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Abstract To evaluate a model of top-down gain control in
the auditory system, 6 participants were asked to identify
1-kHz pure tones differing only in intensity. There were
three 20-session conditions: (1) four soft tones (25, 30, 35,
and 40 dB SPL) in the set; (2) those four soft tones plus a
50-dB SPL tone; and (3) the four soft tones plus an 80-dB
SPL tone. The results were well described by a top-down,
nonlinear gain-control system in which the amplifier’s gain
depended on the highest intensity in the stimulus set.
Individual participants’ identification judgments were gen-
erally compatible with an equal-variance signal-detection
model in which the mean locations of the distribution of
effects along the decision axis were determined by the
operation of this nonlinear amplification system.
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Behaviorally, the range of human hearing exceeds 100 dB,
even though the range of intensities that can be encoded by
any single primary auditory afferent is undoubtedly much
smaller (see, e.g., Kiang, Watanabe, Thomas, & Clarke,

1965). One way to obtain a large behavioral response range
despite the range limitations of primary auditory afferents is
to assume the existence of an adjustable nonlinear
amplification system that can control the dynamic range
of hearing (Gordon & Schneider, 2007; Parker, Murphy, &
Schneider, 2002; Parker & Schneider, 1994; Robles &
Ruggero, 2001; Schneider & Parker, 1990; Yates, 1995).
An appropriately designed gain-control mechanism, by
expanding or compressing the sensory representation of
stimuli to varying degrees, can serve two functions: (1) It
can protect sensory systems from overload, and (2) it can
enhance discriminability among selected stimuli.

A recent study (Taranda et al., 2009) supports the notion
that compressing the response of the auditory system can
prevent or reduce hearing loss following exposure to intense
noise. These investigators genetically engineered a knockin
mouse line in which the magnitude and duration of efferent
cholinergic effects were magnified, thereby increasing the
degree of efferent inhibition (suppression of distortion
product otoacoustic emissions) by the olivocochlear bundle.
Such mice proved to be more resistant to permanent threshold
shifts induced by loud noises than were their wild-type
counterparts. Because the olivocochlear bundle modulates the
activity of outer hair cells, which in turn govern the amount
of amplification in the cochlea, it appears that a gain-control
mechanism that suppresses the response to high-intensity
sounds has a valuable protective function in hearing.

This protection against overload could be provided by a
linear or by a nonlinear gain-control system. All that would
be needed is a system that turned down the gain (attenuated
the auditory input) when the sound intensity increased. But
Parker and Schneider (1994) have shown that a compres-
sive nonlinear amplifier, in which the degree of compres-
sion is adjustable, could, in addition, provide enhanced
discriminability in a targeted range—something that a
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linear system cannot easily do. Moreover, a nonlinear
amplification system that was under top-down control, such
that it could be modified by the expectations of listeners
with regard to the sound intensities they were likely to
experience, could both protect against sensory overload and
maintain relatively good discriminative sensitivity. For
example, in a loud noisy environment, the gain would be
set to a low level to protect against overload. However, the
gain should be set to high whenever the auditory
environment is quiet (and expected to remain so) to enable
the listener to hear and discriminate among soft sounds
(e.g., listening to the movements of animals in the brush on
a quiet day). A similar nonlinear mechanism has been
shown to operate with respect to visual contrast (de la Rosa,
Gordon, & Schneider, 2009; Mišić, Schneider, & McIntosh,
2010; Schneider, Parker, & Moraglia, 1996), suggesting
that nonlinear gain-control mechanisms may be a common
feature of sensory systems.

Parker et al. (2002) showed that a nonlinear gain-control
mechanism was qualitatively consistent with participants’
performance in absolute identification (AI) of auditory
intensities. In an AI task, a listener has to identify which of
m possible stimuli was presented on a trial. For example, in
the baseline condition in Parker et al., the possible stimuli
consisted of four 1-kHz tones differing in intensity (25, 30,
35, and 40 dB SPL), and the participant was asked to
specify which of the four had been presented on a trial by
pressing one of four buttons. In a signal-detection analysis
of an AI experiment, it is assumed that the presentation of
stimulus j on a trial gives rise to a response effect along a
decision axis. Because of variability either in the stimulus
or in auditory processes, repeated presentations of stimulus
j are assumed to give rise to a distribution of effects along
the decision axis having some mean, μ, and standard
deviation, σ. In the simplest models of this process, the
shape of the distribution and its variance are assumed to be
independent of stimulus magnitude. Figure 1 presents an
example of how events along the decision axis might be
distributed. In this model, the distributions of effects
associated with a stimulus are Laplacian in shape and have
equal variances. The observer is assumed to establish m - 1
criteria along this decision axis that divide it into m
different response regions. When a stimulus is presented
on a trial, it is assumed that if it evokes an effect in region
k, the listener will identify it as tone k. Parker et al., as well
as Gordon and Schneider (2007), found that the AI
performance of a group of participants was quantitatively
consistent with a model such as that shown in Fig. 1, in
which the shape of the underlying distributions was
Laplacian. In addition, the locations of the means of these
distributions and how they changed with the intensity of the
loudest stimulus in the set were qualitatively consistent
with a model in which the internal representation of a

stimulus along the decision axis was governed by a
nonlinear gain-control mechanism.

The primary objective of the present investigation was to
accumulate sufficient data on AI to determine whether a
specific model of the nonlinear gain-control mechanism
could predict both group and individual performance in
quantitative detail (a detailed description of the model will
be presented in connection with our data). A secondary
objective was to compare predictions of the gain-control
model with those of attention-allocation models (e.g., Luce
& Green, 1978; Nosofsky & Luce, 1984). To do this, we
needed to collect extensive data on individual participants
so that we could examine, on an individual basis, how the
intensity of the loudest stimulus in the set affected
discriminability among the tones in the set and whether
there were sequential dependencies in the data.

A third objective was to determine why participants’
decisions appeared to be based on the Laplace distribution
in Parker et al. (2002) and Gordon and Schneider (2007),
rather than on the normal distribution traditionally used in
signal-detection theory. Schneider (2007) identified a
possible reason for this. Using Monte Carlo techniques,
he showed that group data will be well-fit by the Laplace
equal-variance (LEV) model (illustrated in Fig. 1) even if
every individual participant’s data are well-fit by the
traditional Gaussian equal-variance (GEV) model if the
value of the variance parameter in the GEV model differs
substantially across individuals. Because group data were
used in Parker et al. and in Gordon and Schneider, the
better fit obtained for the Laplace distribution than for the
normal distribution could be due to individual differences,
rather than to underlying processes. A fourth objective was
to see how participant performance would evolve over
many sessions of the same AI task. Would performance

Fig. 1 The Laplace equal-variance model for a four-alternative
absolute identification experiment. Each stimulus j, {1 ≤ j ≤ 4}, gives
rise to a Laplace distribution of events along the decision axis. The
vertical lines represent the criteria that divide the decision axis into k
response regions {1 ≤ k ≤ 4} . The shaded portion is the probability
that stimulus 1 will be misidentified as stimulus 3
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improve, and would individual differences be stable over
time?

To answer these questions, we had 6 individuals
complete 20 sessions of AI in each of three conditions. In
the first (baseline) condition, there were four low-intensity
(25, 30, 35, and 40 dB SPL) 1-kHz pure tones in the set to
identify. In the other two conditions, a fifth tone (either 50
or 80 dB SPL) was added to the baseline set. In all, each
participant provided 60 sessions worth of data.

Method

Participants Six students and staff members at the Univer-
sity of Toronto Mississauga (3 females, 3 males) served.
Their ages ranged from 19 to 39 years. All reported normal
hearing. Audiograms, which were available for 5 of the 6
participants, were all in the normal range. Each participant
served in all parts of the study.

Apparatus and stimuli The stimuli were 1-kHz tones with
intensities of 25, 30, 35, 40, 50, and 80 dB SPL presented
diotically via TDH-49P headphones to the participants, who
were seated in a double-walled, sound-attenuating chamber.
Tones were digitally generated at a rate of 20 kHz and were
converted to voltages using a Tucker Davis Technologies
(TDT) sound system II. All tones were produced with a
10-msec rise/fall time and were attenuated to the proper
level by means of a TDT programmable attenuator. Tone
durations were 500 ms.

Procedure There were three conditions in the experiment:
baseline (B), B + 50, and B + 80. The stimuli in the
baseline condition were the 25-, 30-, 35-, and 40-dB SPL
tones. The other two conditions included either a 50- (B +
50) or an 80- (B + 80) dB SPL tone in addition to the four
used in the baseline condition. Those three conditions could
be sequenced in any of six permutations. Each of those six
permutations was used with 1 participant.

Participants were informed that they would be hearing a
series of tones and that they were to identify those tones by
pressing the button assigned to that tone on a button-box.
The leftmost button was assigned to the softest tone, the
next to the next-softest tone, …, and the rightmost button
was assigned to the loudest tone. Only the four leftmost of
the five buttons were available in the baseline condition,
there being only four stimuli.

In each condition, each of the stimuli was presented 50
times in each session. Thus, there were 200 stimuli in a
baseline session and 250 stimuli in a session of the other
two conditions. Stimuli were presented in randomly
sequenced blocks of 50. If, for any tone, the participant
did not respond within 2.5 s of stimulus presentation, all

previous data for that block were discarded, and the block
began anew. Feedback was provided by a 200-ms flash of
the light above the correct button once the participant had
responded.

The subject initiated a session by pressing a Start button.
Tones followed buttonpresses after 100 ms. Each session
began with either 40 (baseline condition) or 50 (the other
two conditions) practice trials, on which each stimulus was
presented 10 times.

Participants served in 20 sessions in each of the three
conditions, for a total of 60 sessions. After 20 sessions in
the first condition, the participant began the second
condition and, after that was completed, served in the third
condition. Sessions lasted approximately 20 min in the
baseline condition and 25 min in the other two conditions.
Participants could and often did run in several sessions in a
single day.

Results

For each of the three conditions (B, B + 50, and B + 80),
the data from each participant were divided into four consec-
utive blocks, each consisting of five sessions. Because we
were primarily interested in the degree to which the
addition of a fifth stimulus (at either 50 or 80 dB SPL)
would affect a listener’s ability to discriminate among the
four base tones (25, 30, 35, and 40 dB SPL), a response on
either button 4 or 5 when any of the four base tones were
presented was scored as a button-4 response because, in a
signal-detection analysis (see Fig. 1), a response on either
of these two buttons, indicated that the participant
classified the tone in question as being louder than the
three lowest intensity tones in the baseline set (to the right
of the criterion dividing response region 3 from response
region 4 in Fig. 1).1 Hence, for each participant, the data
consisted of four, 4 × 4 response-probability matrices
(p[Rk|Sj], {1 ≤ k ≤ 4}, {1 ≤ j ≤ 4}) corresponding to
the four blocks of sessions, where Sj is stimulus j and
Rk/Sj indicates that the participant pressed the kth button
when Sj was presented.

Figure 2 plots the mean percentage of stimuli correctly
identified over the course of the experiment (in four blocks
of five sessions) in each of the three conditions. This figure
indicates that the addition of a fifth stimulus (50 or 80 dB
SPL) resulted in a reduction in accuracy, with the reduction
being more severe the more intense the added stimulus.
There is also an indication that accuracy improves over

1 In the B + 50 condition, stimulus 4 (the 40-dB SPL tone) was
identified as stimulus 5 on 25.9% of the stimulus4 trials; in B + 80, it
was identified as stimulus 5 on only 1.9% of the trials.
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time in each of the three conditions. A two-factor, within-
participants ANOVA with condition (B, B + 50, and B +
80) as the first factor and block number as the second factor
(blocks 1–4, referring, respectively to sessions 1–5, 6–10,
11–15, and 16–20) confirmed that there were significant
main effects due to condition, F(2,10) = 32.495, p < .001,
and block number, F(3,15) = 10.343, p < .001, as well as a
significant condition × block interaction, F(6,30) = 2.47,
p = .046. The interaction effect is due to the fact that while
percent correct increased monotonically with session block
for the B and B+80 conditions, performance in the first five
sessions in B+50 was better than in the second five
sessions. One-tailed t-tests indicated that accuracy, col-
lapsed across blocks, was greater in the baseline than in the
B + 50 condition, t(5) = 6.410, p < .001, which, in turn, was
greater than that in the B + 80 condition, t(5) = 2.41,
p = .030, as was expected.

To examine whether the improvement seen in Fig. 2 was
affected by where, in the trial sequence, the added loud
stimulus appeared, we looked to see whether there was a
difference in percent correct identification for the four
baseline stimuli when they followed a baseline stimulus
versus when they followed an added stimulus. Figure 3
plots, for each of the 6 participants, the difference between
the percentage of times a baseline stimulus (25, 30, 35,
40 dB SPL) was correctly identified when it followed a
baseline stimulus and the percentage of times a baseline
stimulus was correctly identified when it immediately
followed an added stimulus, as a function of block number.
This figure suggests that this difference did not change over

blocks of sessions in either the B + 50 or the B + 80 dB
condition. This figure also suggests that in the B + 50
condition, but not in the B + 80 condition, participants, on
average, performed better when a baseline stimulus
followed another baseline stimulus than when it followed
an added stimulus. A within-subjects ANOVA on the data
from the B + 50 condition confirmed that the difference
scores in this condition did not differ across blocks,
F(3,15) = 2.04, p = .152, and that they were significantly
different from 0, F(1,5) = 8.85, p = .031. The equivalent
ANOVA on the data from the B+80 condition again failed
to show a significant effect of trial block, F(3,15) = 1.46,
p = .265, and could not reject the null hypothesis that the
mean difference score was equal to 0, F(1,5) = 2.33,
p = .187. Hence, the difference scores changed little over
blocks, and only the difference scores for the B+50
condition differed significantly from zero.

A signal-detection analysis We also conducted a signal-
detection analysis of these data. First we averaged the
response-probability matrices across the 6 participants for
each of the four session blocks to obtain four response-
probability matrices for each condition. Two different
models were evaluated. In the GEV model, we assumed
that each stimulus gave rise to a normal (Gaussian)

Fig. 2 Percent correct, averaged over participants, as a function of
session block (five sessions to a block) in three conditions: (1) when
the stimulus set in the absolute identification experiment contained
four tones (baseline set = {25, 30, 35, and 40 dB SPL}); (2) when the
stimuli consisted of the baseline set plus a 50-dB SPL tone (B + 50);
and (3) when the stimuli consisted of the baseline set plus an 80-dB
SPL tone (B + 80)

Fig. 3 The probability of a baseline stimulus being correctly
identified given that it followed a baseline (BS) stimulus minus the
probability of a baseline stimulus being correctly identified given that
it followed an added stimulus (AS), as a function of session block
when the added stimulus had a sound pressure level of 50 dB SPL
(baseline + 50 condition) and when the added stimulus was 80 dB
SPL (baseline + 80 condition). Data are presented for each individual
in the experiment
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distribution of effects along a decision axis, with the
observer locating three criteria (c1, c2, and c3) along this
decision axis to produce four discrete response regions. In
the LEV model, these normal distributions were replaced
by equal-variance Laplace distributions. In each of these
models,we searched for the parameter values that mini-
mized the following quantity,

#2 ¼
X4
k¼1

X4
j¼1

Okjj � Ekjj
� �2

Ekjj
ð1Þ

In this formula, Ok|j is the observed number of
responses in response category k when stimulus j is
presented; Ek|j, on the other hand, is the expected number
of responses in category k when stimulus j is presented. If
we define c0 = −∞, and c4 = ∞, and Nt as the number of
trials per stimulus

Ekjj ¼ Nt

s
ffiffiffiffiffi
2p

p
Zck
ck�1

e�
x�mjð Þ2
2s2 dx ð2Þ

in the GEV model, whereas

Ekjj ¼ Nt

s
ffiffiffi
2

p
Zck
ck�1

e�
ffiffi
2

p
x�mjj j
s dx ð3Þ

in the LEV model. Note that the quantity, χ2, in Eq. 1 is
the Pearson chi-square statistic, a commonly employed
measure of how well categorical data fit a model. In both
models, the mean location of stimulus 1, μ1, was fixed at
0, and the standard deviation of each distribution, σ, was
set to 1.0. A more detailed description of the fitting
procedure is given in Parker et al. (2002). For each of the
four session blocks in the three conditions, we found the
parameter values for both the GEV and LEV models that
minimized Eq. 1. These parameter values were then used
to predict the probability of response k given stimulus j for
all 16 combinations. The top four panels of Fig. 4 plot the
obtained probabilities, Ok|j/Nt, against the probabilities
predicted by the GEV model for the four session blocks in
the baseline condition. The second and third rows of
panels present the equivalent plots for the B+50 and B+80
conditions, respectively. If the fit were perfect in these
panels, all points would fall on the positive diagonal. Note
that the data points tend to depart systematically from the
positive diagonal for the GEV model, falling below it for
predicted probabilities < .4, and above it for predicted
probabilities > .4.

The bottom three panels present the equivalent plots for
the LEV model. Note that in virtually every case, the LEV
model provides a better fit to the data than does the GEV
model. This was confirmed by a t-test comparing the 12 χ2

values obtained from the GEV model with those obtained
from the LEV model, t(11) = 5.61, p < .001.

The gain-control model predicts a reduction of discrim-
inability among the baseline stimuli when an additional
stimulus is added to the baseline set, with the reduction in
discriminability being greater when the intensity of the
added stimulus is increased from 50 to 80 dB SPL. An
estimate of the overall discriminability in the LEV signal-
detection model can be obtained by determining the
normalized distance between μ1 and μ4 in the fit to the
LEV model. We refer to this as the Laplace d-prime range,
which is defined as d′L(1,4) = (μ4 – μ1)/σ. Figure 5 plots
the Laplace d-prime range as a function of the number of
sessions in each of the conditions of the experiment. Note
that the same pattern emerges as was found with percent
correct in Fig. 2—namely, that d-prime range for the LEV
model increases with the number of session blocks and is
largest for the baseline condition, followed by the B+50 and
B+80 conditions, respectively.

Individual performance To determine the stability of indi-
vidual differences in performance, we first examined the
baseline condition to see whether the rank order of individuals
with respect to overall percent correct differed over blocks of
sessions. The reliability of individual differences was perfect
over blocks. We measured this reliability with Kendall’s
coefficient of concordance, W, and, in this case, W was, of
course, equal to 1. In the B + 50 condition, it dropped to .96,
and in the B+80 condition, it fell further to .83.

To compare how well the GEV and LEV models fit the
data of individual participants, we constructed plots equiv-
alent to Fig. 4 for each individual. An examination of these
plots failed to provide any evidence that one model was
reliably better than the other for any of the participants.
Across all participants and conditions, the fit was better for
the GEV than for the LEV model in 40 of the 72 instances—
that is, in slightly more than half of the instances. In
addition, no individual participant’s data were reliably better
fit by one model than by the other.

Relative psychological distances among stimuli To examine
whether the perceptual separation between adjacent stimuli
changed as a function of the intensity of the loudest
stimulus in the set, we first averaged the stimulus–response
matrices separately for each participant across the 20
sessions. We then found the best-fitting Laplacian projec-
tion values along the decision axis for each participant. The
Laplace d-prime between any two stimuli, i and j, is defined
as the separation between their means along the decision
axis, divided by their common standard deviation—that is,

6 plots both d′L(1,2)/d′L(1,4)
and d′L(3,4)/d′L(1,4) as a function of the highest intensity
tone in the set. Figure 6 shows that the discriminability
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between the two lowest intensities in the set (25 and 30 dB
SPL), relative to the discriminability of the softest and
loudest baseline stimuli (d-prime range), increases with the
intensity of the loudest stimulus, whereas the discrimina-
bility between the two highest intensities in the base set (35
and 40 dB SPL), relative to d-prime range, decreases as the
intensity of the loudest stimulus in the set grows. All 6
participants exhibited the increasing pattern for the two

lowest stimuli, and 4 of the 6 exhibited the decreasing
pattern for the two highest stimuli in the base set. Figure 6
also shows that the two stimulus pairs were equally
discriminable when there were only four stimuli in the
set, but that the discriminability for the two softest tones
exceeded that of the two loudest tones when there was a
fifth tone in the set, and that relative difference grew as the
intensity of the fifth stimulus increased.

Fig. 4 The obtained probability
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of response k, (1 ≤ k ≤ 4), given
stimulus j, (1 ≤ j ≤ 4), for the 16
combinations of k and j, as a
function of the predicted values
of these probabilities obtained
from the best-fitting Gaussian
equal-variance model and from
the best-fitting Laplace equal-
variance model for the baseline,
B + 50, and B + 80 conditions.
The models in each condition
were fit to the matrices of
stimulus–response probabilities
averaged over participants and
sessions. The straight lines rep-
resent where the points would
fall in these coordinates if the
predictions of the model were
perfect



Discussion

GEV versus LEV models In signal-detection analyses of
one-dimensional, m-alternative, AI experiments, it is usu-
ally assumed that the m stimuli give rise to m equal-
variance Gaussian distributions along a unidimensional
decision axis (see Macmillan & Creelman, 2005) .

However, Parker et al. (2002), Gordon and Schneider
(2007), and Murphy, Schneider, and Bailey (2010) have
argued that equal-variance Laplace distributions provide a
better fit to group AI data. This result is somewhat
counterintuitive, especially if the distribution of effects
along the decision axis are thought to arise from noise (or
an accumulation of a large number of small errors) in the
decision process, which, according to the central limit
theorem, should give rise to Gaussian-shaped distributions.
Schneider (2007) has shown that the Laplace distribution
will provide a better description than the Gaussian
distribution when responses to stimuli in an AI experiment
are aggregated over participants with unequal sensory
acuities, even when each individual participant’s data are
equal-variance Gaussian. The LEV model would also fit
better than the GEV model if data are aggregated over
sessions within an individual if there are substantial
changes in discriminability over time. To illustrate why
this happens, in Fig. 7 we aggregated 10,000 random
samples from each of four normal distributions having the
same mean (μ = 0) but four different standard deviations
(σ = 0.25, 0.50, 0.75, and 1.00, respectively) and plotted the
histogram of the combined random samples (n = 40,000).
Figure 7 shows that the Laplace distribution provides a very
good fit to the aggregate of random samples from normal
distributions having the same mean but different standard
deviations. Hence, this is what we would expect the
distribution of effects along the decision axis to look like if
we aggregated responses to a stimulus across four individ-
uals having different sensory acuities (different standard
deviations) or within an individual when acuity is changing
from session to session. Therefore, when discriminability is
constant both across and within participants, we would
expect the GEV model to provide the better fit if the decision
process was based on equal-variance normal distributions.
Because there is abundant evidence that discrimination
performance differs across individuals (e.g., Nizami, Reimer,
& Jesteadt, 2001), we should expect the LEV model to fit
group data better than the GEV model.

The individuals in the present experiment differed
substantially with respect to discrimination accuracy in the
AI paradigm. Figure 2 also indicated that discrimination
accuracy improved over time. To assess the degree of
individual differences in discriminative sensitivity in this
experiment, in each of the four blocks of sessions for each
of the three conditions, we computed the ratio of the best
performance achieved by one of the individuals in the block
(in terms of percentage of correct identifications) with that
of the worst performance achieved by one of the individ-
uals in the same block. For instance, if the participant with
the highest percentage of correct responses in block 2 in the
B+50 condition correctly identified 75% of the stimuli,
whereas the participant with the lowest percentage correct in

Fig. 6 The Laplace d-prime distance in a condition between stimuli 1
and 2 (circles), relative to the Laplace d-prime range between stimuli 1
and 4 in the same condition, is plotted as a function of the intensity of
the highest tone in that condition. Also shown is the equivalent plot
for the relative Laplace d-prime distance between stimuli 3 and 4
(squares)

Fig. 5 The distance along the decision axis between the stimuli 1 and
4 (25 and 40 dB SPL) scaled in Laplace d-prime units, as a function of
session block for the baseline (B), B + 50, and B + 80 conditions.
Each point is based on the Laplace equal-variance model that best fits
the matrix of stimulus–response probabilities averaged over individ-
uals for the session block in question
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the same block identified only 50% of the stimuli, the ratio
of highest to lowest was 1.5. Because there were four blocks
of trials for each of three conditions, 12 such ratios were
computed. The geometric mean of those 12 ratios was 1.48,
indicating a considerable range of individual differences
within each block of trials for each of the three conditions.
Hence, even if the AI decisions of each of the participants
are based on the GEV model, we would nevertheless expect
the LEV model to provide the better fit to the group data, as
it indeed does in 11 of the 12 cases (see Fig. 4).

Within an individual, we would expect the LEV model to
provide a better fit than the GEV model if there were
substantial changes in performance over sessions, but the
GEV to fit at least as well as the LEV model if there were
only small changes over sessions. Within each condition,
across the four blocks of trials within an individual, we
determined the blocks with the highest and lowest average
percentages of correct identifications. Because there were 6
participants in each of three different conditions, there were
18 such ratios indicating the maximum amount by which
each individual differed across blocks. The geometric
average of those 18 ratios (6 individuals × 3 conditions)
was 1.1. In the 18 instances in which these ratios were
computed, the GEV model provided the better fit in 10 of
them. This is what we might expect if individuals’ decisions
were often based on equal-variance normal distributions
along the decision axis, with relatively little session-to-
session variation. The fact that there was some variation in
discriminability from block to block should have limited the

proportion of cases in which the GEV model provided the
better fit. A chi-square test indicated that the proportion of
cases in which the GEV model provided the better fit was
significantly higher when data were aggregated within
individuals than when they were collapsed over individuals,
χ2(1) = 6.91, p < .01. Hence, it seems reasonable to conclude
that the momentary performance of individuals is governed
by the GEV model but that we can detect this only when
there is stability across sessions. When there is not, or when
data are aggregated across individuals who differ in
discriminative sensitivity, the LEV model is to be preferred.

Why does the intensity of the fifth stimulus matter? There
are several theories that would predict that the addition of a
high-intensity stimulus to a baseline set of low-intensity
stimuli would reduce discriminability among the low-
intensity tones. In Parker et al. (2002), we showed that the
reduction in discriminability was not a simple effect of
stimulus range, as described in the theories of Durlach and
Braida (1969) and Gravetter and Lockhead (1973). Accord-
ing to range theories, discriminability among a set of stimuli
should decrease as the range between the highest and lowest
intensities in the stimulus set increases. In Parker et al.,
discriminability among the four tones in the low-intensity
baseline set (25, 30, 35, and 40 dB SPL) did decrease as the
intensity of the fifth added tone and, therefore, stimulus
range increased. However, when the baseline set consisted of
four high-intensity tones (84.5, 86.5, 88.5, and 90.5 dB SPL)
and a fifth lower intensity tone was added to the baseline set,
discriminability among the four baseline tones remained
essentially unchanged as the intensity of the fifth tone was
lowered from 80.5 to 40 dB SPL (i.e., the range increased;
see their Fig. 4). This asymmetrical response to increases in
range cannot be easily accounted for in range effect models.
However, there still remain several other possible explan-
ations for the effects observed here.

One is the idea that the reduction in discriminability is due
to passive adaptation-like effects in which exposure to loud
sounds depresses responsiveness to subsequent sounds.
Adaptation theories might predict that a sensory response to
a stimulus that immediately followed a high-intensity adapt-
ing stimulus would be reduced, relative to the response that
would occur otherwise. This would predict that discrimina-
bility and identification would be worse when the added tone
was 80 dB SPL than when it was only 50 dB SPL, which
indeed did occur. However we would also expect that the
probability of correctly identifying a baseline tone would be
lower for a tone following an 80-dB SPL tone than for one
following another baseline tone. Figure 3, however, indicates
that the probability of correctly identifying a tone from the
baseline set is little affected by whether or not it is preceded
by an 80-dB SPL tone. Adaptation-based accounts would
expect this to occur only if recovery from adaptation to a

Fig. 7 Frequency histogram for the aggregation of 10,000 samples from
each of four normal distributions having the same mean (μ = 0) but
different standard deviations (σ = 0.25, 0.50, 0.75, and 1.0, respectively).
The smooth curve fit to this histogram is what we would expect if the
aggregate data were generated from a single Laplace distribution
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high-intensity tone was complete by the time the succeeding
tone was presented, or if recovery from adaptation was so
slow that the occasional 80-dB tones kept the participants’
sensitivity fully depressed throughout the experiment. (See
Arieh, Kelly, & Marks, 2005, for some evidence that the
latter condition might be met for induced loudness reduction,
a phenomenon that Arieh and Marks 2011, regard as
adaptation-like.) However, neither of these appeared to occur
in Experiment 4 in Parker et al. (2002). In that study’s low-
intensity condition, participants discriminated (in a 2IFC
procedure) between two relatively soft 1-kHz tones (in the
range from 25 to 30 dB SPL) with an average accuracy of
about 83%. When, on one-third of the trials, the louder of
those two tones was unpredictably replaced by a 92-dB SPL
1-kHz tone, accuracy dropped to about 70% on the remaining
two-thirds of the trials that involved only the original soft
tones. This is incompatible with an adaptation process with
very fast recovery. However, when all trials asked participants
to discriminate the two baseline soft tones but included a
92-dB SPL 1-kHz “warning tone,” performance fell only to
about 79% and did not differ significantly from baseline. This
is incompatible with an adaptation process with very slow
recovery times. Thus, adaptation is not a reasonable
explanation for the results reported in that study.

Another possible explanation lies in attention-allocation
effects (Luce & Green, 1978; Nosofsky, 1983; Nosofsky &
Luce, 1984), that there is an attention band of limited range
(approximately 10 dB; Luce & Green, 1978) that the
participant directs to particular regions of the intensity range.
Such theories of attention allocation cannot readily account
for the reduced discriminability observed with the addition
of a remote high-intensity stimulus. Consider first theories of
attention allocation in which participants are completely free
to allocate their attentional resources to different intensity
regions. For the baseline set of stimuli, the average relative
discriminability (d′L) between adjacent stimuli was .33
between 25- and 30-dB SPL stimuli, .32 between the 30-
and 35-dB SPL stimuli, and .35 between the 35- and 40-dB
stimuli. From an attentional allocation point of view, this
would indicate that attentional resources were spread evenly
across the range from 25 to 40 dB SPL. Now if attention
allocation were purely a top-down phenomenon and if
listeners were free to allocate attention to whatever intensity
ranges were optimal, they need not change their attentional
focus when the 80-dB SPL tone was added to the baseline
set, since there should be no problem in identifying the 80-
dB SPL tone, regardless of where along the intensity
dimension their attentional resources were focused. Hence,
identification performance for the four lowest intensity
stimuli should have remained the same when the 80-dB
SPL tone was added to the baseline set. Because discrimi-
nability was reduced when the high-intensity tone was
added, we must assume, within an attention-allocation

framework, that attentional resources were reallocated as a
result of the introduction of the high-intensity tone.

Some theories of attention (e.g., Luce, Nosofsky, Green,
& Smith, 1982) hypothesize that the attention band is
involuntarily drawn to the intensity region of the most
recently presented stimulus and/or to the anchor stimuli (the
highest and lowest intensities in the stimulus set). A shifting
attention band would predict better performance when a
stimulus is preceded by a stimulus with a similar intensity
than when it follows a stimulus whose intensity is quite
remote. Clearly, a baseline stimulus that follows an 80-dB
SPL anchor stimulus is remote from its predecessor and,
according to such a theory, should be harder to identify than
when it follows one of the stimuli in the baseline set (25, 30,
35, 40 dB SPL) if the attention band tends to track the
previous stimulus. However, identification accuracy for a
baseline stimulus in the B+80 condition was the same
independently of whether it was preceded by another
baseline stimulus or by an 80-dB SPL stimulus (see
Fig. 3). This result suggests that the location of the attention
band remains fixed throughout the session, which would
defeat the utility of an attention band explanation of AI data.
For these reasons, theories of attention allocation cannot
readily account for the AI data from this study. (The most
recent version of the theory [Nosofsky & Luce, 1984] held
that the location of the attention band is drawn “in a
somewhat sluggish fashion to region ‘where the action is’”
[p.24] rather than on a trial-by-trial basis to the location of
the previous stimulus. No definite predictions about the
present data emerge clearly from this model.)

A nonlinear gain-control model under top-down control
Parker and Schneider (1994) developed a nonlinear gain-
control model that could account for many of the properties
of nonmetric comparisons of loudness differences. In a
skeletal version of the model, an auditory signal is passed
through a bank of band-pass filters before being sent to an
amplifier under feedback control. Figure 8 indicates how
this model would work when the input to the amplifier is a
sine wave. Basically, the momentary gain of the amplifier is
specified as k, so that the momentary output of the amplifier
is simply k times the input, which, in this example, is a sine
wave. The output, however, goes to a power meter that
determines the average power, WT, in the signal over time
period T. A feedback loop then determines the gain for the
next T-second period on the basis of the average power of
the preceding T-second period, where the gain, k, is equal to
W-q, where q is under top-down control. In the present
experiment, it is assumed that the listener has an expecta-
tion as to the loudest stimuli that are likely to occur in a
session and adjusts q to protect against a sensory overload
and to maximize discriminability. Specifically, as anticipated
maximum intensity grows, so does q. Note that the conse-
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quence of increasing q is to increase compression (lower the
value of k) in the model. Parker and Schneider (1994) showed
that, when the input is a steady-state signal, this circuit
converges rapidly to a steady-state output when the value of q
is in the range of 0.1–0.3. In particular, when the input is a
steady-state sinusoid [A Cos(2 π fc t + θ)], the steady-state
output is
ffiffiffi
2

p
A=

ffiffiffi
2

p� � 1
1þ2q

Cos 2pfct þ qð Þ ð4Þ
Hence, this circuit predicts that the response of the auditory

system to a pure tone is a power function of sound pressure
whose exponent varies with the amount of compression (the
greater the compression, the lower the exponent).

In addition to top-down control over the amplifier’s gain,
we also assume that there is top-down control over a
threshold sensor such that a signal enters this gain-control
system only if it exceeds a specific root-mean square (RMS)
sound pressure level. Specifically, subthreshold signals have
no consequence. It is important to note that the threshold
value for this sensor need not be the sensory system’s
absolute threshold but is, instead, a second parameter that
can be influenced by a listener’s expectations. Effectively,
what this threshold sensor does is increase discriminability
for stimuli near the lowest expected intensity in the stimulus
set by enhancing the growth of loudness in this region.

In the model, the observer’s settings of the gain on the
amplifier will determine the location of the mean value,
μj, of the distribution of effects along the decision axis
arising from repeated presentations of stimulus j, without
changing the variance, σ, of these distributions.2 Hence,
changing the amplifier’s gain will nonlinearly alter the
positions of the distributions shown in Fig. 1, but not their
variances. In modeling both group and individual data, we

have chosen to use the Laplace distribution throughout,
because the available evidence suggests that individuals
vary in sensitivity and that sensory acuity improves with
experience (see Figs. 2 and 5). Hence, we would expect the
Laplace distribution to better characterize the hypothetical
distribution of effects along the decision axis.

Another assumption in the model is that the variance
depends on the number of criteria needed to define the
response regions. Because the baseline set contains four
stimuli (three criteria), while the sets with the added
stimulus contain five stimuli (four criteria), in fitting the
model, we needed to fit two estimates of variance, one for
the baseline set and the other for any set containing five
stimuli. However, in fitting the model, we found that a ratio
of variance, rv , in the four-stimulus case to that in the five-
stimulus case of .71 provided a good fit to all of the data
sets, effectively reducing the variance estimate to a single
parameter.

The fleshed-out model (see the Appendix) has six free
parameters, c, pT, n, s, σ3, and rv , where σ3 is the standard
deviation of the Laplace distribution when three criteria are
needed, rv is the ratio of σ3 /σ4, c is a dimensional constant
translating sound pressure into neural activity, n is the
highest value that q can reach, s is a parameter determining
how fast that value is approached as the expected maximum
intensity increases, and dBT is the sound pressure level that
must be exceeded before the gain-control circuit is
activated. To find the best-fitting values of the model’s
parameters, we computed the Laplace d-prime distances
between all pairs of stimuli in a particular condition.
Because there were four stimuli in the baseline stimulus
set, there were six pairwise Laplace d-primes per condition.
These d-prime values were taken from the signal-detection
analysis. Thirty-four conditions in all were examined: the
eight low-intensity conditions from Parker et al. (2002), the
eight high-intensity conditions from Parker et al., and the
three conditions for each of the 6 individual participants in
the present experiment. To solve for the best-fitting
parameter values, we systematically varied pT and, simul-
taneously, found the parameter values that produced the
minimum sum of squared errors between the obtained d-
prime values and those predicted from the program, using

2 In other words, the model assumes that a change in sensory intensity
from X to Y due to compression is equivalent to a change in sensory
intensity from X to Y due to a reduction in the sound pressure level.
Both will move the mean response along the decision axis to a lower
value without affecting variability in the decision process. This is what
we would expect if the gain-control mechanism operates at a
peripheral level (e.g., the cochlea) to alter the sensory representation
of stimulus intensity well before this information reaches the level at
which decisions are made.

Fig. 8 An amplifier with a
negative feedback loop. Power
at the output of the signal is
used to modulate the gain on the
amplifier. As the power at the
output increases, the amplifier’s
gain is reduced. The amount of
compression is governed by the
value of q, which is assumed to
be under top-down control (see
the text)
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Mathematica’sNonlinearRegression algorithm. The values
of the model’s parameters are given in Table 1. The
Appendix provides a more detailed description of the model.

The predicted d-prime values were used to determine the
mean locations of the stimuli (hereafter called their
projection values) along the decision axis in each of the
34 conditions in the following way. First, the projection
value of the lowest stimulus in the base set was fixed at
zero. Second, the projection value of the second stimulus in
the set was set to the value of the predicted d-prime
between stimulus 1 and stimulus 2, and so on for all
stimuli. Then the mean of the predicted projection values
along the decision axis was subtracted from each projection
value, so that the resulting predicted projection values had a
mean of zero in each condition. The mean of the obtained
projection values in a condition was also subtracted from
each of the obtained projection values in that condition, so
that the average of the obtained projection values also had a
mean of zero. Figure 9 plots the obtained projection values
as a function of the projection values predicted by the
model. The straight line represents perfect agreement
between obtained and predicted projection values. Because
the deviations from this straight line are minimal, we
conclude that the model provides an excellent fit to the
data. It should be noted that single values of c, pT, and s
were used for all conditions. Hence, the only parameters
that distinguished one participant from another or from the
group of participants in Parker et al. (2002) were σ3, the
variance when there are three criteria, and n, the asymptotic
value of the feedback parameter, q. Note that the s parameter

specifies how fast the asymptotic value of q is approached as
the expected maximum intensity increases.

A significant advantage of the model is that it predicts
that as the intensity of an added stimulus is increased, not
only will discriminability among a set of low-intensity
stimuli decrease, but in addition discriminability among the
highest intensities in the baseline set, relative to the
discriminability of stimuli 1 and 4, will decline more
rapidly than will the corresponding discriminability among
the lower intensities (see Fig. 6), something that adaptation
theories and attention-allocation theories cannot easily
accommodate. It also accounts for the fact that the addition
of a low-intensity stimulus to a set of four high-intensity
stimuli has a far smaller effect than the reverse (Parker et
al., 2002), something that theories based on stimulus range
have difficulty in accommodating.

A second advantage of the model is its correspondence
to measurement of compression in the mechanical input/
output (displacement) functions of the basilar membrane in
cat, chinchilla, gerbil, and guinea pig. For all of those, the
input/output functions are linear up to about 20–25 dB SPL
and compressive for higher input levels (see Cooper, 2004,
for a thorough review). Thus, it is interesting that in fitting
the model to data (see the Appendix), pT in dB SPL proved
to have a value of 24.3 dB, precisely where compression
begins to occur in the cochlea. Unfortunately, none of the
studies used to fit data to the model included any stimuli
with intensities below 25 dB SPL (i.e., in the linear range in
the cochlea), and so we cannot be certain that pT would be
unchanged were such data to be included. Nonetheless, the

Table 1 Values of n and σ3 for the group of participants from Parker
et al. (2002), and for the 6 participants from the present experiment for
the gain-control model. The value of n did not vary across stimulus
sets. The values of σ3 in this table specify the standard deviation of the
Laplace distributions when the stimulus set contained only four

elements (three criteria). For stimulus sets containing five elements
(four criteria), the value of the standard deviation of the Laplace
distributions, σ4, was found to be 1.19 σ3. The value of dBc in this
model was 20.05, the value of s was 25.22, and the value of dBT was
24.3

Experiment or Participant Stimulus sets (Elements of the set are the intensity values of the tones in dB SPL) n σ3

Parker et al. (2002) {25, 30, 35, 40}, {25, 30, 35, 40, 45}, 0.27 0.597
{25, 30, 35, 40, 50}, {25, 30, 35, 40, 55},

{25, 30, 35, 40, 60}, {25, 30, 35, 40, 70},

{25, 30, 35, 40, 80}, {25, 30, 35, 40, 90},

{84.5, 86.5, 88.5, 90.5}, {40, 84.5, 86.5, 88.5, 90.5},

{50.5, 84.5, 86.5, 88.5, 90.5}, {60.5, 84.5, 86.5, 88.5, 90.5},

{70.5, 84.5, 86.5, 88.5, 90.5}, {75.5, 84.5, 86.5, 88.5, 90.5},

{80.5, 84.5, 86.5, 88.5, 90.5}, {82.5, 84.5, 86.5, 88.5, 90.5}

P1 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.2 0.983

P2 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.36 0.619

P3 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.22 0.649

P4 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.12 0.78

P5 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.27 0.598

P6 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.38 0.223
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correspondence of the model to this physiological data is
encouraging.

Finally, a critical feature of the model is that it is under
top-down control. Applications of the model with respect to
auditory intensity (Gordon & Schneider, 2007; Parker et al.,
2002) and visual contrast (de la Rosa et al., 2009; Mišić et
al., 2010) indicate that compression is applied only when
the observer expects high-intensity stimuli but cannot
predict when they will occur. We have previously discussed
the results of Experiment 4 of Parker et al. and their
incompatibility with an adaptation-based account of the
outcome of the present study. In studies of visual contrast,
both de la Rosa et al. and Mišić et al. compared absolute
identification of contrast gratings in a baseline condition in
which only low-contrast sine wave gratings were presented
against performance in two other conditions: (1) a condition
in which a high-contrast grating was randomly added in an
unpredictable fashion to the baseline set of low-contrast
gratings (baseline + unpredictable high-contrast stimulus)
and (2) a condition in which different fixation symbols
reliably predicted the occurrences of high- and low-contrast
gratings (baseline + predictable high-contrast stimuli). In
both those experiments, the addition of an unpredictable
high-contrast stimulus reduced discriminative performance
among the low-contrast baseline stimuli, whereas the
addition of a predictable high-contrast stimulus did not.
This indicates that the observer can rapidly adjust the gain

in visual contrast on the basis of momentary expectations
concerning the intensities of stimuli that are likely to occur,
much as appears to occur in loudness.

The linkage between sensation and discriminability The
relationship between sensory experience (e.g., loudness)
and discriminability has been a contentious one ever since
Fechner’s (1966) pioneering attempt to link sensation to
intensity via the argument that “equally-often noticed
differences are subjectively equal.” The fact that judgments
of loudness are affected by context raises the issue of
whether the effects of context on loudness are mediated, in
part, by a nonlinear gain-control mechanism. If we assume
that the loudness (perceived intensity) of a sound is directly
proportional to the output of the nonlinear gain-control
mechanism proposed here, then

L ¼ a»
ffiffiffi
2

p

c
1

1þ2»qð Þ3
px � pTð Þ

1

1þ2»qð Þ3 ð5Þ

where a is a scalar constant linking loudness judgments to
the mean positions of the distributions of effects along the
decision axis, and q is determined according to Eq. A4 in
the Appendix. Note that this form of the loudness function
corresponds to Scharf and Stevens’s (1961) threshold
adjustment to the Stevens power law. Hence, it accounts
for the more rapid growth in loudness with intensity near
the listener’s threshold. The major difference between this
model and that of Scharf and Stevens is that, in the gain-
control model, the threshold parameter and the value of the
exponent of the power function are assumed to be under
top-down control, with the exponent being reduced as the
maximum expected intensity increases. It is also interesting
to note that when high-intensity stimuli are present (> 90 dB
SPL), the exponent of the power function in Eq. 5 (using the
parameters fit to the data of Parker et al., 2002), is
approximately 0.29 as a function of sound pressure, a value
that is quite close to the value found for nonmetric scaling
of loudness differences (Parker & Schneider, 1974;
Schneider, Parker, & Stein, 1974; Schneider, Parker,
Valenti, Farrell, & Kanow, 1978).

The present model also illustrates one of the difficulties
involved in linking sensory magnitude to discriminability.
Assume that sensory magnitude is governed by Eq. 5 in
loudness estimation experiments, and that Eq. 5 also
determines the mean position of each stimulus along the
decision axis in AI experiments. Because participants 2 and
6 (see Table 1, P2 and P6) have identical values of c, pT,
and dBmax and nearly equivalent values of n (.36 and .38,
respectively), their loudness functions will be nearly
identical according to Eq. 5. Discriminability among a set
of stimuli will, nonetheless, differ between them because,
although the locations of the means of the distributions of

Fig. 9 Projection values along the decision axis obtained from the
Laplace equal-variance model as a function of the projection values
predicted by the gain-control model for the data of the 6 participants in
the three conditions of the present experiment and the data of the
groups of participants in the low- and high-intensity baseline
conditions in Parker et al. (2002)
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effects along the decision axis are the same for both of
them, the standard deviation of the distributions for
participant 2 is almost three times as large as the standard
deviation for participant 6. Hence, even though they have
the same loudness function, participant 6 will outperform
participant 2 in an AI experiment.

Conclusions These studies, taken together, support the
hypothesis that sensory intensity is modulated by a nonlinear
amplification system in which the gain is directly controlled
by the observers’ expectations concerning the stimulus
intensities they are likely to experience. This system serves
to protect the individual from sensory overload. Moreover, the
ability to rapidly reset the gain permits the observer to
maximize discriminability within a particular intensity range
while simultaneously providing protection from damage due
to sensory overload.
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Appendix: The Model

The present model is a generalization of the one presented
in Parker and Schneider (1994). Let x(t) be the input to the
linear auditory filter (see Fig. 10). The output of the filter is
c*H[x(t)], where H[x(t)] is the linearly filtered version of
the signal and c is a dimensional constant that converts
sound pressure into its neural equivalent at the output of the
filter. If the filter is sufficiently narrow, we can express the
output of the filter over a period of T seconds (T = 1/fc) as
being essentially equivalent to

c»
ffiffiffi
2

p
px cos 2pfct þ qx½ � where px ¼ RMS H xðtÞ½ �½ �

and θx is the phase of the sine wave that best matches that
of H[x(t)] over the T-second period. Figure 11 shows 2 ms
of the digitized output of an auditory filter (gamma-tone
filter, center frequency = 500 Hz, equivalent rectangular
bandwidth = 96 Hz) to a band-limited white noise
(bandwidth = 10 kHz, sampling rate = 20 kHz). Figure 11
shows that an arbitrary output can be well matched to a
500-Hz pure tone whose amplitude is

ffiffiffi
2

p
px and whose

phase is θx.

In the model there is a sensor that serves to trigger the
gain-control circuitry. This sensor responds only when the
RMS sound pressure in the filtered stimulus exceeds a
certain minimum trigger value, pT. Effectively, then, the
level of the signal that serves as input to the gain-control
portion of the circuit is the amount by which the filter’s
output exceeds the trigger value. Hence, the output of the
sensor, over the time period T, is approximately

c
ffiffiffi
2

p
px � pTð Þ cos 2pfct þ qx½ � for px > pT ; 0 otherwise ðA1Þ

where pT is the RMS sound pressure level in dB of a steady-
state pure tone of frequency, fc, that just reaches the sensor’s
threshold, and θx represents the phase of the pure tone that best
matches the phase of the filtered signal at that point of time.
The output of the sensor, in turn, serves as the input to three
concatenated gain-control units of the type shown in Fig. 10,
with each of the units under the top-down gain-control
parameter q. Three units were chosen to keep the value of q
within the range of quick convergence to a steady state input.

Let fc be the center frequency of the filter. Now consider
a pure tone whose frequency is fc and whose RMS sound
pressure is px. It can be shown that the steady-state output
of the gain-control circuit to this pure tone is

ffiffiffi
2

p
c»px � c»pTð Þ

1
1þ2qð Þ3 cos 2pfct þ qð Þ ðA2Þ

To avoid having to specify c, px, and pT in sound pressure
units, we now define,

dBc ¼ 20Log10
1

c»p0

� �
; dBx ¼ 20Log10

px
p0

� �
; dBT ¼ 20Log10

pT
p0

� �
;

where p0 is the reference SPL, and express the output of the
circuitry shown in Fig. 10 in terms of the dB equivalents of
c, px, and pT. When these quantities are expressed in
decibels, the output of this circuit to a sinsusoidal input
whose RMS amplitude is px is

ffiffiffi
2

p
10

dBx�dBc
20 � 10

dBT�dBc
20

� � 1
1þ2qð Þ3Cos 2pfct þ qð Þ ðA3Þ

Note that the model has three parameters, c, pT, and q. The
assumption in this model is that q, the compression factor, is
selected on the basis of the highest anticipated intensity that
might occur on a trial. To fit the model to the data, we assumed
that q varies in an exponential fashion with the dB value of the
maximum intensity produced at the output of the filter by any
stimulus in the set. Hence, q was assumed to be an exponential
function of 20 Log10(pMax* c) = dBMax-dBc , where pMax is
the maximum RMS sound pressure at the output of the linear
filter. Hence q varies according to the function

q ¼ n» 1� e
� dBMax� dBcð Þ

s

� �
ðA4Þ
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When the maximum intensity stimulus is a pure tone whose
center frequency is fc, dBMax is the dB SPL value of that
pure tone, n is the asymptotic value of q, and s is a parameter
that determines how quickly q approaches that asymptotic
value. Hence, the mean location along the decision axis of a
pure tone stimulus at the center frequency of the filter, whose
sound pressure level is dBx, is

m dBx½ � ¼
ffiffiffi
2

p
10

dBx� dBc
20 � 10

dBT� dBc
20

� � 1
1 þ 2qð Þ3 ðA5Þ

where the value of q is specified by Eq. A4.
Note that, in this model, the compression parameter, q, is

based on the maximum RMS amplitude experienced at the

output of the filter when the listener cannot predict its
occurrence and that there are two parameters: n, the
maximum value of q, and s, the parameter that determines
the rate at which q approaches n as the maximum sound
intensity increases. Hence, the gain-control model mapping
sound intensity onto the decision axis has four parameters:
c, pT, n, and s.

In applying the model, we assumed that the distribution
of stimulus effects along the decision axis varies according
to a Laplace distribution. Specifically, we assumed that the
distribution of effects, x, along the decision axis for a
monaural stimulus whose sound pressure level is dBx and
where the loudest tone presented in the session is dBMax has
the density function

f x½ � ¼ 1

s
ffiffiffi
2

p e
� ffiffiffi

2
p

x� m dBx½ �jj
s

ðA6Þ

where σ is the standard deviation of the Laplace distribu-
tion. The locations of these stimuli, scaled in Laplace
d-prime units, can then be obtained by dividing μ[dBx] by σ.
Hence, the Laplace d-prime between any two stimuli j and k
(dBj> dBk) is given by μ[dBj]/σ-μ[dBk]/σ.

To solve for the best-fitting parameter values, we
systematically varied dBT and, simultaneously, solved for
the parameter values that produced the minimum sum of
squared errors between the obtained d-prime values and
those predicted from the program, using Mathematica’s-
NonlinearRegression algorithm, subject to the restriction
that dBc, dBT, and s were invariant across conditions and
experiments. The best-fitting values of dBc, dBT, and s were
20.05, 24.3, and 25.22, respectively. The values of n and σ3,

Fig. 11 The points specify the digitized output from a narrowband
filter (gamma-tone, center frequency = 500 Hz, equivalent rectangular
bandwidth = 96 Hz) to a band-limited Gaussian noise (bandlimit =
10 kHz) over a period of 2 ms. The smooth curve fit to these points is
the best-fitting sine wave over this period

Fig. 10 The full nonlinear gain-
control circuit, after translating
the output of the linear filter to
its neural equivalent, routes the
output to a threshold sensor that
passes only the amount of ener-
gy in the signal that exceeds
some threshold value. The out-
put from the sensor then passes
through three concatenated non-
linear amplifiers of the type
shown in Fig. 8 to allow for a
greater range of compression
and more rapid convergence to a
steady-state output when the
input is a steady-state signal.
The amount of feedback is con-
trolled by the parameter q,
which is assumed to be under
top-down control
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which were constrained to be the same for the 16 conditions
tested in Parker et al. (2002) and for any individual
participant in the present experiment, are given in Table 1.
The values of σ3 in this table specify the standard deviation
of the Laplace distributions when the stimulus set contained
only four elements (three criteria). For stimulus sets
containing five elements (four criteria), the value of the
standard deviation of the Laplace distributions, σ4, was
found to be equal to 1.195 σ3.

To assess the degree to which this fitting routine could
distinguish a condition in which the amplifier’s gain was
controlled by the highest expected intensity in the data set

from one in which there was no gain control, we simulated
data sets with and without gain control. In simulating sets
of data without gain control, we assumed that the mean
position of a stimulus along the decision axis was given by

m dBx½ � ¼
ffiffiffi
2

p
10

dBx�dBc
20

� � 1

1þ2nAð Þ3 ðA7Þ

Note that, in this model, it is assumed that loudness is a
power function of sound pressure with an exponent equal to
1/(1 + 2nA)

3, and that a constant, c, expressed in dB (dBc),
translates this power function into a point along the
decision axis. Note also that this equation differs from
Eq. A5 in two respects. First, the exponent is assumed to be
independent of the loudest sound in the set. Second, there is
no threshold parameter, pT, that specifies the intensity level
at which gain control kicks in, because there is no gain
control in this model. All other aspects of the model were
assumed to be the same as those in the full gain-control
model. In total, we simulated 100 independent data sets
corresponding to the 34 stimulus conditions indicated in
Table 1. In these simulations, we set c = 1 so that dBc = 0,
and, using Eq. A7, generated eight sets of hypothetical
positions along the decision axis for the baseline stimuli
used in the present experiment, setting the value of nA to the
corresponding value of n in Table 1. Specifically nAwas set
to 0.27 for the two baseline sets ({25, 30, 35, 40 dB SPL}
and {82.5, 84.5, 86.5, 88.5 dB SPL}) in Parker et al. (2002)
and to 0.20, 0.36, 0.22, 0.12, 0.27, and 0.28 for participants
P1 to P6, respectively, for the baseline conditions {25, 30,
35, 40 dB SPL} in the present experiment. In the

Table 2 Mean values and standard deviations (in parentheses) of n
obtained (n obt) from 100 simulations of absolute identification
experiments in which the mean locations of the stimuli along the
decision axis were determined in the absence of gain control. Also
shown are the hypothetical values of n used in the generation of these

simulations (n start). For stimulus sets containing five elements (four
criteria), the average value of the standard deviation of the Laplace
distributions, σ4, was found to be 1.189 σ3. The average values of dBc,
dBn, and s in this model were 7.79, –46, and 4.99, respectively

Experiment or Participant Stimulus sets (Elements of the set are the intensity values of the tones in dB SPL) n obt n start

Parker et al. (2002) {25, 30, 35, 40}, {25, 30, 35, 40, 45}, 0.27 (.01) 0.27
{25, 30, 35, 40, 50}, {25, 30, 35, 40, 55},

{25, 30, 35, 40, 60}, {25, 30, 35, 40, 70},

{25, 30, 35, 40, 80}, {25, 30, 35, 40, 90},

{84.5, 86.5, 88.5, 90.5}, {40, 84.5, 86.5, 88.5, 90.5},

{50.5, 84.5, 86.5, 88.5, 90.5}, {60.5, 84.5, 86.5, 88.5, 90.5},
{70.5, 84.5, 86.5, 88.5, 90.5}, {75.5, 84.5, 86.5, 88.5, 90.5},
{80.5, 84.5, 86.5, 88.5, 90.5}, {82.5, 84.5, 86.5, 88.5, 90.5}

P1 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.20 (.02) 0.20

P2 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.38 (.15) 0.36

P3 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.21 (.03) 0.22

P4 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.12 (.02) 0.12

P5 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.27 (.06) 0.27

P6 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.45 (.23) 0.38

Fig. 12 The mean percentage of the asymptotic value of the gain-
control parameter q as a function of the maximum stimulus intensity
for sets of simulations that did not include gain control (upper solid
line) and those that did (lower solid line). Also shown are the 95%
confidence limits for these mean functions
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simulation, the standard deviation of the Laplace distribu-
tions was set to 0.6 for all baseline conditions (which
corresponded to an expected value of 71% correct
identifications for participant P1, assuming that this
participant’s criteria were set midway between the mean
stimulus positions along the decision axis). When an
additional stimulus was added to the set, the value of the
standard deviation of each of the Laplace distributions was
increased to 1.195 * 0.6. To generate a stimulus–response
probability matrix, it was assumed that the decision criteria
were midway between the projection values. Eq. 2 was then
used to generate each of the 16 entries in the stimulus–
response probability matrix. Once the four probabilities
were determined for each stimulus, Mathematica’s Multi-
nomial Random number generator was used to generate the
number of times out of N trials that stimulus j was classified
as stimulus 1, 2, 3, or 4. The number of trials was set to 500
for the conditions tested in Parker et al. and to 1,000 for the
conditions tested in this experiment. This probability matrix
then served as input to a second program used to find the
“obtained” projection values for this simulated experiment.
This procedure was repeated 100 times for each of the 34
conditions illustrated in Table 1.

The mean and standard deviations of the obtained values
of n of the gain-control model fit to the simulation of data
without gain-control, along with the values of n used to
generate these simulations, are shown in Table 2. This table
indicates that the gain-control model can accurately capture
the asymptotic values of the exponents of the power
function when the model does not include gain control.

The mean value (1.189) of the ratio of σ4/σ3 did not differ
significantly from that (1.195) used to generate the
simulations, t(99) = −1.60, p > .1.

To see whether the model accurately reflects the lack of
gain control in these simulations, the obtained values of dBc

and s were used to plot the function describing how closely
q (expressed as a percentage) approached its asymptotic
value as the maximum intensity in the stimulus set
increased. Specifically, the percentage of the asymptotic
value of q is given by

100»
q

n
¼ 100 1� e

� dBMax� dBcð Þ
s

� �
ðA8Þ

One hundred such functions were generated for the 100
simulations and were used to determine the average
function describing how closely q approached its asymp-
totic value (upper solid line in Fig. 12), as well as to
estimate the 95% confidence interval for this function
(dotted lines bracketing the upper solid line). Figure 12
indicates that when the simulations did not involve gain
control, the parameters of the gain-control function fit to
such data reflect the absence of gain-control by indicating
that gain does not change substantially with the maximum
intensity in the stimulus set.

We also checked the accuracy of the fitting procedure by
simulating 100 sets of data with gain control. In these
simulations, the values of the parameters of the gain-control
model found to fit the data in the article (see Table 1) were
used to generate projections along the decision axis. These

Table 3 Mean values and standard deviations (in parentheses) of n
obtained (n obt) from 100 simulations of absolute identification
experiments in which the mean locations of the stimuli along the
decision axis were determined in the presence of gain control. Also
shown are the hypothetical values of n used in the generation of these

simulations (n start). For stimulus sets containing five elements (four
criteria), the average value of the standard deviation of the Laplace
distributions, σ4, was found to be 1.194 σ3. The average values of dBc,
dBn, and s in this model were 19.94, 24.31, and 25.32, respectively

Experiment or Participant Stimulus Sets (Elements of the set are the intensity values of the tones in dB SPL) n obt n start

Parker et al. (2002) {25, 30, 35, 40}, {25, 30, 35, 40, 45}, 0.27 (.003) 0.27
{25, 30, 35, 40, 50}, {25, 30, 35, 40, 55},

{25, 30, 35, 40, 60}, {25, 30, 35, 40, 70},

{25, 30, 35, 40, 80}, {25, 30, 35, 40, 90},

{84.5, 86.5, 88.5, 90.5}, {40, 84.5, 86.5, 88.5, 90.5},

{50.5, 84.5, 86.5, 88.5, 90.5}, {60.5, 84.5, 86.5, 88.5, 90.5},
{70.5, 84.5, 86.5, 88.5, 90.5}, {75.5, 84.5, 86.5, 88.5, 90.5},
{80.5, 84.5, 86.5, 88.5, 90.5}, {82.5, 84.5, 86.5, 88.5, 90.5}

P1 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.20 (.02) 0.20

P2 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.36 (.03) 0.36

P3 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.22 (.02) 0.22

P4 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.12 (.01) 0.12

P5 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.27 (.02) 0.27

P6 {25, 30, 35, 40}, {25, 30, 35, 40, 50}, {25, 30, 35, 40, 80} 0.38 (.04) 0.38
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projection values were used to generate stimulus–response
probability matrices as described above for the simulations
that did not include gain. The value of σ3 in these
simulations was set to 1.40, since that produced an average
percent correct = 71% for participant 1 in the baseline
stimulus set. Hence, the standard deviation along the
decision axis was adjusted so that the gain-control
simulations produced the same percentage correct for P1
in the baseline condition.

The parameter values found for these simulations are
shown in Table 3. Table 3 indicates that when the
simulations modeled a system with gain control, the fitting
procedure accurately captured the parameters of the model.
The degree to which q increased with the maximum intensity
in the stimulus set is also shown in Fig. 12, along with its
95% confidence limits. Thus, Fig. 12 shows that the fitting
procedure used here can accurately and clearly discriminate
between the presence and absence of gain control.
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