FLAG-precipitated ChIP sample obtained from pcDNA3.1 transfected cells as well as IgG-precipitated ChIP sample
obtained using either PITX3-FLAG or pcDNA3.1 transfected cells (red arrow). In addition to this, amplification of negative control region
demonstrated similar levels across all samples (black arrowhead). C and D. Statistical analysis of multiple semi-quantitative PCR/ChIP experiments
performed in untransfected (C) and transfected HLE cells (D) as described in A and B, correspondingly. Presence of MIP/AQP0 promoter or negative
control region DNA in various ChIP samples was evaluated by semi-quantitative PCR followed by densitometric analysis and expressed as a
percentage of input values; mean and standard deviation for at least 3 independent experiments were calculated and analyzed by Student’s t test.
Please note statistically significant enrichment for MIP/AQP0 promoter region DNA precipitated with PITX3 (C) or FLAG (D) antibody in comparison to
control IgG-precipitated chromatin in HLE untransfected (C) or transfected (D) cells. IgG = normal mouse IgG; PITX3 = PITX3 polyclonal antibody;
FLAG = anti-FLAG monoclonal antibody.
doi:10.1371/journal.pone.0021122.g003
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Knockdown of pitx3 affects formation of a DNA-protein
complex associated with mip1 promoter sequences

In order to efficiently disrupt pitx3 gene expression in zebrafish

and to be able to tightly monitor residual activity/knockdown

level, we tested several splicing morpholino that were designed

against pitx3 intron-exon junctions. Unfortunately, none of these

morpholinos produced the desired outcome, resulting in either no

effect on pitx3 splicing or highly abnormal phenotype due to

toxicity/non-specific defects. Then we tested the previously

reported translational morpholinos [9,12] and discovered that

the antisense morpholino reported by Dutta and coauthors [9] and

designed against the sequence containing the translation initiation

codon located in exon 2 of pitx3 results in abnormal splicing of the

pitx3 transcript due to exon 2 skipping (Figure 5). This pitx3

morpholino [9] matches the nucleotide sequence at positions +8 to

+32 of exon 2 and therefore is located only 7-nt upstream of the

intron 1/exon 2 acceptor site. In our experiments, we found this

morpholino to be highly efficient in blocking normal splicing with

the abnormal 148-bp product lacking exon 2 generated in pitx3-mo

injected embryos versus the normal 276-bp product containing

exon 2 seen in control-mo injected embryos (Figure 5B, C). The first

potential initiation codon (for methionine) in the pitx3-mo

transcript is located at position 28 of the pitx3 homeodomain

and, as a result, the translation of this transcript will produce an

abnormal protein lacking the N-terminal region and 45% of its

homeodomain and, therefore, predicted to be nonfunctional.

An abnormal phenotype was detected in ,95% of pitx3-mo

injected embryos; early lethality (before 20-hpf) was observed in

Figure 4. MIP/AQP0 is activated by PITX3 via interaction with the proximal bicoid site, bcd1. A. Promoter activities of the MIP656 reporters
in human embryonic kidney cells B. Transactivation of MIP656 reporters by PITX3 and its mutants in human embryonic kidney cells. Constructs and
positions of bicoid sites are indicated on the left side. Wild-type bcd1 or bcd2 sites are depicted as open circles. Mutations (TAATCC to TAATTT
substitutions) in bcd1 or bcd2 sites are depicted as dark circles with a strike-through. Student’s paired t-Test with a one-tailed distribution was utilized
to compare values. Experiments marked with asterisk (*) demonstrated a significant difference (P,0.001) in comparison to experiments performed
with MIP656 wild-type promoter (A) or MIP656 wild-type promoter with PITX3-WT (B).
doi:10.1371/journal.pone.0021122.g004
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,20% of pitx3-mo and control-mo injected embryos. The pitx3-mo

displayed a misshapen smaller head, jaw abnormalities and

reduction in eye size due to progressive lens degeneration and

retinal defects leading to a complete loss of lens by 7-dpf

consistent with the previous reports [9,12] (Figure 5D–G). Robust

expression of pitx3 is seen in lens vesicle at 24-hpf and it continues

to be highly expressed during all stages of lens development [9–

13; Figure 5H and I]. In addition to the strong lens expression,

pitx3 transcripts are also detected in the developing brain,

craniofacial region and trunk musculature as previously described

[9,12,13,41,42].

Since we demonstrated above that PITX3 is capable of binding

human MIP/AQP0 promoter in vivo, further experiments were

performed to establish if knockdown of pitx3 would affect

formation of protein-mip1 promoter complexes in zebrafish. We

injected zebrafish embryos with above described pitx3 morpho-

lino oligonucleotides that result in abnormal splicing of pitx3

transcript. Embryos were harvested at 48-hpf and nuclear

extracts from wild-type embryos and pitx3 morphants were tested

for their ability to bind a biotinylated DNA fragment containing

the proximal bicoid site and corresponding to zebrafish 244/276

mip1 promoter region (Figure 6). The experiments were

performed using nuclear protein extracts isolated from the upper

trunk/head region of the 48-hpf wild-type and pitx3 morphant

embryos that displayed normal body length and morphology

(Figure 6A) and demonstrated a normal presence (wild-type) or a

significant reduction (pitx3-mo) in normal pitx3 transcript based on

RT-PCR analysis performed using RNA extracted from the

lower trunk region of the same embryos (Figure 6B). For positive

control, aliquots of nuclear extracts from wild-type and pitx3

morphants were analyzed on 10% polyacrylamide gel followed by

Coomassie Blue R-250 staining to assure equal protein

concentration in both samples (Figure 6C). Two apparent slow-

migrating complexes were formed that were evident at the top of

the gel when EMSA was performed with nuclear extracts

obtained from wild-type embryos. The formation of these

Figure 5. Injection of pitx3 morpholino results in abnormal splicing of pitx3 transcript and small lens phenotype. A. Schematic
drawing of pitx3 gene; position of initiation codon (ATG) and RT-PCR primers (1F and 3R) are indicated, exons are numbered. B. Sequencing of the
pitx3-mo transcript generated with primers located in the first and third pitx3 exons demonstrates absence of exon 2 in the resultant product. C. RT-
PCR results obtained with pitx3 1F/3R primers using RNA extracted from embryos injected with control or pitx3 morpholino. Please note a strong
decrease in normal 276-bp product (black arrowhead) and presence of abnormal 148-bp product (red arrowhead) in pitx3-mo samples; hpf- hours
post fertilization of analyzed embryos. D–G. Morphological phenotypes of zebrafish pitx3-mo embryos. In comparison to control embryos, a smaller
head can be observed in pitx3 morphants (72-hpf embryo is shown; D) as well as an obvious reduction in lens size (black arrow) at later stages (96-hpf
embryos are shown; E–G). H and I. Expression of pitx3 in the developing lens in 24-hpf embryos. Please note robust expression in the lens vesicle
(arrows) as demonstrated by both whole mount (H) and section (I) in situ.
doi:10.1371/journal.pone.0021122.g005
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complexes was abolished by introduction of a mutation into the

bicoid site contained within the 244/276 mip1 promoter, which

suggests that pitx3 is directly involved in DNA-binding of this

fragment (Figure 6D). In addition to this, the slow-migrating

complexes were significantly diminished when nuclear extract

obtained from pitx3 morphants were utilized (Figure 6D). Therefore

the observed reduction in the intensity of the slow-migrating DNA-

protein complexes correlates well with the residual amount of

normal pitx3 transcript in morphants in this experiment.

These data support our previous findings which demonstrate

that pitx3 is a part of large complex occupying the mip1 promoter

in the developing zebrafish embryo.

Figure 6. Formation of high molecular weight mip1 promoter- protein complexes is dependent on pitx3 presence. A. 48-hpf wild-type
and pitx3 morphant embryos showing normal body length and morphology that were selected for EMSA experiments. B. Results of RT-PCR
performed with RNA extracted from the pooled tail tissues from wild-type and pitx3 morphant embryos shown in C. A sharp reduction in normal pitx3
transcript (black arrowhead) and the presence of abnormally spliced product (red arrowhead) are evident in pitx3 morphant embryos. C. Coomassie
Blue R-250 stained polyacrilamide gel demonstrating equal protein concentration in nuclear extracts obtained from wild-type (lane 1) and pitx3
morphant (lane 2) embryos that were used in EMSA experiments shown in A. D. Electrophoretic mobility shift assays (EMSA) show formation of a
DNA-protein complex when an oligonucleotide corresponding to the 244/276 region of zebrafish mip1 promoter and nuclear extracts from 48-hpf
wild-type zebrafish embryos are used. Please note a presence of a specific slow migrating complex, which is formed by wild-type mip1 probe and
proteins extracted from nuclei of 48-hpf wild-type zebrafish embryos (lane 2), absence of this complex in lane 3 when the same nuclear extracts were
combined with a mutant mip1 probe where the pitx3-binding bicoid site GGATTA was replaced by AAATTA, and sharp reduction of this complex in
lane 4 containing a combination of a wild-type mip1 probe and nuclear extracts obtained from pitx3 morphants (red arrow).
doi:10.1371/journal.pone.0021122.g006
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Knockdown of pitx3 affects mip1 expression in zebrafish
embryos

Examination of mip1 expression by in situ hybridization

identified a specific and robust expression pattern in 100% of

control-mo injected embryos (15/15), while a complete absence (9/

14 or 64.3%) or a very low level (5/14 or 35.7%) of mip1

expression was seen in pitx3-mo embryos at 29-hpf (Figure 7A–C,

F, I). mip1 expression is clearly observed in both control and pitx3-

mo injected embryos at later stages but appears to be somewhat

reduced in pitx3 morphants (Figure 7 D, E, G, H, J, K).

Semi-quantitative RT-PCR analysis of mip1 expression in the

pitx3 morphants and control-injected embryos confirmed a specific

delay and decrease in mip1 expression in pitx3 morphants. The

expression was initiated at ,22-hpf in control injected embryos

consistent with the start of lens fiber cell differentiation. The

expression increased at later stages with the highest levels being

detected in 48-hpf embryos and decreased levels by 72-hpf. In the

pitx3-mo embryos, the first expression was observed in 26-hpf

embryos with expression levels being noticeably lower in

comparison to the control-mo injected larvae. The mip1 expression

in 28–34-hpf pitx3 morphants continued to be reduced in

comparison to control-injected larvae and but reached similar

expression levels by 72-hpf (Figure 7L). Examination of beta-actin

(loading control) demonstrated similar levels of expression between

pitx3-mo and control-mo injected embryos (Figure 7L).

These experiments revealed a specific delay and decrease in

expression of an important lens factor, mip1, in response to pitx3

deficiency.

Discussion

PITX3 is a homeodomain transcription factor that is essential to

normal eye development in vertebrates. Yet, its direct downstream

targets and mechanism of action are poorly understood. In this

manuscript, we present identification of the first direct target of

PITX3 during lens development, the major intrinsic protein of

lens fibers, MIP/AQP0.

The MIP/AQP0 promoter was identified via scanning of the

human genome for regions containing conserved clusters of bicoid

sequences and located in the proximity of known genes. Since the

sequence, expression and function of PITX3 are conserved in

vertebrates and bicoid sites are known to mediate its interaction

with DNA, the conserved presence of these elements in a gene’s

promoter/regulatory region suggests that it may be regulated by

PITX3. In addition to this, MIP/AQP0 represents a logical

downstream target of PITX3 because of its known role in lens

development/function.

MIP/AQP0 is one of the most abundant proteins found in lens

fibers where it acts as a water channel and adhesion molecule [43–

46]. Mouse Pitx3 and Mip/Aqp0 display overlapping expression

patterns during eye development as both genes are expressed in

the developing primary and secondary lens fibers, with continued

expression in adult organisms [1,14,47,48]; expression of zebrafish

pitx3 precedes mip1 in the developing lens [9–13; this manuscript]

consistent with its proposed role in activation of mip1 expression.

Mutations in both PITX3 and MIP/AQP0 are implicated in

congenital cataracts in humans [1–6,49] and result in lens

phenotypes in mice [7,8,18,50–52]. Gene expression patterns as

well as phenotypic abnormalities observed in mutant animals

suggest an earlier appearance of Pitx3 in comparison to Mip/Aqp0,

which would also be consistent with Mip/Aqo0 being a downstream

target of Pitx3. Expression of the Mip/Aqp0 transcript and protein

is first detectable at mouse embryonic stage E11.25 in the ventro-

temporal half of the lens vesicle concurrent with the initial stages of

primary fiber cell differentiation and continues to be restricted to

the lens differentiating primary and secondary fiber cells

throughout adulthood [47,48].

Transcriptional regulation of the Mip/Aqp0 expression pattern is

not yet well understood with several potential players discussed in

the literature. Previous studies have shown that the human MIP/

AQP0 59 flanking sequence 2253/+42 is sufficient for promoter

activity in embryonic chicken lens epithelia primary cultures but is

inactive in non-lens cells, suggesting that this region contains

regulatory sequences required for the lens-specific expression of

MIP/AQP0 [53]. Ohtaka-Maruyama and colleagues reported that

MIP/AQP0 promoter fragments are protected in a DNase I

footprinting assay performed with purified AP-2 and Sp1 and,

therefore, the promoter is likely to interact with these factors [54].

Transgenic mice expressing AP2-a in lens fiber cells under the

control of the aA-crystallin promoter were found to have reduced

amounts of Mip/Aqp0 in all fiber cells while expanded Mip/Aqp0

expression was detected in the lens stalk of AP2-a2/2 mice

[55,56]. Based on these observations and earlier reports [54],

West-Mays and colleagues concluded that Ap2-a acts as a negative

regulator of Mip/Aqp0 expression and may, directly or indirectly,

be responsible for its tight spatial/ temporal control [56]. In

addition to these reports, Mip expression was shown to be

triggered by treatment with FGF-2 and to accompany ERK1/2

and JNK activation in rat lens epithelia explants; treatment with

specific ERK1/2 or JNK inhibitors resulted in abrogation of Mip/

Aqp0 expression in response to FGF-2 [57].

In this manuscript, we present evidence that the two

evolutionarily conserved sequences containing bicoid sites within

the MIP/AQP0 promoter are capable of binding specifically to

PITX3. Moreover, through chromatin immunoprecipitation

assays we demonstrated that PITX3 is bound to the MIP/AQP0

promoter in vivo in human lens epithelial cells. Analysis of the

functional significance of this binding using luciferase reporter

assays demonstrated that wild-type PITX3 is able to transactivate

the MIP/AQP0 promoter while mutant PITX3 forms showed

reduced or absent transactivation ability. Further functional

analysis utilizing site-specific mutations revealed the importance

of the proximal bicoid site for the observed transactivation. The

obliteration of the proximal bicoid site resulted in a statistically

significant reduction of MIP/AQP0 promoter activity as well as a

decreased level of transactivation by PITX3. Finally, analyses

performed in zebrafish embryos suggested that pitx3 is bound to

the mip1 promoter sequences during embryonic development and

that mip1 expression is altered in zebrafish pitx3 morphants. At

later stages of development (48–72-hpf), the expression of mip1 in

pitx3 morphants appears to be largely unaffected, suggesting that

regulation of mip1 activity at these stages may be mainly controlled

by other, pitx3 pathway-independent, factors; pitx3 may also

contribute to the recovery of mip1 expression since increasing

amounts of normal pitx3 transcript can be observed in zebrafish

embryos starting at 48-hpf due to weakening of the effects of

morpholino injections (Figure 5C). Identification/development of

permanent pitx3 mutant lines is needed to allow more careful

evaluation of the relationship between these factors.

Mutations in the human MIP/AQP0 gene were shown to

underlie various dominant forms of cataracts [49,58–65]. To the

best of our knowledge, only two of the reported MIP/AQP0

mutations were explored for functional defects and a dominant-

negative mechanism was suggested [58]. The dominant nature of

MIP/AQP0 mutations may also be explained by haploinsufficiency

which would suggest that lens development is highly sensitive to

dosage/timely expression of MIP/AQP0. The later possibility is

further supported by the phenotype reported in the mouse
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Figure 7. Analysis of mip1 expression in pitx3-mo and control embryos via in situ hybridization and RT-PCR. A, D, F-H. Normal mip1
expression in control-injected embryos at 29-, 34- and 48-hpf. B, C, E, I–K. Altered mip1 expression is observed in pitx3 morphants at 29-hpf with
64% of embryos demonstrating a complete absence of mip1 expression (B) and the remaining larvae showing markedly reduced mip1 expression (C
and I). Reduced mip1 expression is also observed in 34- and 48-hpf embryos (E, J, K). Red arrows show sites of expected mip1 expression. Scale bars:
A–E: 100 mM; F–L: 20 mM. L. Results of semi-quantitative RT-PCR showing reduced expression of mip1 in pitx3 morphants at early stages of
development (red arrow).
doi:10.1371/journal.pone.0021122.g007
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carrying a null allele of Aqp0 [54]. Deletion of mouse Aqp0 was

shown to result in cataracts at 3 weeks of age and at 24 weeks of

age in homozygous and heterozygous mice, respectively. In

heterozygous animals, the lens osmotic water permeability value

was reduced to around 46% and the lens focusing power was

significantly decreased in comparison to wild-type [52]. These

findings demonstrated that a loss of one Aqp0 allele, which

presumably leads to reduced Aqp0 expression, can be associated

with lens abnormalities. Therefore, since MIP/AQP0 represents an

apparent transcriptional target of PITX3, the alteration of the

MIP/AQP0 expression in patients affected with PITX3 mutations is

likely to contribute to the lens phenotype observed in these

individuals.

Further studies of the MIP/AQP0 promoter will not only yield

important insight into the transcriptional regulation of this critical

lens differentiation factor but will also provide better understand-

ing of the function of PITX3 and its interacting partners and allow

for more specific identification of additional downstream targets of

this ocular factor. Also, genetic screening of both PITX3 and MIP/

AQP0 in human patients affected with ocular conditions may lead

to an identification of synergistic or compensatory mutations/

variants that may help to explain the considerable intra- and

interfamilial phenotypic variability associated with mutations in

either gene.
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