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Huntington’s disease (HD) is caused by a CAG repeat expansion in exon 1
of the HD gene resulting in a long polyglutamine tract in the N-terminus of
the protein huntingtin. Patients carrying the mutation display chorea in early
stages followed by akinesia and sometimes dystonia in late stages. Other ma-
jor symptoms include depression, anxiety, irritability or aggressive behavior,
and apathy. Although many neuronal systems are affected, dysfunction and
subsequent neurodegeneration in the basal ganglia and cortex are the most
apparent pathologies. In HD, the primary hypothesis has been that there is an
initial overactivity of glutamate neurotransmission that produces excitotoxicity
followed by a series of complex changes that are different in the striatum and
in the cortex. This review will focus on evidence for alterations in dopamine
(DA)–glutamate interactions in HD, concentrating on the striatum and cortex.
The most recent evidence points to decreases in DA and glutamate neuro-
transmission as the HD phenotype develops. However, there is some evidence
for increased DA and glutamate functions that could be responsible for some
of the early HD phenotype. Significant evidence indicates that glutamate and
dopamine neurotransmission is affected in HD, compromising the fine balance
in which DA modulates glutamate-induced excitation in the basal ganglia and
cortex. Restoring the balance between glutamate and dopamine could be help-
ful to treat HD symptoms.

Introduction

Huntington’s disease (HD) is a neurodegenerative disor-
der caused by the mutation of a gene inducing expan-
sion of the polyglutamine tract on the huntingtin (htt)
protein [1]. Patients carrying the mutation display motor
dysfunction, manifested as chorea in early stages, then
as akinesia and sometimes dystonia in later stages. Other
symptoms include depression, anxiety, irritability or ag-
gressive behavior and apathy that typically precede the
onset of motor abnormalities by many years and can be
more devastating than movement disorders [2]. Brain
MRIs indicate that abnormalities occur in the absence of
overt motor signs in both cortical and subcortical regions
and especially in the basal ganglia [3].

Although early studies stressed neuronal loss and de-
generation, it remains unclear whether cell loss is “nec-

essary” or if cell dysfunction alone or in combination
with degeneration can lead to many of the symptoms
in HD. We have proposed that a progressive disconnec-
tion between cortical and subcortical structures occurs
as the disease becomes more severe [4]. This disconnec-
tion probably occurs because of abnormal neurotransmis-
sion due to imbalances among excitatory and inhibitory
neurotransmitters like glutamate and gamma-amino bu-
tyric acid (GABA), in both cortex and subcortical struc-
tures. This disconnection is especially apparent between
the prefrontal cortex (PFC) and the striatum, interrupt-
ing the flow of information arising from the cerebral cor-
tex to the basal ganglia. We also proposed that many of
the symptoms of HD are associated with alterations in
dopamine (DA) function and DA modulation of excita-
tion and inhibition in cortex and basal ganglia nuclei.
In this review, we will summarize findings concerning
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alterations in cortical and striatal glutamate and DA neu-
rotransmission in HD, and in animal models of HD. We
will show how these neurotransmitter systems interact
and how their dysfunctions contribute to the progression
of the disorder.

Animal Models of HD

Excitotoxic Lesions of the Striatum

Intrastriatal Injection of Glutamate Analogs

Testing the hypothesis that lesions of the striatum were
responsible for HD, the first excitotoxic models examined
the effects of intrastriatal injection of kainic acid in rats.
These injections caused neurochemical, histological, and
behavioral changes similar to those present in HD pa-
tients [5]. Lesions of the striatum can be induced by us-
ing other glutamate analogs like ibotenic acid, quisqualic
acid, N-methyl-D-aspartate (NMDA), and quinolinic acid
[6,7]. Use of quinolinic acid became a standard early ex-
citotoxic HD model because this molecule was a powerful
agonist of NMDA receptors [6] and led to the hypothesis
that NMDA receptor function was abnormal in HD.

Alteration of Mitochondrial Function

The HD mutation alters mitochondrial function which in
turn activates apoptotic pathways. The first mitochon-
drial HD models studied chronic blockade of succinate
oxidation by systemic administration of the mitochon-
drial toxin 3-nitro-propionic acid (3NP). This model also
replicated most of the clinical and pathophysiological
hallmarks of HD, including spontaneous choreiform and
dystonic movements, frontal-type cognitive deficits, and
progressive striatal neuronal degeneration [8].

Genetic Models

Homozygotic knock-out (KO) of the mouse HD gene HDh

is embryonically lethal in mice and mice heterozygous for
HDh inactivation do not reproduce HD symptoms [9,10]
suggesting that HD is not caused by a simple loss of
function. Therefore, transgenic mice with glutamine ex-
pansion in the coding region of the HD gene were cre-
ated. Other genetic models include knock-in and condi-
tional models. Many reviews of the available HD mouse
models have been published [11–13]. We therefore will
provide only a short description of the mouse models ref-
erenced in this review. All transgenic mice with polyglu-
tamine expansion in the HD gene present symptoms and
neuropathology resembling the human condition, that
change with the progression of the disease. However, de-

pending on the length of repeats and/or on the length of
htt, the progression of the neurological phenotype differs.
For each model it is therefore important to determine be-
havioral and pathological changes corresponding to the
early or late stages of the disease.

Transgenic Mouse Models

Studies in transgenic models have indicated that trun-
cated portions of htt are more toxic than the full-length
protein. The R6 transgenic lines contain exon 1 of the
human HD gene that generates a short N-terminal frag-
ment of htt [14]. R6/2 mice manifest a rapidly progress-
ing form of HD while R6/1 mice display a more protracted
time course. Onset ages of overt behavioral changes are
approximately 4–5 weeks in R6/2 and 4–5 months in
R6/1 mice. Reductions in brain weight are also present
at 4–5 weeks, whereas decreased neostriatal volume and
striatal neuron area, with a reduction in striatal and cor-
tical neuron number, appear later, at 13 weeks in R6/2
mice [15,16]. The mice display progressive weight loss
and R6/2 mice typically die between 12 and 16 weeks of
age while R6/1 mice survive for a longer time. The move-
ment disorder includes irregular gait, stereotypic groom-
ing movements, tremor and both hindlimb and forelimb
clasping. N171-82Q is another mouse model of HD with a
N-terminal truncation of htt that also shows rapid and ag-
gressive progression of the disease [17]. It has been sug-
gested that R6/2 mice recapitulate the juvenile form of
the disease, questioning its validity as a model of adult
HD. However, there are numerous commonalities be-
tween juvenile and adult-onset HD that make the R6/2
a very reasonable model for both types.

HD46 mice and HD100 mice express an extended N-
terminal one-third of htt with either 46 or 100 CAG re-
peats [18]. Both lines show neurological impairment and
motor deficits starting between 3 and 10 months with
severity increasing with age. In these mice striatal inclu-
sions preceded the onset of the behavioral phenotype,
whereas cortical changes, like the accumulation of htt in
the nucleus and cytoplasm and the appearance of dys-
morphic dendrites, predicted the onset and severity of the
behavioral deficits.

Full-length models have used yeast (YAC) or bacterial
artificial chromosomes (BAC). YAC mice with 72 or 128
CAG repeats show a biphasic motor phenotype with hy-
peractivity at 3 months followed by hypoactivity in the
open field at 12 months [19]. Modest striatal atrophy oc-
curs at 9 months with both striatal and cortical atrophy
at 12 months and loss of striatal neurons along with a de-
crease in striatal neuron area is apparent at 12 months.
This suggests that symptoms appear well before the
loss of striatal or cortical neurons. The BACHD model
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expresses full-length human mutant htt with 97 CAG re-
peats. BACHD mice exhibit progressive motor deficits and
neuronal synaptic dysfunction at 6 months, followed by
late-onset selective neuropathology at 12 months, which
includes significant cortical and striatal atrophy and stri-
atal dark neuron degeneration [20].

Knock-in Mouse Models

CAG knock-in lines express mutant htt with 50–150 glu-
tamines under the endogenous mouse promoter in a
manner comparable to the expression of mutant htt in
HD patients [21]. Early abnormalities are mild, resem-
bling the presymptomatic stages of the disease in which
subtle motor anomalies occur. Knock-in mice with 94
and 140 CAG repeats display biphasic changes in mo-
tor behavior, characterized by increased motor activity at
2 months of age, followed by hypoactivity at 4 months
[22,23]. A progressive gliosis and decreases in DARPP32
staining start at 12 months while a loss of striatal neurons
is present at 2 years.

Glutamate and DA Pathways

Cortex

Prefrontal and motor cortices have important roles in
motor and cognitive functions. Therefore, impairment of
sensorimotor integration in motor areas would interfere
with motor programs and contribute to the movement
disorders in HD. The PFC receives major glutamatergic
inputs from thalamic nuclei and a DA input from the
ventral tegmental area (VTA) [24,25]. Pyramidal neurons
in superficial cortical layers project collaterals to other
pyramidal neurons, while deep layers pyramidal neurons
project to subcortical structures like the dorsal striatum
involved in motor control and cognition, as well as the
nucleus accumbens involved in motivated and cognitive
behaviors [26,27]. Thus, the corticostriatal pathway pro-
vides information used in motor planning and execution
[28] as well in the control of cognition and motivation.
Its disconnection, or abnormal input to the striatum and
other subcortical pathways will have widespread effects.

Striatum

Afferent information to the striatum is filtered, integrated
and transmitted to two target regions, the globus pallidus
(GP) and the substantia nigra pars reticulata (SNr) via
two primary output pathways originating from different
subpopulations of medium-sized spiny neurons (MSNs).
MSNs comprise over 90% of striatal cells in rodents. The
remainder of striatal neurons are different classes of in-

terneurons. The two primary striatal output pathways are
termed the direct and indirect pathways because of their
connections. Direct pathway MSNs project preferentially
to SNr and to the internal GP (GPi), while indirect path-
way MSNs project to the external GP (GPe) which con-
nects to the subthalamic nucleus (STN). STN projects to
GPi and SNr [29,30]. Direct and indirect pathway MSNs
can be differentiated by the proteins they express. Di-
rect pathway MSNs preferentially express DA D1-like re-
ceptors, substance P (SP) and dynorphin while indirect
pathway MSNs preferentially express D2-like receptors
and met-enkephalin [31]. MSNs receive three main in-
puts: glutamate inputs from the cortex and the thalamus,
GABA inputs from striatal interneurons and to a lesser
extent from other MSNs, and DA inputs from substan-
tia nigra pars compacta (SNc). In addition, MSNs receive
intrastriatal cholinergic inputs from the large cholinergic
interneurons.

Interestingly, MSNs expressing enkephalin and pro-
jecting to the GPe forming the indirect pathway appear
to be particularly vulnerable in HD and markers such
as enkephalin are lost in postmortem brains of fully
symptomatic patients, but also in early symptomatic and
presymptomatic brains [32–34]. In contrast, MSNs ex-
pressing SP, projecting to the GPi are relatively spared, al-
though the SP-containing projections to the SNr are more
severely affected than the SP-containing projections to
the GPi and SNc. These results are consistent with the hy-
pothesis that chorea results from preferential dysfunction
and ultimate loss of indirect pathway MSNs and possibly
that akinesia and dystonia in HD is a consequence of the
additional dysfunction and loss of direct pathway MSNs
[35].

DA Inputs

DA is a major neuromodulator in the striatum as well as
other neural areas and is involved in numerous functions,
including motor activity, cognition, motivation, emotion,
food intake, to name a few. The DA systems responsible
for these functions have received much attention because
their dysfunctions are involved in the etiology of numer-
ous pathological conditions. Three major DA pathways
innervate the forebrain and basal ganglia. The nigrostri-
atal DA pathway arises from the SNc and projects to the
striatum. DA released from this pathway modulates ac-
tivity of the direct and indirect striatal output pathways
facilitating movement or inhibiting unwanted movement
[36]. The mesocortical DA pathway arises from the VTA,
projects to cingulate, entorhinal, and PFCs and plays a
critical role in normal cognitive processes and neuropsy-
chiatric pathologies [37]. The mesolimbic DA pathway
arises from the VTA and projects to the limbic striatum
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(nucleus accumbens) and olfactory tubercle [38]. The
mesolimbic DA system is part of the reward circuit in-
volved in addiction and depression [39].

Roles of DA and Glutamate

DA Exerts Opposite Actions on Glutamate
Ionotropic Receptors

DA exerts its actions through activation of multiple re-
ceptors. D1 and D2 receptors were initially identified
[40,41], followed by the D3 [42], the D4 [43], and the
D5 [44] receptors. Based on their transduction mecha-
nism and pharmacological properties, the five DA recep-
tors are classified into D1-like, encompassing D1 and D5
receptors, and D2-like, encompassing D2, D3, and D4 re-
ceptors. In the striatum, DA modulates ionotropic glu-
tamate receptors by altering glutamate currents and by
modifying glutamate receptor surface localization. Post-
synaptically, it is widely recognized that activation of
D1-like receptors increases striatal NMDA and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
currents while activation of D2-like receptors decrease
them [45]. Activation of D1 receptors increases NMDA
and AMPA receptor function through different signaling
pathways. Among them, cAMP formation, NMDA recep-
tor subunit phosphorylation and activation of voltage-
gated Ca2+ channels [46–52].

In the PFC, the D1 receptor family outnumbers the D2
family, and data show that signaling via the D1 receptor
subtype plays a prominent role in modulating neuronal
activity underlying working memory [53,54]. In the cor-
tex, DAs effects on glutamate currents are contradictory.
Our group and others found that D1 receptor family
activation facilitates postsynaptic glutamate (AMPA and
NMDA) currents while D2 receptor family activation de-
creases these currents in rodents and in human cortex
[55–59]. In contrast, other groups reported that DA or
activation of D1 receptors decreased non-NMDA excita-
tory postsynaptic currents [60,61]. However, glutamate
release probability is also modulated by DA and D1 ag-
onists [60,62] suggesting that DA could also modulate
glutamate release through activation of presynaptic D1
receptors and this action could account for the contradic-
tory findings.

DA Regulation of Glutamate and DA Release

The effects of DA on glutamate release are also contra-
dictory, due to the complexity of the circuitry and the
multiple neurotransmitters and modulators involved in
controlling release. In the dorsal striatum, while D2 re-
ceptors are located on corticostriatal terminals and post-

synaptically on MSN cell somata [63,64], D1 receptors
are preferentially located postsynaptically on MSN cell
somata. Therefore, DA can modulate glutamate release
from corticostriatal terminals directly by activating D2 re-
ceptors [65,66]. In addition to DA’s effect decreasing glu-
tamate release through activation of D2 receptors on cor-
ticostriatal terminals, we and others also observed that
DA can increase glutamate release through a combination
of pre- and postsynaptic mechanisms [67,68]. Glutamate
release by corticostriatal and thalamostriatal terminals is
regulated by other receptors located on presynaptic gluta-
matergic terminals. The metabotropic glutamate (mGlu)
receptors, GABAB, serotonin, adenosine, endocannabi-
noids (CB1), and vanilloid (TRPV1) receptors can all
modulate striatal glutamate transmission [69,70]. These
receptors ultimately may become targets to alleviate ab-
normal glutamate transmission in HD (see section on
therapy).

Striatal DA is released by nigrostriatal terminals onto
MSNs, corticostriatal terminals, and interneurons. D2 re-
ceptors are located on nigrostriatal DA neurons and act
as autoreceptors, decreasing DA release when activated
[71]. Initial studies showed that neuroleptics (D2 family
receptor antagonists) increase whereas apomorphine (a
DA receptor agonist) decreases evoked release of DA [72].
DA release is also influenced by TRPV1 receptors located
on nigrostriatal terminals [73].

In the cortex, less is known about DA regulation of glu-
tamate and DA release. In contrast to the striatum, cor-
tical glutamate terminals contain D1 receptors and stud-
ies examining activation of presynaptic D1 receptors have
yielded contradictory outcomes [60,74]. Similar to the
striatum, it is possible that DA regulation of glutamate re-
lease in the cortex depends on a combination of pre- and
postsynaptic DA receptors as well as on other modulators.
For example, recent studies report that cortical glutamate
inputs are also modulated by CB1 via presynaptic CB1
receptors that decrease glutamate release when activated
[75]. Cortical DA release is also modulated by presynaptic
D2 receptors [76,77].

Glutamate in HD

Symptomatic HD

Studies of glutamate in humans with HD have revealed
a variety of alterations. While some studies report selec-
tive reductions of NMDA and AMPA receptors in patients
in both caudate and cortex [78,79], others found a non-
significant loss of excitatory amino acid receptors in the
caudate and no change in the cortex [80]. However, re-
duction of glutamate uptake was found in the PFC of HD
patients, suggesting that impairment of glutamate uptake
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may also contribute to neuronal dysfunction and degen-
eration in HD [81]. In this study, the level of synaptic
and astrocytic markers were unchanged suggesting that
the loss of glutamate transporters was not due to neu-
rodegeneration. In animal models, mostly decreases of
striatal glutamate receptors and release have been re-
ported. Studies in symptomatic animals show decreases
of striatal NMDA mRNA in 8–12 week R6/2 mice and de-
creases of AMPA receptors in 12-week R6/2 mice [82,83].
In these studies, there was a loss of cortical glutamate
receptors that occurred later than in the striatum. Basal
striatal glutamate levels were also reduced by 43% in
R6/1 mice at 16 weeks [84]. Li et al. report that decreases
in [3H]glutamate release correlated with the increase in
neuropil aggregates [85]. They observed that axons con-
taining mutant htt aggregates had fewer synaptic vesi-
cles and proposed that mutant htt binds tightly to synap-
tic vesicle membranes, inhibiting uptake and release of
glutamate.

Presymptomatic HD

In contrast to studies reporting decreased striatal gluta-
mate currents, we found that AMPA and NMDA cur-
rents were increased in presymptomatic R6/2, HD100,
and YAC128 mice. These increases might have been over-
looked because only subpopulation of cells demonstrated
larger glutamate currents [86–88]. In addition, increases
were transient, observed only in early stages while in
later stages, NMDA and AMPA currents were reduced.
Glutamate vulnerability also might depend on the recep-
tor subunit composition. Expression of mutant htt has
been shown to enhance currents and excitotoxicity medi-
ated by predominantly NR2B-type NMDA receptors sug-
gesting that interaction between NR2B and mutant htt
may contribute to selective neuronal dysfunction and
degeneration [89]. Interestingly, endogenous quinolinic
acid levels were elevated in the cortex and striatum of
several mouse models showing neurodegeneration and
motor and cognitive dysfunction, supporting the hypoth-
esis that glutamate analogs play a role in neuropathol-
ogy in HD [90]. Another study has shown decreased
mRNA levels of the astroglial glutamate transporter in the
striatum and cortex of R6 mice, accompanied by a con-
comitant decrease in glutamate uptake that could lead to
neuronal damage [91]. In addition to increased glutamate
receptors in presymptomatic animals, we found that glu-
tamate neurotransmission was specifically increased in
MSNs of the direct pathway in 50-day old YAC128 [92].
Overactivation of direct pathway MSNs could lead to ex-
cessive inhibition of GPi and SNr neurons, to disinhibi-
tion of the thalamus and to abnormal movement [93]. In
contrast, excessive glutamate could result in dysfunction

and degeneration of the more vulnerable enkephalin-
containing MSNs forming the indirect pathway, which
would disinhibit GPe, inhibit the STN and GPi and also in-
duce abnormal movements (Figure 1). In support of this
hypothesis, increased firing rate in GPe and decreased fir-
ing rates in GPi were found in an HD patient [94]. These
findings may explain why deep brain stimulation of the
GPi can improve abnormal movements in some HD pa-
tients [95–97].

Cortical Glutamate Changes

In contrast to the striatum, cortical NMDA and AMPA
receptor-induced currents were decreased in presymp-
tomatic R6/2 mice and were unchanged in symptomatic
R6/2 mice compared to controls [82,98]. Decreased post-
synaptic glutamate currents in pyramidal neurons could
account for decreased vulnerability in cortical structures
compared to the striatum. However, in symptomatic
R6/2, YAC128 and CAG140 knock-in mice, glutamate
synaptic neurotransmission was increased and pyrami-
dal neurons showed signs of hyperexcitability [99] sug-
gesting that glutamate inputs are increased in cortex in
models of HD while striatal glutamate inputs appear to
be decreased [100]. The differential changes in glutamate
currents observed in the striatum and cortex suggest that
alterations induced by mutant htt are not solely cell de-
pendent, but also depend on more complex interactions
such as cell type, inputs and circuitry.

DA Receptors and DA Release
in HD—Correlation with Neuropathology

Too Much or Too Little DA?

In patients with HD, the guiding hypothesis is that presy-
naptic activation of the nigrostriatal DA pathway in-
duces chorea while loss of DA inputs induces akinesia
[101,102]. While there is no indication of an absolute in-
crease in DA activity in chorea, relative overactivity in
the nigrostriatal system might arise from a deficiency in
GABA which normally inhibits DA release by activating
GABA receptors on nigrostriatal cell somata and termi-
nals [103,104]. It is possible that an initial increase of
DA release or abnormal extracellular levels of DA (along
with elevated extracellular glutamate levels) induces ex-
citotoxicity, loss of cortical and striatal neurons, and loss
of DA terminals that could then lead to later symptoms
such as akinesia or dystonia (Figure 1). However, it is not
clear that DA levels are elevated in HD and bradykine-
sia (probably caused by low levels of DA in basal gan-
glia) is also observed in patients with chorea. In addition,
some HD patients show dyskinesia that appears similar to
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Figure 1 Glutamate and DA in basal ganglia function in intact brain and

during HD. Left is a simplified schematic showing normal basal ganglia

circuitry. Glutamate inputs are represented in red, GABA in blue and

DA in green. Under normal conditions (left), the thalamus is inhibited

by GPi and SNr GABA projections. In early HD (middle), cortical dysfunc-

tion induces excessive glutamate release in the striatum. Abnormally el-

evated striatal glutamate and DA levels trigger selective dysfunction of

enkephalin-containing MSNs. Imbalance between the direct and indirect

pathways induces hyperkinesia via two pathways: (1) Selective dysfunc-

tion/degeneration (dashed lines) of enkephalin-containing MSNs leads to

decreased release of GABA in the GPe and to its disinhibition. In turn,

overactivation of GABA neurons of the GPe leads to increased release of

GABA and to inhibition of STN which decreases glutamate release and de-

creases activity of the GPi and SNr. (2) Overactivation of the direct pathway

MSNs (by abnormal DA modulation and/or excessive glutamate) leads to

increased release of GABA and to inhibition of GPi and SNr. Together, alter-

ations in direct and indirect pathways in early HD induce inhibition of GPi

and SNr GABA neurons and to a decreased release of GABA in their output

structure, the thalamus. Disinhibition of the thalamus is responsible for

abnormal movements. In late HD (right), corticostriatal and nigrostriatal

inputs progressively degenerate, leading to decreased striatal glutamate

and DA release. Low striatal glutamate and DA levels trigger dysfunction

of both direct and indirect pathway MSNs. Imbalance between the direct

and indirect pathways induces hyperkinesia and hypokinesia via two path-

ways: (1) Alterations in the indirect pathway are similar to early HD and

lead to hyperkinetic movements. (3) Dysfunction/degeneration of direct

pathway MSNs induces decreased release of GABA and disinhibition of

GPi and SNr. Increased activity in GPi and SNr leads to inhibition of the

thalamus and hypokinesia. Depending on the stage of dysfunction of di-

rect and indirect pathway MSNs, activity in the basal ganglia could result

in hypokinesia or hyperkinesia and would explain why some symptomatic

patients display both chorea and akinesia. Enk = enkephalin; GLUT = glu-

tamate; GPe = external segment of the globus pallidus; GPi = internal

segment of the globus pallidus; SNc = substantia nigra pars compacta;

SNr = substantia nigra pars reticulata; STN = subthalamic nucleus.

L-DOPA induced dyskinesia in Parkinson’s disease pa-
tients (a result of too much DA or overactivation of DA
receptors). Initial studies found that DA levels and ac-
tivity of TH, the biosynthetic enzyme for DA were in-
creased in the striatum of postmortem HD brains [102].
Also, binding for the presynaptic DA transporter was re-
duced in the caudate of HD patients [105,106]. Although
this could be interpreted as a loss of nigrostriatal ter-
minals, another interpretation is that nigrostriatal DA
transmission is altered, leading to choreatic movements
(Figure 1) [101]. The neurochemical basis for this sugges-

tion is based on the observations that antagonists of DA
receptors and DA-depleting agents reduce chorea, and
that L-DOPA exacerbates chorea in HD.

More recent imaging studies provide evidence support-
ing reduced DA function in HD patients. In presymp-
tomatic and symptomatic patients, positron emission
tomography for D1 and D2 ligands found that both
striatal D1 and D2 receptor levels were reduced by
45–50% and that the loss progressed by 3–5% per year
[107,108]. Decreases in DA receptors also correlated with
the duration of the disease, and with a decrease of
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GABA content, reflecting a loss neurons in the putamen
[106].

Animal Studies

In contrast to human studies, in most animal models
of HD, striatal DA receptors, DA release, and nigros-
triatal terminals are reduced. The R6/2 mouse model
displays decreases in D1 and D2 receptor binding at 6
weeks [14,82]. Functionally, D1-dependent modulation
of AMPA currents was decreased in R6/2 mice at 6 weeks
[109]. D1 receptor-dependent striatal long-term potenti-
ation was also decreased in R6/2 mice compared to WT
littermates [110]. Microdialysis studies showed that DA
release was progressively reduced in R6/2 mice between
6 and 14 weeks [111,112]. In the 3NP model of HD,
striatal DA content was unchanged but evoked DA re-
lease was decreased [113]. Although DA receptor density
was unchanged in 12-month old YAC128 mice [114], this
may represent a compensatory mechanism for decreased
dopamine availability because the number of striatal neu-
rons is reduced by 15% in this age group [19]. Our studies
showed that in young YAC128 mice (1 month), D2 re-
ceptors are functional, but become much less effective at
12 months [115]. Interestingly, YAC128 mice exhibit ini-
tial hyperactivity, followed by the onset of a motor deficit
and finally hypokinesis correlated with striatal neuronal
loss [19]. In other models where lesions are more likely
to be confined to the striatum, such as the quinolinic
acid model, and the 3NP model, hyperkinesia occurred
[116,117]. It becomes important to determine loss of DA
function relative to the general neuropathology in order
to understand the role of DA in HD.

Glutamate, DA, and Glutamate-DA
Excitotoxicity

The excitotoxicity hypothesis of HD suggests that neu-
rodegeneration in the striatum is caused by an excess
of excitatory neurotransmitters such as glutamate or by
overactivation of glutamate receptors, more probably the
NMDA receptor. As pointed out earlier, this hypothe-
sis was based on the observation that intrastriatal injec-
tions of glutamate receptor agonists induce neuronal loss
and reproduce the symptoms similar to those seen in HD
[6,118]. In vitro, striatal and cortical neurons of HD mu-
tant mice are more susceptible to NMDA-induced cell
death than control mice [86]. In mutant htt-expressing
neurons, elevated glutamate toxicity can be induced
through elevation of intracellular Ca2+ concentrations
and through proteolysis of caspases involved in apoptotic
cascades [119–121].

High doses of DA also are able to directly induce cell
death of striatal neurons in vitro [122,123]. In vivo, striatal
injection of DA induces loss of tyrosine hydroxylase (TH)
immunoreactivity, a marker for DA terminals [124]. In-
creased DA release by methamphetamine has also been
shown to be neurotoxic to nigrostriatal and mesolim-
bic projections [125]. DA can induce cell death through
several mechanisms. The molecule itself, via receptor-
dependent mechanisms binds to D1 (or D2) receptors,
which increases (or decreases) intracellular Ca2+ and acti-
vates (or inactivates) cascades leading to cell death [126].
DA also generates toxic metabolites via products of its
metabolism or via autoxidation. Possible mechanisms in-
clude the generation of radical oxygen species and inter-
actions with excitatory amino acids [127]. Another pos-
sibility is that DA plays a role in preferential vulnerability
through interactions with mitochondria. Primary cultures
of striatal neurons expressing mutant htt are vulnerable
to DA, and this is correlated with a reduction in the level
of complex II activity [128]. Interestingly, the same study
found that the DA-induced down-regulation of complex
II was mediated by D2 receptors. However, several lines
of evidence suggest that DA toxicity is induced in part
by activation of D1 receptors. D1 antagonists can limit
cell death in cortical and striatal neuronal primary cul-
tures incubated with DA [123]. In HD, NMDA receptors
specifically potentiate the vulnerability of mutant htt cells
(STHdhQ111) to DA toxicity as pretreatment with NMDA
increased D1R-induced cell death in mutant but not wild-
type cells [129].

Thus, abnormal DA/glutamate interactions could ex-
plain why the striatum and cortex are vulnerable in
HD. Tang et al. showed that in primary MSN cultures
from WT and YAC128 mice, DA in the presence of glu-
tamate induced apoptosis in YAC128 cells and this ef-
fect was produced via glutamate-induced Ca2+ signal-
ing [130]. In vivo, they showed that MSN loss in 11-
month old YAC128 mice was increased by administra-
tion of L-DOPA and reversed by tetrabenazine (TBZ), a
monoamine depleting agent. Therefore, modifying glu-
tamate or DA release modifies HD neuropathology. In
agreement, hyperdopaminergia induced by knocking out
the DA transporter (DAT) exacerbated mutant htt aggre-
gates in the striatum and cortex of HdhQ92/Q92 mice as
well as potentiating the emergence of behavioral symp-
toms [131]. In contrast, decreasing striatal DA or gluta-
mate content by SN lesions or by decortication improved
the neuropathology and behavioral performance in R6/2
mice [132].

Although the main interest of this review is about glu-
tamate and DA, it is important to keep in mind that GABA
is also a key player in the striatum and the cortex. There
are important changes in the GABA system that are likely
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to play a role in the occurrence of symptoms and progres-
sion of HD. It has long been known that GABA content
is decreased in the striatum of HD patients [102], due to
the loss of MSNs. However, a recent study reported that
GABAA and GABAB receptors are increased in output nu-
clei at all stages of the disease in HD patients, suggesting
compensatory mechanisms to the loss of GABA terminals
[133]. Our studies in animal models showing that striatal
GABA currents are increased in HD also suggest compen-
satory mechanisms of the GABA system [134] that might
be targeted for potential therapies.

Therapies

With the discovery of the gene in 1993 [1] and the ability
to genetically test individuals at risk, various neuropro-
tective strategies designed to delay the progression of the
disease have been examined. Drugs targeting glutamate
and DA systems include typical and atypical neurolep-
tics, DA depleters, antidepressants, and antiglutamatergic
drugs (for reviews, see [135–137]).

Targeting the DA System

TBZ causes depletion of brain DA, norepinephrine,
and serotonin by binding to the presynaptic vesicular
monoamine transporter, VMAT2. TBZ is the only FDA
drug approved for treatment in HD and improves mo-
tor function in patients and in animals [130,138,139].
However, it can also produce side effects including de-
pression and sleepiness in some patients, and has no ef-
fect on other items (total functional capacity, indepen-
dence and behavioral scales, swallowing, speech and gait
items of motor scale) of the Unified Huntington’s Disease
Rating Scale (UHDRS) (for review, see [137]). Beside its
effect on striatal DA content, TBZ also has an effect on
other monoamines [140] that could explain some of its
side effects on cognition and depression. Although the
trials assessing other anti-dopaminergic agents targeting
D2 (sulpiride, D2 receptor antagonist) and D4 receptors
(clozapine, D4 receptor antagonist) were smaller, they re-
port those two agents either had no effect, or improved
chorea severity, but had too many adverse effects [141].

Since blocking DA release induces major side effects
and may exacerbate psychiatric symptoms, more spe-
cific DA blockers have been investigated. Charvin et al.
showed that early pharmacological blockade of D2 recep-
tors by haloperidol attenuated aggregate formation and
the loss of DARPP-32 in a lentivirus-based HD rat model,
reinforcing the potential role of D2 antagonists in neuro-
protection in HD [142]. Typical neuroleptics or typical an-
tipsychotics also used in schizophrenia have a high affin-

ity for D2 DA receptors and are used for the treatment
of psychotic symptoms as well as chorea in HD. How-
ever, their potential side-effects include parkinsonism,
dystonias, tardive dyskinesia, and worsening of cognitive
and affective symptoms, which can sometimes limit their
therapeutic use. Haloperidol, tiapride, and sulpiride were
generally well tolerated at low doses, but did not always
reduce involuntary movements [135]. Clozapine is one
of the only antipsychotics evaluated in clinical trials, and
several studies show that the occurrence of adverse ef-
fects prevented an increase to a dose that might have pro-
duced a more potent antichoreic effect [143,144]. Other
antipsychotics like olanzapine, risperidone, and ziprasi-
done were reported to improve some motor and psychi-
atric symptoms in HD.

Targeting the Glutamate System

Antiglutamatergic Drugs

Antiglutamatergic drugs (receptor antagonists or release
blockers), such as amantadine, remacemide, riluzole, and
ketamine have been tested in clinical trials. Although
some of these drugs improved chorea and motor scores,
most also had adverse effects. Amantadine proved to
have beneficial effects on the choreic dyskinesias in some
patients [145,146]. Contrasting results were found in
other trials that reported no improvement in the UHDRS
chorea scores [147] suggesting that amantadine may not
be a potent antichorea medication at a dose of less than
400 mg/day [135]. Remacemide, a nonselective NMDA
receptor antagonist, showed a trend toward improvement
in chorea but did not impact functional decline and in-
duced adverse effects such as psychiatric disturbances,
gastrointestinal upset, and dizziness [148,149]. Riluzole,
an inhibitor of glutamate release had no significant ef-
fect on chorea, behavioral, cognitive, independence, and
functional scores in a 3-year study in Europe [150]. The
NMDA blocker ketamine induced deteriorations in the
total motor score and eye movements measured by the
UHDRS [137].

Ampakines

Ampakines are benzamide drugs that increase excita-
tory transmission in the forebrain via allosteric modu-
lation of AMPA-type glutamate receptors [151]. There
is evidence that in vivo, ampakine treatment reduces
neuronal death in animal models of Parkinson’s disease
and reduces excitotoxic brain damage [152,153]. In the
CAG140 model of HD, the ampakine CX929 rescued
long-term potentiation and reduced learning dysfunction
in 8 and 16-week old animals, while having no effect on
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locomotor activity [154] suggesting that, given that am-
pakines are well tolerated in clinical trials and are ef-
fective in this study after brief exposures, they could be
used as a novel strategy for chronic treatment of the cog-
nitive difficulties in the early stages of HD. One of the
mechanisms by which ampakines might exert its neuro-
protective effect is through the increase of brain derived
neurotrophic factor that modulates MSN activity and has
been shown to provide neuroprotection [155,156].

Targeting Glutamate Release

Cannabinoids

Cannabinoid receptors CB1 modulate neurotransmitter
release in virtually all brain regions [157,158]. Cannabi-
noid ligands and receptors are particularly abundant in
basal ganglia structures (especially nuclei that receive
striatal efferents, like the GPi, GPe, and SNr) compared
with other brain regions [159,160]. The cannabinoid sys-
tem plays a prominent role in basal ganglia function
by modulating release of neurotransmitters that oper-
ate in the basal ganglia circuits [161,162]. In addition,
cannabinoids that activate CB1 receptors have an impor-
tant influence on motor responses [163]. Activation of
CB1 receptors decrease locomotion while antagonizing
CB1 receptors causes hyperlocomotion [164,165]. CB1
also bind to TRPV1 receptors located on DA terminals
and can reduce hyperdopaminergia-related hyperactivity
[166]. CB1 may potentially be useful to reduce the ef-
fects of neurodegeneration [167]. They were shown to
protect neurons via CB1 receptor-mediated inhibition of
glutamate exocytosis, closing of voltage sensitive calcium
channels, and reducing antioxidant activity [168,169].
Therefore, cannabinoid-based treatment might be bene-
ficial in basal ganglia disorders [170]. Although cannabi-
noid receptors are decreased in HD, CB1 could still have
beneficial effects by decreasing glutamate release with-
out inducing deleterious NMDA antagonist side effects.
AM404, an inhibitor of the endocannabinoid reuptake
process has been shown to reduce hyperlocomotion in
an animal model of HD via activation of TRPV1 recep-
tors [171]. Earlier studies reported no beneficial effect of
cannabidiol in HD [172,173]. However, much has to be
discovered about endocannabinoid ligands and receptors,
in both healthy and pathological conditions to determine
the potential therapeutic benefits of targeting this system
in HD or other basal ganglia disorders. Another poten-
tially beneficial effect of CB1 could take place through
activation of CB2 receptors present on microglia which
would in turn decrease microglia activation. Indeed, ac-
tivation of CB2 receptors has been demonstrated to de-

crease neuroinflammation and motor symptoms in R6/2
mice [174].

Adenosine

Indirect pathway MSNs selectively express high levels of
the neuromodulator adenosine A2A subytpe of receptor
[175]. A2A receptors activate the cAMP/PKA pathway as
opposed to D2 receptors, which inhibit adenylyl cyclase
and decrease cAMP [176]. Another consequence of A2A

receptor activation is an increase in glutamate release via
activation of A2A receptors located on presynaptic glu-
tamate terminals [177]. Therefore, high concentrations
of adenosine and overactivation of A2A receptors could
lead to toxicity [178,179]. A transient increase in A2A re-
ceptor density has been reported in presymptomatic (1–2
weeks) R6/2 mice while large reductions were found in
later stages [180,181], suggesting adenosine could indeed
exacerbate excitotoxicity in early stages of HD.

It has been proposed that A2A receptor agonists could
have beneficial effects in late HD, when A2A receptors
are downregulated. One study found that A2A receptor
agonists significantly attenuated the progressive deteri-
oration of motor coordination and reduced brain atro-
phy [180]. However, another study showed that despite
the neuroprotective effect on NMDA-induced toxicity in
symptomatic R6/2 mice, treatment with an A2A recep-
tor agonist did not rescue the deficit in motor coordina-
tion and even worsened the performance of R6/2 mice
[182]. It is possible that the motor effects of A2A recep-
tor agonists depend on mechanisms independent from
those involved in neuroprotection. Several lines of evi-
dence suggest that blocking presynaptic A2A receptors can
be beneficial because it decreases excitotoxicity while the
blockade of the postsynaptic receptors can be deleteri-
ous [183]. Finally, since in HD brains, a dramatic loss
of A2A receptor binding was observed in grade 0 cases
(34–35% of controls) and more advanced cases showed
no detectable A2A receptor binding [184], it remains un-
known whether therapy targeting A2A receptors will be
beneficial in HD patients.

Conclusions

It is now clear that neuronal dysfunction occurs in both
striatum and cortex well before a clinical diagnosis of HD
is made. Because the cortex and striatum are intercon-
nected, it is difficult to determine if cortical changes pre-
cede or follow striatal changes. However, the fact that
HD patients experience cognitive and emotional distur-
bances before the occurrence of sensorimotor symptoms
provides evidence that cortical dysfunction might pre-
cede striatal pathology. Activation of both D1 and D2
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receptors can lead to toxic changes in cortical and striatal
neurons as well as their terminals. It is therefore probable
that diverse and complex interactions among glutamate
and DA neurotransmission will contribute to the selec-
tive dysfunction of neurons in the cortex and basal gan-
glia. Subsequent and progressive dysfunction and degen-
eration are likely to be responsible for the complex and
heterogeneous clinical phenotype in HD. The complex-
ity of mutant htt-induced alterations throughout these
systems renders the development of therapies difficult,
and disease-modifying therapies preventing the onset of
clinical symptoms in individuals at risk are still not avail-
able. While existing antidopaminergic or antiglutamater-
gic drugs seem to have a positive effect on motor symp-
toms, their use can be limited due to the side-effects they
trigger. Therefore, it will be necessary to develop more
specific drugs with selective targets. Other glutamate and
DA release modulators such as adenosine or CB1 could
have potential therapeutic benefits in HD.
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