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Abstract

One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and
progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we
applied the ‘‘k-clique’’ subpathway identification method to all disease-related gene sets. For each disease, the disease risk
regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally
built a disease-metabolic subpathway network (DMSPN). Through analyses based on network biology, we found that a few
subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to
fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of
diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and
metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight
clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic
subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of
tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly,
the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged.
Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway
in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and
tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different
kinds of genes within a disease-related subpathway may play significantly differential roles on the diversity of diseases
caused by the corresponding subpathway.

Citation: Li X, Li C, Shang D, Li J, Han J, et al. (2011) The Implications of Relationships between Human Diseases and Metabolic Subpathways. PLoS ONE 6(6):
e21131. doi:10.1371/journal.pone.0021131

Editor: Matej Oresic, Governmental Technical Research Centre of Finland, Finland

Received January 26, 2011; Accepted May 20, 2011; Published June 17, 2011

Copyright: � 2011 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 30871394, 61073136 and 91029717), the National
Science Foundation of Heilongjiang Province (Grant Nos. ZJG0501, 1055HG009, GB03C602-4, and BMFH060044), and the Specialized Research Fund for the
Doctoral Program of Higher Education of China (Grant Nos. 20102307120027, and 20102307110022). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lixia@hrbmu.edu.cn

. These authors contributed equally to this work.

Introduction

Genes/proteins rarely function in isolation in and outside the cell,

but interact with each other to form complex cellular pathways of

metabolic, regulatory, or protein complexes to perform biological

functions [1,2,3,4]. The initiation and progression of diseases are

highly associated with abnormalities in the biological functions of

pathways. Especially, abnormalities in local regions (that is,

subpathways) of cellular pathways contributes to the etiology of

diseases [5,6,7,8]. Among the cellular pathways, metabolic pathways

are at the heart of the cell and are among most challenging biological

networks and, arguably, the ones with most potential for immediate

applicability [4,5,6]. Therefore, to elucidate the intricate relation-

ships between human diseases and the disruption of underlying

functional regions in metabolic pathways is an important challenge

in the field of biology and medicine [5,9,10].

However, it is a challenge to identify disease-related regions of

metabolic pathways. Some studies have successfully identified

disease risk metabolic subpathways from low-throughput biolog-

ical experimental studies. For example, an abnormality in

norepinephrine metabolism, which is a sub-pathway of the

‘tyrosine metabolism’ pathway, was found to be associated with

the initiation and progression of some diseases, such as cancer,

and neurological, psychiatric, endocrine and cardiovascular

diseases [8,11]. If all disease-related subpathways can be

identified by biological studies, the global relationships between

metabolic subpathways and diseases could be constructed and

studied in-depth from the viewpoint of network biology [3],

which would can give global clues to possible metabolism-related

treatment of diseases [3,12,13,14,15]. However, currently, it is

difficult to construct the global relationships between metabolic

subpathways and a variety of diseases via low-throughput

biological experimental studies. Although disease-related genes

can be identified effectively by a variety of methods [16,17], the

identification of disease-related metabolic subpathways is very

difficult in terms of the lack of high-throughput experimental
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technology. High-throughput reactome arrays for the functional

analysis of metabolic pathways were recently developed but have

still not been applied to the identification of human disease-

related subpathways [18].

Currently, the pathway-enriched methods are an efficient

alterative strategy for establishing disease-pathway relationships

by identifying disease risk pathways based on disease-related genes

[8,14,19,20,21,22,23]. Information on disease-related genes, such

as that available from the Genetic Association Database (GAD)

[24] has become increasingly available for constructing high-

quality disease–metabolic pathway relationships. Furthermore, the

high quality pathway structure data available from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [25] is invaluable

for identifying the disease risk regions of pathways. Here, we

constructed a global disease–metabolic subpathway network

(DMSPN) in which nodes represent diseases or metabolic

subpathways and these were connected by an edge if genes

related to a particular disease were significantly enriched to the

subpathway. We applied the ‘‘k-clique’’ pathway identification

method to all disease-related gene sets. For each disease, the

disease risk local regions of metabolic pathways were finally

identified using disease genes and pathway structure data. These

regions were considered as subpathways associated with the

disease. We then used the methods of network biology to analyze

global relationships between diseases and metabolic subpathways

based on the basic properties of the DMSPN, the clustering

phenomenon for disease nodes and subpathway nodes, the

correlations between network topology and genes within disease-

related metabolic subpathways. Through these analyses, our

findings offer insight into the interplay between metabolic

subpathways and human diseases.

Results

Construction of the disease–metabolic subpathway
network

We constructed a disease–metabolic subpathway network based

on disease genes and pathway structure data (Figure 1). First, we

downloaded all terms of gene-disease associations (N = 39910) in the

GAD (December 15, 2008). After some necessary dealing steps such

as merging redundant terms and converting gene identifiers (see

Text S1 and Dataset S1), 15149 unique gene–disease associations

were finally obtained from 39910 primary terms. The 15149 gene–

disease associations were composed of 412 diseases, which are

naturally grouped by the GAD into 18 disease classes, and 2831

disease genes (see Dataset S2). Second, for each disease among the

412 diseases, we identified the disease-related subpathway based on

the corresponding gene sets. We used the ‘‘k-cliques’’ subpathway

identification method provided by the SubpathwayMiner software

package [8] to identify statistically significantly enriched subpath-

ways with a P-value,0.01 (see Text S1). This method is able to

identify subpathways with a given distance parameter k, which

means that the distance among all enzymes within the subpathways

is no greater than k [8]. Briefly, each metabolic pathway is converted

to an undirected graph with enzymes as nodes. After inputting the

given disease-related genes and distance parameter k, the method

can mine each metabolic subpathway and then identify statistically

significantly enriched subpathways. In this study, we mainly discuss

the DMSPN with k = 3. This parameter setting ensures that the

identified disease risk subpathways are located in the disease-related

local regions of pathways. When k = 3, a total of 743 metabolic

subpathways were generated, of which 302 were significantly

associated with 243 of the 412 diseases. These subpathways and

diseases generated 4288 significant disease–metabolic subpathway

associations. Finally, we combined these disease–metabolic sub-

pathway associations to construct the DMSPN with k = 3 (see

Dataset S3). The network was a bipartite network consisting of two

disjointed sets of nodes. One set corresponded to 243 diseases, and

the other set corresponded to 302 disease-related metabolic

subpathways (circular nodes represent diseases and rectangular

nodes represent subpathways in Figure 2). A disease and a

subpathway were connected if the corresponding disease-related

genes were significantly enriched to the corresponding subpathway.

We also developed a platform for constructing disease–metabolic

subpathway networks (Figure S1), which was integrated into the

SubpathwayMiner package freely available at http://cran.r-project.

org/web/packages/SubpathwayMiner/. Using this platform, we

constructed disease–metabolic subpathway networks based on the

different scales of subpathways.

The basic network features of the DMSPN
The DMSPN with k = 3 was composed of 545 nodes (302

subpathways and 243 diseases), and 4288 edges (Figure 2). The

edges in the DMSPN were denser than expected by chance with P-

values,0.001 (see Text S1 and Figure S2C), and most nodes formed

a giant connected component, suggesting that the diseases and

metabolic subpathways were much closely connected at the system

level. The degree of subpathway nodes as well as that of disease

nodes (circular and rectangular nodes of different sizes in Figure 2)

had fat tails (Figure 3). On average, a subpathway in the DMSPN

was associated with 14 diseases, and the initiation and progression of

a disease involved 20 subpathways. The degree distribution of

subpathway nodes was much broader than that of disease nodes. To

further test the differences between the degree distribution of the

subpathway and disease nodes, we generated 1000 random

networks and compared them with the actual DMSPN (see Text

S1). We found that the degree distribution of the subpathway nodes

of the actual DMSPN was significantly broader than that of the

random networks (P-value,10e–10, see SI Figure S2A), whereas the

distribution of disease nodes did not display such a highly significant

difference (P-value = 0.02, see SI Figure S2B), suggesting that the

different subpathways in the DMSPN possessed the considerable

differences with respect to causing diseases. On the one hand, few

metabolic subpathways were linked to many diseases. The degrees of

only 20 subpathways (nodes with degree.80 in Figure 3A, and

ellipse I region at the central top part of Figure 2) among the 302

total subpathways were significantly higher than the degrees of other

subpathways. Interestingly, most of these connected subpathways

were involved with lipid metabolism (9/20) (red rectangular nodes)

and amino acid metabolism (7/20) (orchid rectangular nodes),

suggesting that abnormalities in fundamental metabolism may tend

to cause more types of disease. For example, for lipid metabolism,

five of the nine subpathways were involved with arachidonic acid

metabolism. Some studies showed that arachidonic acid could

generate many compounds with different cellular or extracellular

tissue and organ targets, causing a wide range of clinical effects [26].

Arachidonic acid metabolism has been reported to be associated

with different kinds of diseases, including inflammation, hyperten-

sion, diabetes, cardiovascular diseases, depression, schizophrenia,

Alzheimer’s disease and cancer [27]. Of seven amino acid

metabolism subpathways, five subpathways belonged to tryptophan

metabolism. The dysfunction of tryptophan metabolism has been

found to be associated with many diseases including cancer, and

psychological, immune and cardiovascular diseases [28,29,30,31].

Of the other 4 of the 20 subpathways with degree.80, the

subpathways path:00980_1 and path:00361_1 with degrees of 122

and 105, respectively, belonged to metabolism of xenobiotics by

cytochrome P450 and gamma-hexachlorocyclohexane degradation,

Disease-Metabolic Subpathway Network
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which were directly related to xenobiotic degradation and

metabolism. Cytochrome P450 is involved in the bioactivation

and detoxification of a variety of xenobiotics [32]. Abnormal

metabolism of xenobiotics by P450 may cause inborn errors in

metabolism and contribute to many clinically relevant diseases [33].

The subpathways path:00232_1 and path:00232_2 (light green

rectangular nodes) belonged to caffeine metabolism, were associated

with 98 diseases in the DMSPN and had been proved to be

potentially related to many diseases including Alzheimer’s disease,

asthma, cancer, diabetes and Parkinson’s disease [34]. On the other

hand, many metabolic subpathways were connected to only a few

diseases in the DMSPN. For example, path:00072_1, path:00512_1

and path:00631_1 were only connected to one disease. The synthesis

and degradation pathway of ketone bodies (path:00072_1), which

belonged to a subpathway of lipid metabolism, was only associated

with lipid-related diseases (ellipse II in Figure 2). Similarly, the O-

glycan biosynthesis subpathway (path:00512_1) was only linked to

IgA-nephropathy in the DMSPN (ellipse III) [35], and the 1,2-

dichloroethane degradation subpathway (path:00631_1), which was

found to be associated with the initiation and progression of cancer

[36], was only linked to laryngeal cancer (ellipse IV).

Although the degree distribution of disease nodes was no

broader than that of the subpathway nodes, the degree of diseases

also spanned a wide range from 1 to 100 (Figure 3B, and circular

nodes of different sizes in Figure 2). Diseases with high degrees

displayed significantly different characteristics compared with

diseases with low degrees. Most diseases with high degrees were

well-known, highly heterogeneous, complex diseases such as

Parkinson’s disease (ellipse V), hypertension (ellipse VI), Alzhei-

mer’s disease (ellipse VI) and some cancers (the central part of

Figure 1. Schematic of the construction of the disease–metabolic subpathway network (DMSPN). We constructed a DMSPN based on
disease genes and pathway structure data. First, we obtained 15149 unique gene–disease associations after processing all terms of gene–disease
associations in the Genetic Association Database (GAD). Second, for each disease, we used the ‘‘k-cliques’’ subpathway identification method to
identify statistically significantly enriched subpathways with P-value,0.01, to generate disease–metabolic subpathway associations for each disease.
Finally, we combined these disease–metabolic subpathway associations to form the DMSPN.
doi:10.1371/journal.pone.0021131.g001

Disease-Metabolic Subpathway Network
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Figure 2. The DMSPN is a bipartite network. The circles and rectangles in the network correspond to diseases and metabolic subpathways
respectively. A disease and a subpathway are connected by an edge if the set of disease genes are statistically significantly enriched to the
corresponding subpathway. Node size is proportional to the degree of the node. Nodes are colored according to their categories, which include 18
disease classes from the Genetic Association Database (GAD) for disease nodes and 11 subpathway classes from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database for metabolic subpathway nodes. Edges are colored according to the enrichment significance (P-values) of
associations between diseases and subpathways.
doi:10.1371/journal.pone.0021131.g002

Disease-Metabolic Subpathway Network

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21131



Figure 2). By contrast, some rare and lowly complex diseases were

usually only associated with a few subpathways. Interestingly,

many diseases with low degrees, including Addison’s disease

(ellipse VII) and Graves’ disease (ellipse VII), belonged to

autoimmune diseases (khaki circular nodes at the lower right part

of Figure 2). Autoimmune diseases occur when the body’s immune

system attacks its own special tissues or systems, thinking they are

foreign threats. Therefore, the initiation and progression of these

diseases are usually pathway-specific. For example, Addison’s

disease, which was only associated with the subpathway

path:00100_3 (a subpathway of the steroid biosynthesis pathway)

in the DMSPN, is mainly caused by impaired steroidogenesis [37].

Evaluating the clustering phenomenon of diseases and
subpathways

As illustrated in Figure 2, diseases were divided into 18 classes

(circular nodes of different colors) according to the GAD, and

subpathways were divided into 11 classes (rectangular nodes of

different colors) according to the KEGG. If a subpathway node

has a high degree, the subpathway is associated with the initiation

and progression of more diseases. However, we questioned

whether these potential diseases induced by the subpathway

belong to more different disease classes. To test this, we calculated

the disease diversity of each subpathway in the DMSPN. Disease

diversity of a subpathway is defined as the unique class numbers of

diseases associated with the subpathway divided by the total

numbers of disease classes. We found that there was a significant

positive correlation between disease diversity and degree of a

subpathway (P-value,2.2e–16, see SI Figure S3), suggesting that

the higher the subpathway degree, the more types of disease are

caused by disruption of the subpathway.

Some studies have shown that diseases within the same disease

class tend to be clustered into densely connected groups in disease

networks [12,14,38,39]. To probe whether functional clustering of

DMSPN exists, we calculated the (BD, BH) values of each class to

test the clustering phenomenon of disease classes and subpathway

classes in the DMSPN respectively (see Materials and methods).

Briefly, for a disease class, BD.1 (BD,1) indicates that diseases in

the disease class tend to connect more (less) densely among

themselves than the random expectation. BH.1 (BH,1) means

that diseases in the disease class have more (fewer) connections to

diseases in other classes than the random expectation. If BD.BH,

diseases in the disease class tend to display a clustering

phenomenon in the DMSPN. If BD.1 and BH,1, diseases in

the disease class tend to display a clear clustering phenomenon in

the DMSPN. Similarly, we can also calculate the BD and BH

values of subpathways in a subpathway class. The results showed

that for disease classes, the average values of (BD, BH) were 4.4

and 2.3 respectively (Figure 4A). The average value of BD was one

times more than that of BH, suggesting that diseases in the same

disease class tend to connect more densely than expected by

chance. However, these diseases still connected densely with

diseases in other disease classes as demonstrated by their high BH

value (BH.1). For example, the BD value of ‘‘pharmacogenomic’’

class was 3 times more than the BH value that was equal to 2.5

(Figure 4A), suggesting that diseases in the class have more similar

mechanism of happen, but have still similar mechanism of happen

with some diseases in other disease classes. Therefore, diseases in

the same disease class displayed a slight clustering tendency.

However, for several disease classes, including the aging disease

class and the cardiovascular disease class, the BD values were

similar to the BH values. For subpathway classes, the average

values of BD and BH were 2.8 and 1.2 respectively (Figure 4B).

The average value of BD was one times more than that of BH,

suggesting that subpathways in the same subpathway class display

a slight clustering tendency. For example, fluorene degradation

(BD = 4.7, BH = 1.4), nucleotide metabolism (BD = 2.2, BH = 0.9)

and glycan biosynthesis (BD = 2.6, BH = 0.9) displayed a slight

Figure 3. Mapping between diseases and subpathways. (A) Distribution of the number of mapped diseases per subpathway. (B) Distribution
of the number of mapped subpathways per disease.
doi:10.1371/journal.pone.0021131.g003
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clustering tendency in the DMSPN, suggesting that the disruption

of these subpathways tends to cause similar diseases. However,

carbohydrate metabolism (BD = 1.0, BH = 1.1) and amino acid

metabolism (BD = 1.9, BH = 1.0) displayed low value.

The (BD, BH) measure evaluated clustering tendency for a

given class and showed that diseases (and subpathways) in the

same disease (and subpathway) class displayed a slight clustering

tendency. After clustering the nodes in the DMSPN, without

considering disease class information, diseases in the same clusters

should tend to belong to the same disease class. To detect this, we

performed hierarchical clustering [40,41] on the DMSPN

(Figure 5A). The results showed that diseases belonging to the

same disease class tend to group together. However, this does not

mean that all diseases in the same disease class were perfectly

clustered. In fact, diseases in the same class tend to be clustered at

the local level, but not at the global level (e.g., the neurological and

psychological diseases (dark and light green labels in Figure 5C)).

That is, diseases in the same disease class tended to form many

small clusters instead of individual large clusters. This phenom-

enon was also interpreted by the high BD and BH values of the

disease class described above, because the high BH value indicates

that some diseases in a disease class are closely related to diseases

in other classes. Next, we questioned what factors contribute to the

high degree of similarity between diseases belonging to different

disease classes. One factor may be the degree of genetic similarity

in a disease class. Then, what contribute to the high similarity of

diseases belonging to different disease classes? For example, the

neurological and psychological diseases have similar genetic

origins and their genetic similarity of them may make the two

kinds of diseases merge into one large cluster when clustering them

(dark and light green labels in Figure 5C). Another factor may be

different viewpoints with regard to classifying a disease, which

divide some the co-characteristic diseases into different disease

classes and cause the ambiguous boundaries between different

diseases. For example, although the ‘‘chemdependency’’ diseases

are obviously different from the neurological and psychological

diseases, some diseases in the ‘‘chemdependency’’ class, including

nicotine, dopamine and antisocial, not only relate to chemdepen-

dency but also to neurology and psychology. In the DMSPN, these

diseases were clustered into the neurological and psychological

cluster at the global level (Figure 5C). In addition, the high

correlations between metabolic subpathways also decreased the

clustering phenomenon of the DMSPN.

Correlations between network topology and genes
within disease-related metabolic subpathways

Many diseases, especially complex diseases, are usually related

to disruption of underlying functions in metabolic subpathways.

Most of the biological functions of a metabolic subpathway are

carried out by biochemical interactions between gene products

within subpathways. Therefore, involvement of a high proportion

of disease genes in a subpathway might increase the possibility of

disruption of the corresponding subpathway, finally leading to

more diseases. To examine this, we measured the ratio of the

number of disease genes to the number of total genes within each

subpathway of the DMSPN. We found that the ratio significantly

Figure 4. Evaluating the clustering phenomenon using BD and BH measures. (A) The plot of BD and BH of 18 disease classes. (B) The plot
of BD and BH of 11 metabolic subpathway classes.
doi:10.1371/journal.pone.0021131.g004

Disease-Metabolic Subpathway Network

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21131



increased as the degree of a subpathway increased (P-value,2.2e–

16; Figure 6A). Moreover, there were on average 20 disease genes

in a disease-related subpathway, representing 36.3% of the total

genes in a subpathway. These suggested that subpathways

associated with more diseases tend to contain higher ratios of

disease genes. Similarly, metabolic subpathway regions with a high

ratio of disease genes also tend to cause more types of diseases due

to the high positive correlation between degree and disease

diversity of the subpathway node (see Figure S3).

The ratio of disease genes within a metabolic subpathway was

significantly associated with the number of diseases induced by

dysfunction of the corresponding subpathway. Other types of genes

within these disease risk regions could therefore also be significantly

associated with disease diversity of subpathways. To examine this,

we firstly tested essential genes, whose functions are necessary for

organisms to survive and reproduce. Essential genes are often

compared with disease genes in many studies. Some recent studies

have found that diseases genes and essential genes may encode hubs

in protein interaction network [42,43,44]. Other studies reported

only a weak correlation between disease genes and hubs [45].

Essential genes may have a direct association with cancer [12] and

may be regarded as the most severe ‘‘disease’’ genes [46]. Can the

disease-related functional differences between disease genes and

essential genes be observed in the subpathway regions of the

DMSPN? To address this question and test relationships between

essential genes and the topology of the DMSPN, we measured the

ratio of essential genes within each subpathway in the DMSPN.

2486 human essential genes were obtained according to the lethal

phenotype information of the corresponding mouse orthology (see

Materials and methods) from the Mouse Genome informatics

[47,48]. We then matched them to each subpathway for calculating

the ratio of essential genes of subpathways. Surprisingly, the

Figure 5. Hierarchical clustering on the DMSPN using the city-block distance and complete linkage method in the Cluster3 software
package and JavaTreeView imaging software. (A) Hierarchical clustering between 243 diseases and 302 metabolic subpathways. The
corresponding cell was colored orange if there was an edge between the disease and subpathway in the DMSPN. Disease labels and subpathway
labels were colored according to the disease class colors and subpathway class colors used in Figure 2 and 3. (B) Zoom-in plot of part of the pink
circled region in Figure 5A, showing the psychological, neurological, and chemdependency disease classes and amino acid metabolism subpathways.
(C) Zoom-in plot of part of the disease labels in the lower-right region of Figure 5A. (D) Zoom-in plot of part of the subpathway labels in the lower-
right region of Figure 5A.
doi:10.1371/journal.pone.0021131.g005
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results showed that the ratio of essential genes to the number of

total genes within each subpathway decreased significantly as the

degree of the corresponding subpathway increased (P-value,

2.2e–16) (Figure 6B), which was a significant negative correlation

between the ratio of essential genes and the degree of a subpathway.

The trend between essential genes and the topology of the DMSPN

was opposite to the trend between disease genes and the topology of

the DMSPN, suggesting that the DMSPN is able to distinguish well

the disease-related functional differences between disease genes and

essential genes. This result also indicated that regions of metabolic

pathways with a high ratio of essential genes were less likely to lead

to more types of diseases. Mutation of essential genes usually causes

severe functional impairment that tends to result in lethality. Thus,

abnormalities within a subpathway that contains a higher ratio of

essential genes might lead to lethality in patients before suffering

from more diseases whereas abnormality of the subpathway that

contains higher ratio of disease genes more easily make patients

survive or die after suffering from more and more diseases.

We further tested housekeeping (HK) genes and tissue-specific

genes (TS). HK genes are constitutively expressed in all tissues and

cell types to maintain basic cellular functions. Whereas, TS genes are

expressed at a much higher level in a single tissue than in others.

Expression regulation differences between HK and TS genes were

analyzed recently [49,50,51]. We downloaded the HK and TS gene

dataset used by She et al. [49] which contained 1522 human HK

genes and 975 TS genes identified from the gene expression profiles

of 42 normal human tissues using high-density microarrays and the

conservative identification criteria. We found that there were the

higher ratio of TS genes as a subpathway was associated with more

diseases (P-value,1.63e–13) (Figure 6D). However, there was no

significant correlation between the ratio of HK genes and the degree

of subpathways (P-value = 0.01) (Figure 6C). Many studies have

shown that HK genes are less likely to mutate and are more

conserved than TS genes, that they are more stably expressed and

that they are more enriched in basic maintenance biological processes

of the cell. HK genes may thus play a basic role in the cell and

maintain stable numbers regardless of whether abnormalities of the

subpathway regions that contain these genes lead to more types of

diseases. However, TS genes show similar trends with disease genes,

for disease genes tend to be expressed specifically in some tissues. In

summary, the DMSPN is able to distinguish well the disease-related

functional difference between HK genes and TS genes.

Disease genes within the potential disease-related subpathways

of DMSPN may play key roles in regulating these subpathways.

Figure 6. Correlations between network topology and genes within disease-related metabolic subpathways. For each subpathway in
the DMSPN, the degree of the subpathway and the ratio of different types of genes within the subpathway were calculated. Gray ‘‘6’’ symbols
represent subpathways. Black horizontal lines are the average of the ratio of genes. Color points correspond to the binned ratio values and error bars
correspond to the standard deviations of the binned ratio values. The linear regression model was used to test the trends in correlations and the
significance of these trends was estimated. (A) The ratio of disease genes divided by all genes within the subpathways. (B) The ratio of essential
genes divided by all genes in the subpathways. (C) The ratio of housekeeping genes divided by all genes in the subpathways. (D) The ratio of tissue-
specific genes divided by all genes in the subpathways.
doi:10.1371/journal.pone.0021131.g006
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Due to the differences of trend between ratio of different types of

genes and degree of subpathways, disease genes should adopt

different regulation intensity and have different coexpression with

other types of genes at expression levels. To address this issue, we

computed coexpression between genes using expression data

from 36 different human tissue microarray experiments [52]. The

results showed that within subpathways, the median values for the

average coexpression between: disease genes and disease genes,

disease genes and essential genes, disease genes and HK genes,

disease genes and TS genes, disease genes and other genes, and

between all genes, were 0.24, 0.20, 0.17, 0.30, 0.15 and 0.15

respectively. As illustrated in Figure 7, disease genes within a

subpathway have higher average coexpression values than

expected by random (P-value,0.0007, Wilcoxon rank-sum test,

we used the average coexpression between all genes as a random

control). Moreover, disease genes showed higher coexpression

with essential genes compared with that expected by chance (P-

value,3.907e–05, Wilcoxon rank-sum test). However, coexpres-

sion between disease genes and HK genes did not show

significant differences compared with that expected by chance

(p-value = 0.68). These results suggest that disease genes may

weakly influence HK genes, but significantly influence essential

genes. The different regulation intensities might explain the

differences of trend between the ratio of different types of genes

and the degree of subpathways. As a result, those genes intensely

influenced by disease genes might be closely associated with

disease diversity of subpathways. Taken together, these findings

indicated that the diversity of diseases caused by abnormalities in

a subpathway region might be significantly associated with

disease genes, essential genes and TS genes within the

corresponding subpathway. However, significant correlations

between HK genes and disease diversity of subpathways may

not exist.

Discussion

We constructed a disease–metabolic subpathway network using

the disease-gene associations and ‘‘k-clique’’ subpathway identifi-

cation method. We used the ‘‘k-clique’’ method to divide large

pathways into multiple subpathways. When k = 3, the distance

among all enzymes within a subpathway was no greater than 3. This

ensured that the identified disease risk subpathways were located in

the disease-related local regions of pathways, and also increased the

tendency for genes in a subpathway to share similar biological

functions and be involved in similar biological processes. To date,

most pathway identification methods have only identified disease-

related entire pathways without considering the scale of these

pathways. However, each pathway has the obviously different

scales. These differences in scale hinder the evaluation of disease-

related pathways from global networks and the identification of

disease-related high risk subpathways that are usually located in the

local regions of pathways. Through employing the subpathway

identification method, we were able to ensure that each subpathway

was represented on a small scale. Moreover, the identified

subpathways could be located within the disease risk regions of

these pathways. By applying this methodology to all diseases, we

were finally able to investigate global relationships between diseases

and their corresponding regions of pathways.

Through our analyses of the DMSPN based on network

biology, we found that the degree distribution of subpathway

nodes of the actual DMSPN was significantly broader than that

of random networks. A few subpathways were significantly linked

to many diseases. However, most of these metabolic subpathways

with high degrees belonged to fundamental metabolism path-

ways, suggesting that abnormalities in fundamental meta-

bolism processes may cause more types of diseases. To test the

clustering phenomenon of diseases and metabolic subpathways, we

Figure 7. The average coexpression of gene pairs within the disease-related metabolic subpathways.
doi:10.1371/journal.pone.0021131.g007
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examined the (BD, BH) values based on both disease and

subpathway class information from the GAD and KEGG

databases. We also performed hierarchical clustering on the

DMSPN without considering disease class information. The results

showed that disease and subpathway classes displayed the slight

clustering. For many classes, members within them still main-

tained many links with members of other classes although there

were more links between members within the class. Therefore,

diseases in the same disease class tended to form many small

clusters instead of individual large clusters. Furthermore, we tested

correlations between network topology and genes within disease-

related metabolic subpathways. We found that the ratio of disease

genes and the ratio of tissue-specific genes in a subpathway

significantly increased as the degree of the subpathway increasesd.

However, the ratio of essential genes significantly reduces and the

ratio of housekeeping genes remained relatively unchanged.

Furthermore, the coexpression levels between disease genes and

other types of genes were calculated for each subpathway in the

DMSPN. The results indicated that those genes intensely

influenced by disease genes, including essential genes and tissue-

specific genes, might be significantly associated with the disease

diversity of subpathways. Taken together, these results provided

strong support for the functional importance of the DMSPN.

To confirm the validity of our results, we also constructed the

DMSPN with k = 4 and repeated the analyses. We find that the

results reported in this paper were similar to the results of the

DMSPN with k = 4 (see Text S1, Figure S4 and S5). We also noted

that the completeness of the DMSPN is limited by the

completeness of metabolic pathway data, disease–gene associa-

tions, and the false positive results obtained by enrichment analysis

method. Improvements in the quality of this input data will

provide a more accurate and robust DMSPN. Although these data

sets and methodology are far from complete, our network analyses

still provide statistically significant characteristics of the relation-

ships between diseases and metabolic subpathways.

Materials and Methods

The Genetic Association Database (GAD)
To predict disease–metabolic subpathway associations, we first

obtained disease–gene associations from the GAD. The GAD is

the NIH-supported public repository for human genetic associa-

tion studies of complex diseases, which contains the complete

known gene–phenotype associations and include non-Mendelian

common complex diseases [24]. We downloaded all gene-

phenotype relationships (N = 39910) in the GAD (December 15,

2008) and processed this data by merging redundant terms (e.g.,

112 ‘‘alcohol abuse’’ terms were merged). The detailed method-

ology used for processing this data was provided in Text S1.

Finally, we obtained 15149 unique gene–disease relationships

from 39910 primary terms. These associations were composed of

412 diseases and 2832 disease genes (see Dataset S2). We can also

obtain the information of disease classes from the GAD. In

particular, each disease corresponds to a disease class and in total

412 diseases belonged to 18 disease classes.

Essential genes
To obtain human essential genes, we used the phenotype

information of the corresponding mouse orthology. If a mouse

suffered from the lethality when a particular gene was knocked

out, a human ortholog of this gene was defined as an essential

gene. This type of methodology has been widely applied to obtain

information on human essential genes [12,13]. Both human–

mouse orthology data and mouse phenotype data were obtained

from the Mouse Genome informatics [47,48] (August 6, 2009). For

the phenotype data, the embryonic, prenatal and postnatal

lethality were treated as lethal phenotypes. Finally, 2486 mouse-

lethal human orthologs were classified as human essential genes.

Housekeeping (HK) genes and tissue-specific (TS) genes
HK genes are constitutively expressed in all tissues to maintain

cellular functions, while TS genes are expressed at a much higher

level in a single tissue than in others. Expression regulation

differences between HK and TS genes were analyzed recently by

She et al. [49]. We downloaded the HK and TS genes dataset

which was used in that paper. The dataset contains 1522 HK

genes and 975 TS genes, which were identified from the gene

expression profiles of 42 normal human tissues using high-density

microarrays and the conservative identification criteria [49].

Computation of BD and BH
Park et al. developed D and H measures to capture the detailed

interplay between the network structure and node properties when

nodes in a network belong to two distinct classes [53]. These

measures have been successfully applied to the modularity

evaluation of protein–protein interaction networks [53] and

disease networks [38]. In this study, we revised the D and H

measures for one-mode networks (e.g., protein–protein interaction

networks) to BD and BH measures for bipartite networks, such as

the disease–metabolic subpathway network (see Text S1). For

diseases in each disease class in the DMSPN, BD and BH were

calculated and finally 18 pairs of (BD, BH) values are shown in

Figure 4A. BD.1 (BD,1) indicate that diseases in the disease

class tend to connect more (less) densely among themselves than

expected by chance. Similarly, BH.1 (BH,1) means that diseases

in the disease class have more (fewer) connections to diseases in

other classes than the random expectation. If BD.BH, diseases in

the disease class tend to display a clustering phenomenon in the

DMSPN. If BD.1 and BH,1, diseases in the disease class tend to

display a clear clustering phenomenon in the DMSPN. Similarly,

we are also able to calculate the BD and BH values of subpathways

in a subpathway class (Figure 4B).

Supporting Information

Figure S1 Screenshot of using the subpathway identifica-
tion method provided in the SubpathwayMiner package to
construct the disease–metabolic subpathway network.
After installing the SubpathwayMiner package in R, we can use

the generateNetwork function to construct the disease–metabolic

subpathway network with the different distance parameter k.

(TIF)

Figure S2 The basic network features of the DMSPN. (A)

The degree distribution of subpathway nodes of the actual DMSPN

was significantly broader than that of random networks (P-value,10e-

10). (B) The degree distribution of disease node did not display such

highly significant difference (P-value = 0.02). (C) The edges in the

DMSPN were significantly denser than expected by chance (P-

value,0.001). (D) The size of giant component of the DMSPN was

significantly smaller than expected by chance (P-value,0.001).

(TIF)

Figure S3 Correlation between the disease diversity
and the degree within disease-related metabolic sub-
pathways. For each subpathway in the DMSPN, the degree of

subpathway and the disease diversity were calculated. Gray ‘‘6’’

symbols represented subpathways. Black horizontal lines are the

average of value of disease diversity. Color points correspond to

Disease-Metabolic Subpathway Network
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the binned ratio values and error bars correspond to the standard

deviations of the binned ratio values. The linear regression model

was used to test the trends in correlations and the significance of

these trends was estimated. The result showed that there was a

significant positive correlation between the disease diversity and

the degree of a subpathway (P-value,2.2e–16).

(TIF)

Figure S4 Correlations between network topology and
genes within disease-related metabolic subpathways.
For each subpathway in the DMSPN with k = 4, the degree of

subpathway and the ratio of different types of genes within

subpathway were calculated. Gray ‘‘6’’ symbols represented

subpathways. Black horizontal lines are the average of the ratio of

genes. Color points correspond to the binned ratio values and

error bars correspond to the standard deviations of the binned

ratio values. The linear regression model was used to test the

trends in correlations and the significance of these trends was

estimated. (A) The ratio of disease genes divided by all genes

within the subpathways. (B) The ratio of essential genes divided by

all genes in the subpathways. (C) The ratio of housekeeping genes

divided by all genes in the subpathways. (D) The ratio of tissue-

specific genes divided by all genes in subpathways.

(TIF)

Figure S5 The average coexpression of gene pairs
within disease-related metabolic subpathways in the
DMSPN with k = 4.

(TIF)

Dataset S1 Examples of merging broad phenotypes.

(XLS)

Dataset S2 The curated gene–disease associations from
the GAD.

(XLS)

Dataset S3 The disease-metabolic subpathway associa-
tions.

(XLS)

Text S1 Supplementary information text.

(DOC)
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