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Abstract: NSCLC (non-small cell lung cancer) comprises about 80% of all lung cancer cases worldwide. Surgery is most effective 
treatment for patients with early-stage disease. However, 30%–55% of these patients develop recurrence within 5 years. Therefore, 
markers that can be used to accurately classify early-stage NSCLC patients into different prognostic groups may be helpful in selecting 
patients who should receive specific therapies.
A previously published dataset was used to evaluate gene expression profiles of different NSCLC subtypes. A moderated two-sample 
t-test was used to identify differentially expressed genes between all tumor samples and cancer-free control tissue, between SCC sam-
ples and AC/BC samples and between stage I tumor samples and all other tumor samples. Gene expression microarray measurements 
were validated using qRT-PCR.
Bayesian regression analysis and Kaplan-Meier survival analysis were performed to determine metagenes associated with survival.
We identified 599 genes which were down-regulated and 402 genes which were up-regulated in NSCLC compared to the normal lung 
tissue and 112 genes which were up-regulated and 101 genes which were down-regulated in AC/BC compared to the SCC. Further, for 
stage Ib patients the metagenes potentially associated with survival were identified.
Genes that expressed differently between normal lung tissue and cancer showed enrichment in gene ontology terms which were 
associated with mitosis and proliferation. Bayesian regression and Kaplan-Meier analysis showed that gene-expression patterns and 
metagene profiles can be applied to predict the probability of different survival outcomes in NSCLC patients.
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Introduction
Lung cancer  is one of the most common cancers 
worldwide and the leading contributor to cancer 
deaths, having one of the lowest survival rates within 
5 years after diagnosis.1,2 Lung carcinomas are usually 
classified as small-cell lung carcinomas (SCLC) and 
non-small cell lung carcinomas (NSCLC). NSCLC 
accounts for 80% of all lung cancer cases. The most 
common histological types of NSCLC are squamous 
cell carcinoma (SCC), adenocarcinoma (AC) and its 
subtype bronchioloalveolar carcinoma (BAC).

Tumor stage according to TNM classification 
remains the strongest predictor of survival in lung 
cancer until now. The TNM staging system is based on 
tumor size, involvement of lymph nodes (nodal status) 
and presence or absence of metastases.3,4 However, 
it is not based upon intrinsic biological differences 
between tumor cells and does not provide a suffi-
ciently accurate prognosis.5 25% to 30% of patients are 
diagnosed with early-stage (ie, stage I and II) disease 
and are treated primarily by surgical resection. How-
ever, 30%–55% of these patients develop recurrence 
within 5 years, indicating the existence of biological 
variation and heterogeneity among patients’ tumors.6 
Therefore, markers that can be used to accurately clas-
sify early-stage NSCLC patients into different prog-
nostic groups may be helpful in selecting patients who 
should receive specific therapies.

Recently, gene expression profiling has been used 
to identify patients with high risk of relapse.7–10

We investigated gene expression signature of 
NSCLC by microarray analysis and report a gene 
expression pattern associated with subtype. We also 
defined for stage Ib patients the survival rates for a 
1000 day cut-off together with metagenes potentially 
associated with a survival.

Materials and Methods
Patients and tumor samples
The Ethical Committee of Tartu University approved 
the sample collection based on signed informed con-
sent with the patients. Normal samples were collected 
from tissues adjacent to the patients’ tumors, and 
were confirmed to be non-cancerous by pathologists. 
The histological classification of the carcinomas was 
conducted according to the standards of the World 
Health Organization (WHO) classification method 
for carcinoma.11–14 Eighty five patients underwent 

surgical resection and the tumors were pathologically 
confirmed as NSCLC pulmonary carcinoma in Tartu 
University Hospital between November 2002 and 
December 2006. Of the 85 tumors, 62 were SCCs and 
23 were BCs and ACs. According to the guidelines 
of the American Joint Committee on Cancer15 the 
patients were staged after the surgery (Supplemental 
Table 1).

Statistical analysis of gene  
expression data
Quantile-normalized and log-transformed expression 
data was obtained from our previous study,16 which 
used Illumina Sentrix BeadChip (HumanWG-6_V2) 
to profile gene expression. Aforementioned array 
provides genome-wide transcriptional coverage of 
well-characterized genes, gene candidates and splice 
variants, with a significant portion targeting well-
established sequences of 18,072  genes. Our initial 
dataset consisted of 85 lung tumor samples and 21 
adjacent cancer-free lung samples (Supplemental 
Table 1).

Patients who had received preoperative chemother-
apy were excluded from differential gene expression 
analyses leaving 78 tumor samples and 20 adjacent 
control samples.

Moderated two-sample t-test from R package 
LIMMA17 was used to find differentially expressed 
genes between sample groups, using FDR-corrected 
P-value cut-off 0.05 and fold-change 2. The approach 
was used to analyze differential gene expression 
between all tumor samples (n = 78) and adjacent con-
trols (n  =  20), between SCC samples (n  =  58) and 
AC/BC samples (n = 20), as well as between stage I 
tumor samples (n = 56) and all the other tumor sam-
ples (n = 22).

The differentially expressed genes and all samples 
were clustered hierarchically using Pearson corre-
lation distance with average linkage and visualized 
using a heatmap. Pathway enrichment analyses were 
carried out using GeneCodis 2.0.18,19

Bayesian analysis to assess risk genes 
in stage Ib patients
We restricted our analysis to stage Ib patients only, since 
preliminary analysis suggested that gene-expression 
patterns associated with survival differ in differ-
ent stages and stage Ib group was the largest group 

http://www.la-press.com


Metagenes associated with survival in NSCLC

Cancer Informatics 2011:10	 177

(48 patients altogether, but clinical data available for 
only 46 of them). From the survival times we identi-
fied two distinct patient groups, a group with short 
survival (,1000 days, n = 20) and a group with long 
survival (.1000 days, n = 26) (Fig. 2A). To reduce the 
number of genes, 500 gene-clusters or “metagenes”, 
were formed from the 5000 genes with highest vari-
ance among the 46 patients. Clustering of the genes 
is performed using complete-linkage hierarchical 
clustering,20,21 where the distance between two genes 
is defined as the correlation coefficient between gene-
expression values. The constructed metagenes are 
summarized by the mean of the genes in the cluster. 
Thus genes demonstrating similar variation between 
the subjects are summarized as a single “metagene”.

The association between the metagenes and the 
two groups was analyzed with a sparse Bayesian 
probit model for binary response variables.22–24 
According to the model, the probability of being in 
the short survival group is given by Φ B xj i jj , ,

=∑( )1

500
 

where Φ ⋅( ) is the cumulative distribution function of 
a standard normal distribution, Bj is the coefficient of 
the linear effect of metagene j, and xi,j is the value of 
metagene j for patient i for i = 1, …, 46. The model 
parameters (Bj) were estimated using a Markov chain 
Monte-Carlo (MCMC) approach together with spar-
sity inducing priors. For the details of the choice 
of prior distributions and sampling, see Hoti and 
Sillanpää 2006.23 For each of the 500 metagenes, we 
calculated the posterior probability that the meta-
gene is included in the model, where being included 
in the model is defined as having a normalized effect 
greater than 0.1. The normalized effect of metagene 
j is defined as Bj divided by the standard deviation of 
the values of metagene j. Thus, for metagenes with 
a higher variance, a smaller effect is allowed. Using 
the same inclusion criteria, we calculated the pos-
terior distribution of the number of genes included 
in the model. To take into account the possibil-
ity that the chain converges to a local solution, we 
combined 20 independent MCMC runs into a single 
analysis. Each model was run for 30,000 rounds, 
and the first 20,000 rounds were removed as burn-in 
rounds. From the remaining 10,000 rounds, every 
10th round was saved and used in the analysis. The 
ability of the model to predict the survival outcome 
of new patients was evaluated by leave-one-out 

cross-validation, where one patient at a time is used 
to validate the model (test person), while the remain-
ing 45 patients are used to build up the model. For 
each of the 46 models, the gene selection and meta-
gene construction was performed based on the 45 
patients only, and the test person was assigned to the 
survival group with the higher posterior probability 
(corresponds to cut off value 0.5).

The performance of the method was further evalu-
ated by the ROC curve, constructed by plotting the 
false positive rate (sensitivity) against the true posi-
tive rate (1-specificity) for different cut off values in 
the range (0.1). In addition to drawing the empirical 
curve, we report the AUC (area under the ROC curve) 
value together with the P-value corresponding to the 
event AUC  .  0.5. Kaplan-Meier survival curves 
were drawn to visually compare the survival rates in 
the model-predicted high- and low-risk groups. The 
significance of the difference was evaluated with the 
log-rank test.

Quantitative RT-PCR
To validate the gene expression levels detected with 
microarray analysis, qRT-PCR was performed for 
the four up-regulated genes: TTK (Dual specificity 
protein kinase), CCNB2 (Cyclin B2), BUB1B (bud-
ding uninhibited by benzimidazoles 1 homolog beta 
(yeast)), PTTG2 (pituitary tumor-transforming 2), 
and four down-regulated genes: CLIC5 (Chlo-
ride intracellular channel protein 5), GPR116 
(G-protein coupled receptor 116), AGER (RAGE) 
(advanced glycosylation end product-specific 
receptor), TNNC1 (troponin C type 1). We chose 
ESD (esterase D/formylglutathione hydrolase) as 
the endogenous reference for qRT-PCR because it 
has been previously identified as invariant in clini-
cal lung cancer specimens.25,26 The transcripts were 
amplified using Maxima SYBR Green /ROX qPCR 
Master mix (Fermentas) and ABI Prism 7900HT 
(Applied Biosystems). Eight sample pairs (tumor 
sample with corresponding normal lung) that were 
present in array and three sample pairs which were 
not (independent validation set), were used in the 
qRT-PCR experiment. Relative gene expression lev-
els were calculated using the relative quantification 
method (Applied Biosystems). For detailed infor-
mation see supplemental method and supplemental 
Table 2.
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Results and Discussion
Identification of two gene expression 
patterns and correlation with NSCLC 
subtypes
We identified 599 genes which were down-regulated 
and 402 genes which were up-regulated in NSCLC 
compared to the normal lung tissue (Supplemental 
Table  3 and supplemental Fig.  1). According to 
Genecodis 2.0 analyses the main up-regulated pro-
cesses in cancer were not only related to mitosis, 
cell division, DNA replication, blood vessel devel-
opment, keratinozyte differentiation and epidermis 
development (Supplemental Table  4). The number 
of various down-regulated processes is much larger 
including immune response, signal transduction, 
cell to cell adhesion, cell surface reception linked 
signaling pathway, cell differentiation and oth-
ers (Supplemental Table  5). To find differentially 
expressed genes between lung cancer subtypes, we 
used only tumor samples of different subtypes as 
sample groups. Because of the small sample size 
and similar histology27 of AC and BC samples we 
used these in analyses as one group. We identified 
112 genes which were up-regulated and 101 genes 
which were down-regulated in AC/BC compared to 
the SCC (Supplemental Fig. 2). Some of the genes 
showing largest fold changes in our dataset are 
belonging to keratin gene family, which overexpres-
sion is shown to be SCC specific.28

We also carried out analyses to identify genes 
which may distinguish NSCLC stages. Because most 
of our sample group consisted of early stage (Ia and 
Ib) tumor samples and there were limited number of 
later stage samples, we compared only I stage tumor 
samples with all the others. We did not find any genes 
which were significantly overexpressed in one of 
the sample groups after multiple testing correction. 
This may suggest that although TNM staging system 
reflects the clinical status of tumor, it may not be the 
best tool to assess the underlying biological proper-
ties of cancer caused by aberrant gene expression.

The expression of the four up-regulated and four 
down-regulated genes (see supplemental data Table 2) 
were confirmed using eight pairs of normal and tumor 
tissue samples from microarray analysis sample set 
and further validated using three sample pairs that were 
not analyzed using microarray previously (Fig. 1A). 

The results were quantified using 2-∆∆Ct method and 
ESD as an endogenous reference. Significant corre-
lation was observed between log2–transformed array 
signal intensities and qRT-PCR Ct values, showing 
the consistency between qRT-PCR and microarray 
data (Fig. 1B).

Among the up-regulated genes we validated, 
CCNB2 and TTK are involved in M phase of the cell 
cycle,29–31 which indicate cell proliferation is involved 
in carcinogenesis. AGER (RAGE), another gene we 
validated, showed a statistically significant down-
regulation in the gene expression values between 
NSCLC and normal lung tissues, which is consis-
tent with the earlier findings that down-regulation of 
AGER (RAGE) supports NSCLC.32

Identifying genes associated  
with survival in stage Ib patients
To identify prognostic markers for high-risk patients 
with early-stage disease, the Bayesian model was first 
applied to both Ia and Ib patients (results not shown). 
However, the model-based prediction into low and 
high survival risk groups was clearly less accurate 
for Ia patients than for Ib patients. This suggests that 
gene-expression profiles associated with survival are 
different between stages Ia and Ib. A possible expla-
nation for why the model worked for stage Ib but 
not for stage Ia patients could be that the number of 
patients in stage Ib (n = 46) was larger than that in 
stage Ia (n = 14).

Since the largest group of samples in our data-
set were from patients with tumor stage Ib, we next 
focused to this subset of patients. A sparse Bayesian 
regression model was constructed using all 46 stage 
Ib patients. The number of influential metagenes sup-
ported by the model was 4 (mode) with a 95% credible 
interval of 1–10. The top two metagenes (MAGEA9B 
(melanoma antigen family A, 9B), MAGEA10 (mela-
noma antigen family A, 10), and NLRP2 (NLR family, 
pyrin domain containing 2)) and (CYP3A5 (cyto-
chrome P450, family 3, subfamily A, polypeptide 5), 
AKR1B1 (aldo-keto reductase family 1, member B1), 
FAM46B (family with sequence similarity 46, mem-
ber B)) (Fig. 2A) were included into the model with 
11% and 10% posterior probabilities, respectively. 
For the remaining metagenes, the posterior probabili-
ties were less than 5%. According to our model, genes 
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within these metagenes are associated with a survival 
prognosis of stage Ib patients, and are therefore poten-
tial targets for further research. In the SCC group, 
high gene expression values of the first top meta-
gene are associated with long survival (.1000 days), 
while SCC group with low values are associated with 
short survival (,1000 days) (Fig. 2B).

Metagenes MAGEA9B and MAGEA10 have 
been involved in congenital dyskeratosis,33 and 
NLRP2 may be involved in another type of familial 
imprinting disorder.34 CYP3A5, located in the second 
top metagene, contains one of the most commonly 
detected polymorphisms that influences the efficacy 
of vinorelbine-based therapies to treat NSCLC.35 
However, the exact role of these metagenes in tum-
origenesis requires further studies.

Identifying stage specific survival-associated genes  
would require fitting separate models or adopting a 
model that allows state-specific gene-effects. For 
example, the binary classification-tree approach36 
allows one to combine very different gene-expression 
profiles (leaves of the tree) into the same class. We 
used the cut-off value of 1000 days, since at that point 
there exists a clear gap (757 days to 1225 days) in the 
survival times of Ib patients. As shown in Fig. 2A, 
there are 3 patients who died after the cut-off that 
may have a negative effect on the quality of the data, 
ie, if the censored times may turn out to be much 
longer. In Potti et al 2006, the analysis was based on 
a cohort consisting of NSCLC patients with a recur-
rence within 2.5 years and patients with no recurrence 
within 5 years. Also, their analysis differs from ours 
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Figure 1. A) Validation of microarray data with qRT-PCR of four up-regulated and down-regulated genes. , average log fold-change for paired lung 
cancer samples on microarray (n = 21), , qRT-PCR average log fold-change for the lung cancer sample pairs that were presented on microarray (n = 8), 

, qRT-PCR average log fold-change for the lung cancer sample pairs that were not presented on the microarray (n = 3). Error bars indicate the standard 
error of the mean (SEM). B) Correlation between array log2(signaltumor)–log2(signalnormal) and qRT-PCR ∆∆Ct for validated genes using same sample 
pairs as previous graph (n = 8). Pearson correlation coefficients (R), correlation test p-values, and best-fitting (least squares) lines are shown.
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in the sense that their model considers both clinical 
data and gene data.

Predicting patient survival for stage Ib 
patients
The ability of the Bayesian model to correctly classify 
stage Ib patients into groups of short and long sur-
vival based on gene-expression profiles was evaluated 
using leave-one-out cross-validation and the ROC 
curve. The use of leave-one-out cross-validation pro-
vides an estimate of the ability of the model to predict 
survival of new patients (Fig. 2A). The cross-validation 

classification error was 33% (15 out of 46 were 
misclassified) for all patients, 29% (5/17) for the 
short survival group (,1000 days), and 34% (10/29) 
for the long survival group (.1000 days).

Kaplan-Meier analysis of the model-predicted 
risk groups for Ib patients was performed. The dif-
ference between the survival rates in the high and 
low risk groups was significant (P =  0.0007, using 
the log-rank test) (Fig. 4). Further, according to the 
ROC analysis the overall performance of the clas-
sification method is positive AUC = 0.728 (P-value 
0.001) (Fig. 3).
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observed survival time (including censored times). AC and BC patients are denoted by BA and SCC patients by S. Patients above the 0.5 posterior prob-
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classified into the long survival group, FTP = 0 and TPR = 0. In the other extreme, ie, cut off value 1 all patients are classified into the short survival group, 
FTP = 1 and FPR = 1. The area under the curve (AUC = 0.728, P-value 0.001) is an overall measure of the quality of the classification method. The dashed 
line (AUC = 0.5) is the expected ROC curve for a totally random classifier.
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Conclusion
In this paper we applied two statistical approaches, 
one designed to identify alternating gene-expression 
patterns associated with tumor subtypes, and another 
designed to find genes associated with the risk for low 
survival in NSCLC patients. The approaches comple-
ment each other as the first approach provides infor-
mation on gene-expression variation between different 
tumor subtypes, but does not address the important 
issue of different survival outcomes within patients 
classified into a single tumor stage. The second 
approach identifies genes associated with the risk for 
low survival in Ib stage patients which was the largest 
group of the patients. Our results definitely provide 
a possible strong reference for diagnosis/prognosis 
as the genes most up-regulated in pattern I and the 
genes most down regulated in pattern II may distin-
guish carcinogenesis progression for gene-expression 
pattern that corresponds to subtypes.
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