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The objective of the present study is to find out the quantitative relationship between progression of liver fibrosis and the levels
of certain serum markers using mathematic model. We provide the sparse logistic regression by using smoothly clipped absolute
deviation (SCAD) penalized function to diagnose the liver fibrosis in rats. Not only does it give a sparse solution with high accuracy,
it also provides the users with the precise probabilities of classification with the class information. In the simulative case and the
experiment case, the proposed method is comparable to the stepwise linear discriminant analysis (SLDA) and the sparse logistic
regression with least absolute shrinkage and selection operator (LASSO) penalty, by using receiver operating characteristic (ROC)
with bayesian bootstrap estimating area under the curve (AUC) diagnostic sensitivity for selected variable. Results show that the
new approach provides a good correlation between the serum marker levels and the liver fibrosis induced by thioacetamide (TAA)
in rats. Meanwhile, this approach might also be used in predicting the development of liver cirrhosis.

1. Introduction

Chronic hepatitis, characterized by hepatic fibrosis, is recog-
nized as a health problem with a worldwide prevalence, and
it may gradually progress toward cirrhosis and hepatocellular
carcinoma which may induce death. Successful and early
treatment of chronic hepatitis can prevent development of
cirrhosis and hepatocellular carcinoma. There are two major
symptoms of chronic hepatitis: necroinflammatory activity
and fibrosis. Liver fibrosis is the best sign for predicting the
development of liver cirrhosis [1]. Since there is no corre-
lation between aminotransferase activities and fibrosis, ami-
notransferase activities cannot be used for the diagnosis of
fibrosis. Considering that liver fibrosis is reversible in the
early stage, accurate and early diagnosis of liver fibrosis is
required for better prognosis of chronic hepatitis.

Liver biopsy has to date been the gold standard for the
grading of hepatic inflammation and the staging of hep-
atic fibrosis and has been used as the reference standard
method in evaluations of plasma markers of liver diseases
[2]. However, it is an expensive, invasive procedure with

a considerable risk of complications (particularly bleeding)
and a small chance (<1 : 1000) of death [3]. And liver biopsy
sample is only 1 : 50000th of the mass of the liver and
therefore causing the risk of false negative. Even with sample
of adequate sized biopsies, cirrhosis may still be missed in
15–30% of liver biopsies [4]. Due to the limitations of biopsy
including the small but significant mortality rates, sampling
error, inter- and intraobserver variation in pathology report-
ing, and provision of a static picture of liver architecture in
a dynamic disease process, it is still necessary to look for
alternative approaches. Moreover, to evaluate drug efficacy,
it is essential to establish appropriate animal models of
liver fibrosis. Since establishing an animal model is time-
consuming, usually lasting 8 to 12 weeks, histopathologic
examination may lead to the consumption of animals, and
the testing small proportion cannot reflect the condition of
whole population. All these would increase the cost and
decrease the efficiency and reliability of the research. In order
to build appropriate animal models for liver fibrosis, also
it is necessary to develop a reliable and accurate method to
diagnose liver fibrosis quickly.
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The search of a noninvasive method to assess liver fibrosis
has encouraged the development of various approaches.
Transient elastography for the noninvasive measurement of
liver stiffness was developed [5–7]. Currently, it is notable
that monitoring serum markers of liver fibrosis could offer
an attractive alternative to liver biopsy, as it allows dynamic
calibration of fibrosis efficaciously. Liver fibrosis is charac-
terized by an overall increase of the extracellular matrix,
mainly produced by hepatic stellate cells (HSCs) [8, 9],
which undergo a phenotypic switch induced within the
inflammation process by numerous cells and cytokines. A
number of potential serum markers of fibrosis and cirrhosis
have been used in the diagnosis of a variety of chronic liver
diseases.

Therefore, monitoring a variety of plasma markers, espe-
cially collagen-related biomarkers such as aminoterminal
peptide of procollagen III (PIIINP), is a novel approach for
liver fibrosis diagnosis. In general, there are many plasma
markers identified but some of them still have not been deter-
mined yet. So constructing a sparse classification for the pro-
gression of liver fibrosis based on detected plasma markers
has attracted much attention. A novel method is linear dis-
criminant analysis with stepwise variable selection. Guyon
et al. [10] proposed a recursive feature elimination technique
with support vector machine to analyze gene expression
data. Rocke and Nguyen [11] raised dimension reduction of
microarray-based classification. Li et al. [12] introduced two
bayesian approaches with technique of automatic relevance
determination for the same problem. Debashis and Arul [13]
suggested that linear discriminant function by optimal scor-
ing with LASSO was an alternative approach. Sparse Fisher’s
linear discriminant analysis, suggested by Qiao et al. [14],
was also an excellent method.

The aim of this study, therefore, is to develop classi-
fication rules based on the consideration of measures of
diagnostic accuracy. In particular, we are interested in finding
liver fibrosis that can discriminate between two populations.
Our solution was to combine the problems of variable
selection and classification. We suggested an approach for
classification using the smoothly clipped absolute deviation
penalty �SCAD) [15] approach with logistic regression
[16]. We compared it with the stepwise linear discriminant
analysis (SLDA) and sparse logistic regression (SLR) with
least absolute shrinkage and selection operator (LASSO-)pe-
nalized function [17, 18]. At last, we analyzed the sen-
sitivity of these methods using the receiver operating charac-
teristic (ROC). Considering the small sample size, we fit the
ROC curve and compute the area under the curve (AUC)
using Bayesian bootstrap [19, 20].

2. Materials and Method

2.1. Animals. Twenty-eight Sprague-Dawley (SD) rats were
provided from SLAC Laboratory Animal Co.ltd (Shanghai,
China, SCXK: 2007-0005). The rats were maintained under
specific-pathogen-free conditions, with a constant tempera-
ture ranging between 25 and 27◦C, and a constant humidity
ranging between 45 and 50% at animal laboratory of China

Pharmaceutical University. Animal care was in accordance
with the guidelines of the animal laboratory of China Phar-
maceutical University.

2.2. Induction Of Liver Fibrosis. The modeling method is in
accord with Imanishi et al. [21] and Kuriyama et al. [22].
The rats were randomly divided into 4 subgroups: (I) model
group (8 weeks, n = 8), (II) model group (12 weeks, n = 8),
(III) normal control group (8 weeks� n = 6), and (IV)
normal control group (12 weeks, n = 6). All rats were
observed at 8th week and 12th week after TAA treatment.
Rats in the model subgroup were injected intraperitoneally
(i.p) with TAA 3 consecutive days per week and lasted for
8 weeks at a dose of 6% TAA 200 mg/kg as an initial dose.
The doses after the first time were modified according to
weekly weight and AST changes in response to TAA during
the induction. Rats in normal control groups were treated
with saline. After the final administration in the 8th and 12th
weeks, blood samples were collected and serum was sepa-
rated by centrifugation at 4◦C and kept at −20◦C for further
analysis. Then all rats were sacrificed under anesthesia. The
livers were washed with cold saline, and a part of the right
hepatic lobular was removed and stored in liquid nitrogen for
content detection of hydroxyproline. The remaining part of
the right hepatic lobular was made into slices for pathological
diagnosis. Several serum markers and liver function indices
studied in clinical research were measured at the 8th and
12th weeks, respectively. There are many serum markers
reported as the liver function indices. After consideration, we
ultimately chose hyaluronan (HA), serum laminin (LN),
collagen Type I (Col I), IV collagen (IVC), procollagen III
(PC-III), aspartate aminotransferase (AST), albumin (Alb),
hydroxyproline (Hyp), total protein (TP), and total bilirubin
(T.Bil) [7, 23] in this study. The liver tissue slices were
observed and diagnosed by HE, Masson-trichrome staining,
and transmission electron microscope. Then the relationship
between the serum index and the occurrence of liver fibrosis
was analyzed by statistics model.

2.3. Statistics Model and Solution

2.3.1. Statistics Model. Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be
input-output pairs of a given data set� where xi in Rp is
variable levels of plasma markers and yi in {0, 1} is the type
of liver fibrosis occurs or not identified in liver biopsy. Here,
n is the number of liver biopsy and p is the number of plasma
markers. For binary logistic regression, we can write it as

πi(x) = pr
(
yi = 1 | xi

) =
exp
{
g
(
xTi β

)}

1 + exp
{
g
(
xTi β

)} , (1)

where g(xTi β) = xTi β, i = 1, 2, . . . ,n. Then, the log-
likelihood function of this binary logistic regression is

l
(
β
) =

∑[
yi logπi +

(
1− yi

)
log(1− πi)

]
. (2)
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Further, the SCAD-penalized maximum likelihood function
is

l
(
β
)

+ n
p∑

j=1

pλj
(∣∣
∣βj

∣
∣
∣
)

, (3)

where

p′λj (θ) = λ
{
I (θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I (θ > λ)

}
(4)

for some a > 2 and θ > 0.
In general, pλj may be different coefficients. Here, we

make λ = λj . In other words, the same penalty function is
applied to each component of β [24]. Generally, λ can be
selected by GCV. Another alternative penalized function is
the least absolute shrinkage and selection operator [17].
They suggested the penalized function could be selected with
pλj = λj|βj|. The algorithm can be carried with least angle
regression [25]. Making λ = λj , the penalized maximum
likelihood with LASSO is

n−1l
(
β
)

+ λ
p∑

j=1

∣
∣
∣βj

∣
∣
∣. (5)

Once the regression coefficient β is estimated, the classifier is
constructed as follows. Let c(i | j) be the cost of classifying
an observation to the i class when the true class is j. Then,
a new tissue sample with plasma markers x is classified into
class c(x), where c(x) becomes

c(x) = arg min
∑

c
(
i | j)pr

(
y = j | x). (6)

In practice, c(i | j) are equal which is most frequent. So
minimum c(x) is equal to arg max j pr(y = j|x).

2.3.2. Solution. In this study, we principally discuss the
SCAD penalized. It can be locally approximated by a quad-
ratic function as follows:

[
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∣
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∣
)]′ = p′λ
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In other words,
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Then, the penalized log-likelihood can be locally approxi-
mated by
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(
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)
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)T(
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where
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We then estimate β as follows:

β1 = β0 −
⎧
⎨

⎩∇
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(
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where

∇l
(
β0
) = ∂l

(
β0
)

∂β
= X′

(
Y −

∏)
,

∇2l
(
β0
) = ∂2l

(
β0
)

∂β∂βT
= X′VX,

(12)

Y = (y1, y2, . . . , yn)′,
∏ = (π1,π2, . . . ,πn), V = diag(πi · (1−

πi)), and X is an index matrix. Given the good initial value
β0, the penalized maximum likelihood can be as efficient as
the fully iterative procedure.

2.3.3. Simulation Studies. In this subsection, we numerically
compare the proposed approach of variable selection and
classification methods with SLDA and LASSO methods.

We simulate 1000 datasets when n = 20, 40, 60, 100
respectively, from the model Y ∼ Bernoulli{π(xTβ)}, where
π(u) = exp(u)/(1 + exp(u)) and β = (3, 1.5, 0, 0, 2, 0, 0, 0).
The previous six components of x come from a standard
normal distribution. The correlation between xi and xj is
ρ|i− j| with ρ = 0.5. The last two components of x are
independently and identically distributed as a Bernoulli
distribution with probability of success 0.5. All covariates
are standardized. This model was used in Tibshirani et al.
[17]. The classification standard is based on the probability
arg max pr(y = j|x).

Define

MedTrue = median
{

1− Υ|YPredict − YOracle|
n

}
,

MeanTrue = mean
{

1− Υ|YPredict − YOracle|
n

}
.

(13)

The true classification ratio is computed via 1000 Monte
Carlo simulations. The summary of simulation results is
depicted in Table 1.

Table 1 shows that the true classification ratio associates
with the sample size n. With the increase of the sample size n,
the true classification ratio tends to one. Another important
key point: three methods are all working well for large sample
size n.

3. Result

3.1. Histopathology of Liver Fibrosis. Typical liver fibrosis was
induced after 8 weeks of TAA treatment, with the hepatofi-
brosis pathological characteristics of fibroblast extending
around from central venous or portal area, forming the ob-
vious fiber separator without the formation of false lobules.
From the light microscope, it could be seen that pathological
slice of normal animals had clear lobule, there was no edema
or denatured fat in liver cells, and Sinus hepaticus had
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Table 1: True classification ratio simulations results.

n
SLDA SLR-LASSO SLR-SCAD

MedTrue MeanTrue MedTrue MeanTrue MedTrue MeanTrue

20 0.95 0.9335 0.9 0.8559 0.9 0.8974

40 0.95 0.9558 0.925 0.9285 0.925 0.9254

60 0.9667 0.9657 0.9667 0.9546 0.95 0.9488

100 0.98 0.9728 0.98 0.9729 0.98 0.9687

SLDA: stepwise linear discriminant analysis.
SLR-LASSO: sparse logistics regression-least absolute shrinkage and selection operator.
SLR-SCAD: sparse logistics regression-smoothly clipped absolute deviation penalty.

×100

(a)

×100

(b)

×100

(c)

×100

(d)

×100

(e)

×100

(f)

Figure 1: Progression of TAA-induced liver fibrosis in SD rats was assessed by HE and Masson-Trichrome staining at different time points
of treatment. (a–c) HE staining, (a) Nomal, (b) 8 w Model, and (c) 12 w Model, (d–f) Masson-trichrome staining, (d) Nomal, (e) 8 w Mode,
and (f) 12 w Mode.

Table 2: The level of AST in liver tissue during induction (x ± s).

Group Week AST (IU/L)

Normal
8 w 37.33± 6.94

12 w 36.27± 6.21

Model
8 w 67.37± 8.83∗∗

12 w 40.8± 7.26
∗∗

P < .05, compared to the normal group.

no expansion and congestion (Figures 1(a) and 1(d)). The
pathological slice of model animals had obvious fibroplasias
extending from the central venous or portal area to sur-
rounding area, which formed the clear fibrous septa. The
liver cells had mild steatosis with lipid droplet and vacuoles

accompanied by mild bile duct hyperplasia (Figures 1(b),
1(c), 1(e), and 1(f)).

3.2. Serum Markers Analysis. According to Table 3, there was
a major difference between the normal group and control
group in several serum markers and liver function indices
such as HA�LN, IVC, and I Collogen. During the 1st–
4th weeks, AST activity reached the peak and there is no
significant difference (P > .05) in the 5th to 8th weeks
(Table 2). In Figure 2, it is shown that after peak value AST
activity gradually decreased and returned to normal during
the 12th week. As a matter of fact the level of AST in human
goes up obviously during acute hepatitis, and it correlate
with the severity of the disease. Then the activity of AST
decreases during the course of liver fibrosis [26]. AST activity
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Table 3: The content of determined parameters in the serum during TAA induction (x ± s).

Group
(A/T) ( AST) (Hyp) (IVC) ( LN ) (PC-III)

(%) (IU/L) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

Normal 46.53± 12.13 36.80± 6.94 137.14± 12.98 18.14± 3.08 10.28± 7.49 7.44± 4.38

Model 40.45± 11.40 54.09± 13.26 193.96± 14.29∗∗ 21.60± 4.07∗∗ 17.78± 6.68∗∗ 10.88± 3.25∗∗

Group
(Col I) (HA) (T.Bil) (A/G) (Alb) (TP)

(ng/mL) (ng/mL) (ng/mL) (%) (mg/mL) (mg/mL)

Normal 31.48± 5.27 5.26± 5.49 5.55± 1.19 83.99± 14.45 37.27± 11.56 79.62± 8.64

Model 48.10± 14.68∗∗ 16.86± 8.6∗∗ 4.91± 1.75 73.52± 11.92 32.09± 9.62 79.28± 7.69
∗∗

P < .05, compared to the normal group.

Table 4: List of covariates for plasma markers.

Covariates Plasma markers

Y
Diagnosis the degree liver fibrosis by using the
pathological diagnosis

x1 Albumin ratio of total protein (A/T)

x2 Aspartate aminotransferase (AST)

x3 Hydroxyproline (Hyp)

x4 IV collagen (IVC)

x5 Serum laminin (LN )

x6 III collagen (PC-III)

x7 I collagen (Col I)

x8 Hyaluronan (HA)

x9 Total Bilirubin (T.Bil)

x10 Albumin ratio of the globulin (A/G)

x11 Albumin (Alb)

x12 Total protein (TP)

Table 5: List of variable selection results.

SLDA SLR-LASSO SLR-SCAD

Hydroxyproline Hydroxyproline Hydroxyproline

I collagen LN LN

Hyaluronan IV —

— Hyaluronan —

Table 6: List of classification true rates.

SLDA SLR-LASSO SLR-SCAD

Classification true rates (%) 96.15 92.31 96.15

of control group was significantly higher than the normal
group and decreased slightly in the 12th week without TAA
for four weeks which agrees with the literature [27]. At last
typical liver fibrosis was induced after 8 weeks of TAA.

3.3. Application. We applied the proposed sparse logistic
regression with SCAD, LASSO, and SLDA to the classification
of liver fibrosis. The dataset consisted of 26 observations. The
binary response variable Y is 1 for those rats who have liver
fibrosis and 0 otherwise. All the twelve covariates are consid-
ered. All covariates’ meanings were listed in Table 4.
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The change of AST

Figure 2: The change of AST during induction.

Carrying out the procedure, including the SLDA, SLR-
SCAD, SLR-LASSO, then the outcome about the selected
variable and the classification true rates were obtained, re-
spectively, according to Tables 5 and 6.

3.4. Test Significance. The receiver operating characteristic
(ROC) curve is an excellent method to test the significance of
selected variables. The ROC curve is a plot of the true positive
fraction (TPF) as a function the false positive fraction (FPF),
or sensitivity versus one minus specificity, and is obtained
by varying the threshold criterion distinguishing between
a positive and negative diagnosis. For example, the diagnostic
variables X ∼ F are for the population without liver fibrosis
and Y ∼ G are for those with liver fibrosis, where F and
G are the distribution functions. Some features such as the
invariance property and interpretation of the area under
the curve (AUC) as pr(Y > X) make the ROC analysis
extremely popular in diagnostics research. Generally, the
selected variables are sensitive for the classification if the
AUC > 0.7. However, estimation of AUC for the ROC curve
is very difficult, especially for the small sample size. Here,
we use the Bayesian bootstrap (BB) estimation of AUC,
proposed by Kuriyama et al. [22], to test the variables in
SLDA, LASSO, and SCAD. The AUC calculation results are
shown in Table 7, displaying the sensitivity for classification
variable Y . Figure 3 described these covariates’ ROC curves.
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Figure 3: BB estimates of ROC curves for diagnostic covariates for markers.
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Table 7: ROC curve analysis.

x1 x2 x3 x4 x5 x6

AUC 0.3134 0.5869 0.7989 0.1685 0.7632 0.3450

x7 x8 x9 x10 x11 x12

AUC 0.6510 0.8173 0.3729 0.3169 0.3733 0.4569

The ROC of x3, x5, and x8 are more than 0.7, and they
represent the hydroxyproline, LN, and hyaluronan, respec-
tively.

As shown in Table 7 and Figure 3, we come to a con-
clusion that some covariates may be very important for
diagnosis of the occurrence of liver fibrosis, such as hydrox-
yproline, LN, hyaluronan, as the AUCs for these covariates
are more than 0.7.

Fortunately, these covariates are all selected by the three
statistical models. Though SLR-SCAD chose only two covari-
ates, it gets higher diagnostic accuracy, equaling to SLDA,
better than SLR-LASSO, as shown in Tables 5 and 6. It
elucidates that by using SLR-SCAD we could obtain high
diagnostic accuracy with fewer serum indices so as to save
the experiment cost. Meanwhile, the SLDA and SLAR-LASSO
also display well. But their high diagnosis accuracy needs
more variables to be selected.

4. Discussion and Conclusion

It has been thought that the research on liver fibrosis is
entering a new era of the whole wound and heal reaction
[28]. The ideal animal model, which is a reliable and re-
producible on hepatic fibrosis, should have the basic patho-
logical characteristics with the same phase change on pathol-
ogy as human liver fibrosis. However, there are some defects
on detection methods in the process of establishing animal
model. Considering the limitation of traditional test method
in modeling, we propose an alternative approach to construct
the quantification between fibrotic condition and serum
indices. Since accurate diagnosis of liver fibrosis remains
a difficult and crucial problem in both the animal models
and patients, an ongoing challenge is to identify new prog-
nostic markers that are directly related to liver fibrosis and
that can more accurately predict the likelihood of gaining
liver fibrosis. Here we introduce a new approach to the
jointing problems of simultaneous classification and variable
selection utilizing the sparse logistics regression with SCAD-
penalized function. The proposed method is applied in our
study to analysis the data of plasma makers for diagnosis of
the liver fibrosis in rat model and to determine the occur-
rence of cirrhosis.

In this study, the pathological section results were used
to determine whether the reliable animal model with liver
fibrosis induced by the dose individualization of TAA was
established successfully. Despite, there is, difference between
liver biopsy of human in clinic and pathological section of
dead animal, they are both expensive, invasive and have
a chance of death, especially the inevitable death of animals.
It is because that the pathological slice from the whole rat’s

liver could supply the highest accuracy that the results can
be as the standard to verify the outcome of statistical model.
There is no doubt that sacrificing animal life attributes to
significant mortality rates and disobeys the morality and
ethics. Our proposed method by using serum indices may
indeed greatly decrease the consumption of a lot of animals
when used in hepatic drug screening.

Monitoring a variety of plasma markers, especially the
levels of collagen-related markers, is becoming a novel ap-
proach of liver fibrosis diagnosis with simple procedure and
high sensitivity and accuracy. According to Table 1, the
novel SLR-SCAD method performs as well as other well-
known methods such as SLDA and SLR-LASSO in statistical
classification and variable selection. They all perform well for
the fixed sample size. The SLR-SCAD achieved higher classi-
fication ratio by the two selected variables, hydroxyproline
and LN, which are reasonable by the verification of ROC
curve. The two variables also have significant sense in clinic.
If SLDA and SLR-LASSO want to obtain higher classification,
they need to test more serum indices. In addition, it is
mentioned that the SLDA method has its own drawback
especially when the variables have collinearity [26, 29].
Compared with the SLDA and SLR-LASSO methods, SLR-
SCAD is quite befitting for penalized regressions.

It will be a very useful approach to determine the occur-
rence of liver fibrosis in animals based on statistic models
with fairly high diagnosis accuracy and without loss of
animals. The occurrence of liver fibrosis can be effectively
estimated in rats by using our proposed SLR-SCAD method
with the right serum indices. In summary, we propose a new
method by combining the analysis of serum index of fibrosis
and statistic model which represent a reliable diagnostic and
prognostic approach of liver disease. It could be beneficial
to extend this study to other fields where classification and
many variables exist.
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