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Abstract
Background Intramyocellular lipids are an important source
of fuel for mitochondrial fat oxidation and play an
important role in intramuscular lipid homeostasis. We
hypothesised that due to the phenotype associated with
cancer cachexia, there would exist an association between
increasing weight loss and the number/size of intramyocel-
lular lipid droplets.
Methods Nineteen cancer patients and 6 controls undergoing
surgery were recruited. A rectus abdominis biopsy was
performed and processed for transmission electronmicroscopy
(TEM). The number of intramyocellular lipid droplets and
lipid droplet diameter were calculated from the TEM images.
CT scans, performed as part of patients" routine care, were
analysed to determine amount of adipose (intermuscular,
visceral and subcutaneous) and muscle tissue.

Results Compared with controls, cancer patients had in-
creased numbers of lipid droplets (mean (SD) 1.8 (1.9) vs.
6.4 (9.1) per ×2,650 field, respectively, p=0.036). Mean (SD)
lipid droplet diameter was also higher in cancer patients
compared with controls (0.42 (0.13) vs. 0.24 (0.21) μm,
p=0.015). Mean lipid droplet count correlated positively with
the severity of weight loss (R=0.51, p=0.025) and negatively
with CT-derived measures of intermuscular fat (R=−0.53,
p=0.022) and visceral fat (R=−0.51, p=0.029).
Conclusions This study suggests that the number and size of
intramyocellular lipid droplets is increased in the presence of
cancer and increases further with weight loss/loss of adipose
mass in other body compartments.
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1 Background

Cachexia continues to represent a therapeutic challenge in
cancer patients. The syndrome is a complex process
characterised by weight loss and is associated with
increased morbidity and mortality [1, 2]. Whilst both lean
and adipose tissue become depleted, there is evidence that
body fat is lost more rapidly than lean tissue [3]. The
drivers of lipolysis or possibly reduced lipogenesis [4] in
cancer cachexia are still to be elucidated fully. However,
TNFα [5], ZAG [6, 7] and MIC-1 [8] have been suggested
as potential mediators. Adipose tissue is composed pre-
dominately of stored lipid droplets [9] and is intimately
involved with energy homeostasis and metabolism through
secreted adipokines [10]. Additionally, it influences insulin
sensitivity, affects immune and inflammatory pathways and
interacts with catecholamines [11, 12]. The catabolism of
lipids generates fatty acids that can either be utilised by
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skeletal muscle or further metabolised to take part in the
Krebs cycle [9]. Triglyceride-containing lipid droplets are
dynamic organelles stored on demand in all cells and grow
through a fusion process mediated by SNARE proteins,
including SNAP23 [13]. Within skeletal muscle, it is
thought that intramyocellular lipid/lipid droplets act as fuel
stores for mitochondrial fat oxidation [14]. Lipid droplets
are usually in direct contact with mitochondria presumably
to allow rapid transport when required in situations such as
exercise [14]. Indeed, intramyocellular lipid decreases upon
acute exercise [15–18] and almost completely disappears
after marathon running [19, 20]. Conversely, physical
inactivity and a diet excessive in fats can lead to an
increase in intramyocellular lipid [18]. Endurance training
causes a rise in intramyocellular lipid content supporting
the role of lipid droplets as an energy source during
physical activity [14]. Although the presence of lipid
droplets in skeletal muscle is part of the normal physiology
of healthy individuals with or without physical training,
associations have been shown between increased droplet
number and pathological states such as the presence of type
2 diabetes/insulin resistance [14, 21] and ageing [22]. With
ageing, not only are numbers of lipid droplets increased,
but their association with mitochondria appears to be
disrupted [22] and mitochondrial function is altered [23,
24]. In the morbidly obese, raised intramyocellular lipid
content has been reported to be associated with insulin
resistance and to decrease after weight loss/bariatric surgery
[25, 26]. In patients with gastrointestinal cancer, increased
levels of intramyocellular lipid have also been reported.
Using magnetic resonance spectroscopy, a 35% higher level
of intramyocellular lipids was observed in patients with
cachexia (defined by >10% weight loss in previous
6 months) compared with weight-stable cancer patients [27].

We sought to carry out a quantitative morphological
examination of lipid droplets in human cancer-associated
weight loss using electron microscopy. We hypothesised
that due to the phenotype associated with cancer cachexia
(lipid mobilisation, insulin resistance [4], systemic inflam-
mation [28], sarcopenia [29] and reduced physical activity
[30]), there would be an association between increasing
weight loss and the number/size of intra-myocellular lipid
droplets. Additionally, we examined the relationship between
lipid droplets, anthropometry and/or CT-derived body com-
position measures.

2 Methods

2.1 Participants

Patients (n=19) were recruited using the following inclu-
sion criteria: diagnosis of upper gastrointestinal (oesopha-

geal, gastric, pancreatic) cancer, undergoing potentially
curative surgery, age 18–85. Patients were excluded if they
had metastatic disease, were undergoing palliative surgery
or were knowingly taking anabolic/catabolic agents. There
were no patients with uncontrolled diabetes or known
thyroid disorders. Three patients had completed a course of
neoadjuvant chemotherapy, but were not undertaking
chemotherapy at the time of surgery. A group of weight-
stable patients undergoing elective abdominal surgery for
benign conditions participated as controls (n=6). All
procedures were approved by the local research ethics
committee. Written informed consent was obtained. The
study conformed to the standards set by the Declaration of
Helsinki.

2.2 Anthropometry, weight loss and performance status

Body weight was measured with subjects in light
clothing using a beam scale (Seca, UK). Height was
measured using a standard wall-mounted measure. Tri-
ceps skin fold (TSF) thickness (callipers, Holtain Ltd
Crymych, UK) and mid-arm circumference (MAC) were
measured to calculate mid-arm muscle circumference
(MAMC). Arm muscle CSA was calculated according
to the equation: MAC� p � TSF2=4p

� �� 10 maleð Þ and
MAC� p � TSF2=4p
� �� 6:5 femaleð Þ [31]. The patients"
clinical details were recorded and degree of weight loss
from self-reported pre-illness stable weight documented.
Karnofsky performance score was assessed in each patient
by a single observer.

2.3 Blood measures

A fasting venous blood sample was taken on the morning of
surgery. CRPwasmeasured in all patients. ACRP ≥5mg/l (the
upper limit of normal in our lab) was considered consistent
with the presence of systemic inflammation. Due to the
limited availability of raw plasma samples, the other blood
measures were performed in a subset of patients (albumin
n=18, insulin n=13, glucose n=14, cortisol n=17,
homeostatic model assessment of insulin resistance
(HOMA-IR) n=10, cortisol/insulin ratio n=17). All
samples were processed in the Department of Clinical
Chemistry, Royal Infirmary, Edinburgh (fully accredited
by Clinical Pathology Accreditation Ltd, UK) using
standard automated methods.

2.4 Muscle biopsy and transmission electron microscopy
(TEM)

All biopsies were taken at the start of open abdominal
surgery under general anaesthesia. Patients had undergone
an overnight fast. The edge of the rectus abdominis was
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exposed and a 1-cm3 specimen removed using sharp
dissection. A small section was cut and fixed in 3%
glutaraldehyde in 0.1 M sodium cacodylate buffer,
pH 7.3, for 2 h then washed in three 10-min changes of
0.1 M sodium cacodylate. Specimens were then post-fixed
in 1% osmium tetroxide in 0.1 M sodium cacodylate for
45 min and washed in three 10-min changes of 0.1 M
sodium cacodylate buffer. These sections were then
dehydrated in 50%, 70%, 90% and 100% normal grade
acetones for 10 min each, then for a further two 10-min
changes in analar acetone. Samples were then embedded in
Araldite resin. Sections, 1-μm thick, were cut on a Reichert
OMU4 ultramicrotome (Leica Microsystems (UK) Ltd,
Milton Keynes), stained with toluidine blue and viewed in
a light microscope to select suitable areas for investigation.
Ultrathin sections, 60-nm thick were cut from selected
areas, stained in uranyl acetate and lead citrate, then viewed
in a Phillips CM120 transmission electron microscope (FEI
UK Ltd, Cambridge, England). A Gatan Orius CCD camera
(Gatan UK, Oxon, England) set at ×2,650 magnification
was used to capture images. Photographs were taken at
random, and lipid droplets were counted manually (by one
observer blinded to the patient diagnosis) in at least two
fields per patient and the average count recorded. The
diameter of each visible lipid droplet was measured in
micrometre using ImageJ and the mean lipid droplet
diameter calculated for each patient. Identified lipid
droplets were examined at high magnification (×11,000)
to ensure the absence of a double membrane, thus
distinguishing them from vacuolated giant mitochondria
[32].

2.5 CT-based body composition analysis

CT scans were performed as part of the cancer patients"
routine management but were not available for the benign
controls. The CSA of adipose tissue (comprising subcuta-
neous, visceral and intermuscular) and muscle was mea-
sured at the level of the third lumbar vertebrae (L3).
Adipose and muscle CSA measured at L3 are linearly
related to whole body values [33]. All images were
analysed by a single trained observer with SliceOmatic
V4.3 software (Tomovision, Montreal, Canada) which
enables specific tissue demarcation using Hounsfield unit
(HU) thresholds. The HU ranges used were −29 to +150
for skeletal muscle [34], −190 to −30 for subcutaneous
and intramuscular adipose tissue [35] and −150 to −50 for
visceral adipose tissue [36]. Tissue boundaries were
corrected manually if required. CSAs (square centimetres)
were computed automatically by summing tissue pixels,
multiplying by pixel surface area and subsequently
normalised for stature (square centimetres per square
metre).

2.6 Statistical analysis

SPSS v15.0 statistical software was used for data analysis.
Student"s two-tailed t test was used to compare means
between groups. Variables are reported as mean±standard
deviation (SD) unless otherwise stated. The Mann–Whitney
test was used for non-parametric analysis. Data were log-
transformed when appropriate. Associations between vari-
ables were evaluated using Pearson"s correlation (bivariate)
analysis. Statistical significance was set at a p value (two
tailed) of <0.05.

3 Results

Nineteen cancer patients (11 men, 8 women) and 6 controls
(2 men, 4 women) were recruited. Demographics are shown
in Table 1. Eight patients had pancreatic cancer, four
gastric, three oesophageal, three oesophagogastric junctions
and one patient with small bowel cancer. The mean body
mass index (BMI) of both the cancer patient and control
groups was >25. Cancer patients were older than controls
(mean age (standard deviation) 67 (10) vs. 53 (8) years,
respectively, p=0.005) and had a significantly higher per-
centage weight loss (6.0% (7.1%) vs. −0.3% (1.4%),
respectively, p=0.002). Mid-arm muscle circumference
(MAMC) and arm muscle cross-sectional area (CSA) were
not significantly different between controls and cancer
patients. There was a trend towards higher Karnofsky
performance scores in controls compared with cancer patients
(98.3 (3.1) vs. 91.7 (8.6), p=0.083). Significantly more
cancer patients exhibited systemic inflammation (C-reactive
protein (CRP) ≥5 mg/l) than controls (n=11/19 vs. 0/6,
respectively, p=0.020 Fisher"s exact test). Both the average
lipid droplet number (6.4 (9.1) vs. 1.8 (1.9), p=0.036, see
also Fig. 1) and the average lipid droplet diameter (0.42
(0.13) vs. 0.24 (0.21) μm, p=0.015) were higher in the
cancer cohort compared with controls.

3.1 Changes associated with increasing weight loss/altered
body composition in the cancer patients

In the cancer patients, percentage weight loss (range −10.4%
to 17.1%) correlated negatively with mid-arm circumference
(R=−0.51, p=0.024) and MAMC (R=−0.46, p=0.047), and
there was a trend towards a reduction in arm muscle CSA
(R=−0.44, p=0.058). There were, however, no significant
correlations between percentage weight loss and CT-derived
values of muscle mass. CT-derived measures of intermus-
cular and visceral fat were not significantly associated with
weight loss, but there was a trend towards a (negative)
association between weight loss and subcutaneous fat
(R=−0.42, p=0.082). Percentage weight loss correlated
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negatively with albumin (R=−0.56, p=0.015), but there were
no significant associations with CRP (R=0.15, p=0.549),
insulin (R=−0.32, p=0.280), glucose (R=0.19, p=0.509),

cortisol (R=−0.27, p=0.295), HOMA-IR (R=−0.18,
p=0.614) or cortisol/insulin ratio (R=0.44, p=0.137).

The average lipid droplet number correlated positively with
percentage weight loss (R=0.51, p=0.025, Fig. 2), but there
was no relationship between weight loss and lipid droplet
diameter (R=0.15, p=0.535). MAMC, arm muscle CSA and
CT-derived muscle mass did not correlate significantly with
either lipid droplet count or lipid droplet diameter. Both
weight (R=−0.61, p=0.007) and BMI (R=−0.46, p=0.050)
correlated negatively with the number of lipid droplets.
There were significantly greater numbers of lipid droplets in
patients with lower CT-derived measures of intermuscular fat
(R=−0.53, p=0.022) and visceral fat (R=−0.51, p=0.029),
and there was also a trend towards an association between
droplet number and subcutaneous fat (R=−0.46, p=0.055).
No relationship was demonstrated between patients" age and
number of lipid droplets (R=−0.30, p=0.209) or between the
number of lipid droplets and the lipid droplet diameter (R=
0.34, p=0.152). There were no significant associations
between the number of lipid droplets and plasma levels of
albumin (R=−0.28, p=0.256), CRP (R=−0.10, p=0.695),
insulin (R=−0.26, p=0.391), glucose (R=−0.03, p=0.926),
cortisol (R=−0.13, p=0.633), HOMA-IR (R=−0.38,
p=0.280) or cortisol/insulin ratio (R=0.09, p=0.783).

4 Discussion

The current study demonstrates a progressive rise in the
number of intramyocellular lipid droplets in relation to both
increasing weight loss and depletion of adipose tissue mass
in patients with cancer. In addition, the presence of cancer
was associated with increased lipid droplet numbers
compared with controls. Thus, the presence of increased
intramyocellular lipid droplets does not seem to be related
exclusively to weight loss but rather is probably linked to
the mediators of the processes underlying such weight loss
(which is variably expressed depending on the individual
patient). Increasing weight loss, however, does seem to
exacerbate the observed changes in ultrastructure.

Patients with obesity have increased intramyocellular
lipid droplets [37], whereas we observed a paradoxical
negative association between BMI and number of lipid
droplets: that is, the lower the BMI, the higher the number
of lipid droplets. These findings suggest that increased
intramyocellular lipid droplets are not specific to either a
net positive or negative energy balance but may relate to
the underlying causes of shifts in energy balance.

Consistent with the above hypothesis, we observed
significant negative associations between CT-derived meas-
ures of fat mass (intermuscular, visceral and subcutaneous)
and the number of intramyocellular lipid droplets. This
would suggest that the changes within the myocytes were

Table 1 Demographics, anthropometry, CT-derived body composi-
tion (cancer patients only), performance status, blood measurements
and intra-myocellular lipid droplet count and size for cancer patients
and controls

Control Cancer p value

n 6 19 –

Male/female 2/4 11/8 0.378

Age (years) 53(8) 67(10) 0.005

Weight (kg) 68.3(12.3) 70.7(12.8) 0.684

BMI (kg/m2) 26.0(4.5) 25.1(4.4) 0.671

Weight loss (%) −0.3(1.4) 6.0(7.1) 0.002

MAC (cm) 28.5(3.1) 28.8(3.0) 0.793

TSF (mm) 18.0(6.1) 14.6(7.4) 0.333

MAMC (cm) 22.8(3.0) 24.2(2.5) 0.259

Arm muscle CSA (cm2) 34.3(9.4) 38.7(9.5) 0.339

KPS 98.3(4.1) 91.7(8.6) 0.083

Tumour stage

1 – 0 –

2 – 6 –

3 – 8 –

4 – 4 –

CRP (mg/l) 2.1(1.4) 20.8(42.1) 0.295

SI/no SI 0/6 11/19 0.020

Albumin (g/l)a 36.6(6.0) 33.7(4.6) 0.248

ALT (U/l) 18.0(8.0) 50.3(65.3) 0.290

Insulin (mU/l)a – 5.8(3.2) –

Glucose (mmol/l)a – 6.2(1.6) –

Cortisol (nmol/l)a – 454(109) –

HOMA-IRa – 1.8(0.9) –

Cortisol/insulin ratioa – 96.6(48.1) –

IM fat (cm2 m−2) – 11.0(5.9) –

Vi fat (cm2 m−2) – 115.2(95.3) –

SC fat (cm2 m−2) – 161.1(66.4) –

Skeletal muscle (cm2 m−2) – 43.1(7.6) –

LD count 1.8(1.9) 6.4(9.1) 0.036

LD diameter (μm) 0.24(0.21) 0.42(0.13) 0.015

Results are presented as mean (standard deviation). Comparison between
groups was made using Student"st test or Fisher"s exact test. Systemic
inflammation was defined as CRP≥5 mg/l

ALT alanine transaminase, BMI body mass index, CRP C-reactive
protein, CSA cross-sectional area, HOMA-IR homeostatic model
assessment of insulin resistance, IM intermuscular, KPS Karnofsky
performance score, LD lipid droplet, MAC mid-arm circumference,
MAMC mid-arm muscle circumference, SI systemic inflammation, SC
subcutaneous, TSF triceps skin-fold thickness, Vi visceral
a Due to sample limitations, not all patients had these variables measured:
albumin, n=18; insulin, n=13; glucose, n=14; cortisol, n=17; HOMA-
IR, n=10; cortisol/insulin ratio, n=17
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not related exclusively to local (skeletal muscle) events but
rather to the overall state of net lipid mobilisation and
negative energy balance or perhaps endocrine disruption.

The size of lipid droplets as well as their number may be
physiologically significant. However, in the present study,
although the average number of lipid droplets increased
with progressive weight loss, there was no association
between weight loss and lipid droplet diameter. This could
represent the lipid droplets reaching a plateau of growth or

may simply be due to their being a wide variability in lipid
droplet diameter.

The cancer patients in the present study were overweight
(mean BMI>25) and this probably reflects not only the
increasing level of obesity in the general population, but
that obesity is a risk factor for the development of cancer. It
is important to recognise that underneath this mantle of fat,
there may be clinically occult muscle wasting. Indeed, in
the present study, there was an association between
increasing weight loss and reduced mid-arm muscle
circumference (an anthropometric index of whole body
muscle mass). The trend towards sarcopenic obesity in
advanced cancer patients has recently been emphasised
[38]. Indeed, in a recent study of patients with advanced
pancreatic cancer, we demonstrated sarcopenic obesity to
be an independent determinant of reduced survival [29]. In
the present study, we were not able to relate either
anthropometric or CT-derived measures of muscle mass to
the number of intramyocellular lipid droplets, but this
probably reflects the relatively small sample size and the
absence of pre-illness measures of muscle mass from which
to estimate net loss. In future studies, it would be important
to characterise further the likely parallel between metabolic
syndrome, the cancer patient with sarcopenic obesity and
the mechanisms that underlie the present observed changes
in skeletal muscle ultrastructure.

The controls in the current study were younger than the
cancer patients. It has been suggested that ageing results in an
increase in intramyocellular lipid content [22]. Whilst this may
be a contributing factor to the lower numbers of lipid droplets
in the control group, the observed association between weight
loss and lipid droplets in the cancer cohort was independent
of age. Likewise, we did not observe differences in lipid
droplet numbers between men and women (p=0.630) or
tumour site (one-way ANOVA, p=0.559; see also Fig. 2).

Fig. 1 Representative electron micrographs for controls and cancer
patients. a. Images are all at ×2,650 magnification. Greater numbers of
lipid droplets (white vacuoles) were evident with increasing weight
loss. Percent (%) values for cancer patients refer to weight change

from pre-illness stable weight. Bars represent 2 μm. b. ×11,000
magnification image of a lipid droplet demonstrating the absence of
double membranes, thus distinguishing it from vacuolated giant
mitochondria [32]

Fig. 2 Percentage weight loss versus lipid droplet number. There was
a significant positive correlation between percentage weight loss and
LD number (R=0.51, p=0.025; Pearson"s correlation, two tailed).
There was no significant difference in LD number according to
tumour site (one-way ANOVA, p=0.559). LD lipid droplet

J Cachexia Sarcopenia Muscle (2011) 2:111–117 115



However, given that the numbers in each group were small,
the influence of these factors would be better explored in a
larger dataset.

The likely mechanism for the increased deposition of lipid
within the skeletal muscle of weight-losing cancer patients
probably reflects an imbalance between fatty acid supply and
utilisation. The enhanced lipolysis in cancer cachexia has been
long established. However, recent research has focused more
closely on mitochondrial dysfunction and, as observed in
sepsis [39], impaired mitochondrial fatty acid oxidation/
oxidative capacity may contribute to lipid accumulation. Of
interest, mitochondrial derangement has been demonstrated
in COPD muscle wasting [40]. The present study did not
extend to a detailed evaluation of myocellular mitochondrial
ultrastructure or function, but clearly, this could be the focus
of further research.

5 Conclusions

In summary, this study suggests that the presence of lipid
droplets is related to the presence of cancer and increases
with weight loss. The specific mechanisms/drivers of this
phenomenon remain to be elucidated.
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