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The cellular and molecular mechanisms of how asbestos fibers induce cancers and other
diseases are not well understood. Both serpentine and amphibole asbestos fibers have
been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue
injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in
vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and
noncancerous diseases. This article summarizes the findings from existing literature with a
focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental
evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more con-
vincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity
to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five
aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcino-
genesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute
to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without
mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity.
At the end of this review, a consensus statement of what is known, what is believed to be
factual but requires confirmation, and existing data gaps, as well as future research needs
and directions, is provided.

In this review, “asbestos” is a commercial
term often used as an identifier as related to
regulatory definitions and refers to a group
of naturally occurring mineral fibers, includ-
ing amphiboles (crocidolite, amosite, tremolite,
anthophyllite and actinolite) and chrysotile, the
sole serpentine fibers (Case et al., 2011, this
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issue). Asbestos has been mined and used exten-
sively in industry and households for decades
globally.Occupational andenvironmental expo-
sure of asbestos fibers induces several human
diseases, including asbestosis, pleural plaques,
lung cancer, mesothelioma, and possibly dis-
eases in nonrespiratory organ systems (Currie
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et al., 2009; IARC, 1987; Institute of Medicine
(U.S.) Committee on Asbestos: Selected Health
Effects, 2006; Straif et al., 2009). Asbestos has
been classified as a Group I human carcino-
gen by the International Agency for Research on
Cancer (IARC, 1987). The association between
exposure to asbestos fibers and development
of lung cancer and mesothelioma is well estab-
lished in both humans and experimental animals
(Kane, 1992; Mossman & Churg, 1998; Wagner
& Berry, 1969; Yarborough, 2007). In addi-
tion, cigarette smoking enhances lung cancer
incidence among asbestos workers in a syner-
gistic fashion (Hammond et al., 1976; Saracci,
1987). As a result, the U.S. Environmental
Protection Agency has restricted the indus-
trial use of asbestos since the early 1970s
and there has been legislation proposed in the
United States over the years to ban the use of
all types of asbestos (http://murray.senate.gov/
public/index.cfm?p= BanAsbestos InAmerica).
However, asbestos fibers continue to pose an
important health concern due to the long
latency period of asbestos-induced diseases.
Moreover, asbestos is still widely used in many
developing countries (Virta, 2003). Therefore,
a better understanding of the pathogenic/
carcinogenic mechanisms of asbestos is critical
for the prevention and treatment of fiber-
induced diseases including mesothelioma, an
often fatal cancer with an average patient sur-
vival of less than 10 mo from the time of
diagnosis.

The mechanisms by which asbestos fibers
produce malignancy and fibrosis are not entirely
clear at present. Various in vitro and in vivo
studies suggested that fiber dimensions, sur-
face properties, shape and crystallinity, chemical
composition, physical durability, and expo-
sure route, duration, and dose are important
determinants of the biological activities of
fibers (Mossman, 1990; Sanchez et al., 2009;
Stanton et al., 1977). The variations in physi-
cal and chemical properties between different
types of asbestos fibers are likely to account
for differences in pathogenicity. For example,
amphiboles might be more carcinogenic than
serpentine (Browne, 2001; Carthew et al.,
1992; Hodgson & Darnton, 2000; Rogers &
Major, 2002). Nevertheless, all types of asbestos

were found to be carcinogenic (Straif et al.,
2009). There is evidence that the key events,
including oxidative stress, chronic inflamma-
tion, and genetic and epigenetic alterations,
as well as cellular toxicity and fibrosis, are
induced by all types of asbestos fibers ana-
lyzed (Barrett, 1994; Hei et al., 2006; Kane,
1996; Mossman, 1993; Toyokuni, 2009). These
events are not completely independent of, and
may be interrelated with, each other. These
events are involved in the complex mechanisms
of asbestos-induced diseases; the contribution
from each event might vary depending on the
species and fiber and disease types.

The purpose of this review was to exam-
ine the role of mutagenicity—in a broader
sense, genetic alterations—in asbestos fiber-
induced diseases. This review focuses on the link
between mutagenicity and fiber carcinogenicity
mainly because it is more extensively stud-
ied and better understood, compared with the
association of mutagenicity with noncancerous
diseases. When examining fiber-induced non-
cancer-related health endpoints, an association
with a broader term, “genotoxicity,” rather than
mutagenicity, was addressed. For the purpose
of this review, studies of all six forms of asbestos
are included. In addition, some of the studies on
man-made fiber-induced or erionite (a naturally
occurring fibrous mineral)-induced diseases,
which share similar molecular pathways with
and may aid to illustrate the mechanisms under-
lying asbestos-induced pathogenicity, are also
reviewed in the current article. The majority of
studies reviewed in this report were conducted
using doses below the overload threshold. Five
specific areas were addressed in this review,
including (i) mutagenicity as a possible mode of
action of asbestos and related mineral fibers; (ii)
mutagenicity/carcinogenicity at low dose (pres-
ence of a possible threshold dose); (iii) biological
activities that contribute to mutagenicity and
impact of target tissue/cell type; (iv) health end-
points with or without mutagenicity as a key
event; and finally, (v) determinant factors of
toxicity in mutagenicity. After a review of the
literature, a consensus statement is provided
stipulating what is known for sure, what is
believed to be factual but requires confirma-
tion, and what areas are uncertain and require
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additional researchpertaining tomutagenicity as
a possible mode of action for fiber pathogenicity.

IS THERE A MUTAGENIC MODE OF
ACTION (MOA) IN FIBER
CARCINOGENESIS?

Mutation refers to “permanent changes in
the structure and/or amount of the genetic
material of an organism that leads to herita-
ble changes in its function, and includes gene
mutations as well as structural and numeri-
cal chromosome alterations” (Eastmond et al.,
2009). According to the current knowledge,
cancer is a genetic disease that arises through
a multistep process, and several mutations
are required to convert a normal cell into a
malignant one (Fearon & Vogelstein, 1990;
Vogelstein & Kinzler, 1993). Cancer is the
result of the accumulation of multiple muta-
tions that result in ultimate autonomy, unlim-
ited growth, and metastasis of target cells and
tissues (Solomon et al., 1991). The muta-
tions involved in carcinogenicity may be gen-
erated through two broad modes of actions
(MOAs). The first MOA involves direct changes
in the structure or content of the genome
(mutagenic effects) and/or epigenome (com-
posed of two modules: methylated cytosines
located in the dinucleotide sequence CG of
DNA, and the chromatin and its associated
chromatin-modifying and remodeling activi-
ties). The second MOA is indirect alteration
in cellular homeostasis, which promotes cell
proliferation and growth, thus facilitating the
accumulation of spontaneous mutations in the
target cells (nonmutagenic mechanism) (Waters
et al., 1999). Environmental carcinogens may
increase the risk of neoplasms in humans or
animals through mutagenic or nonmutagenic
mechanisms or both. Thus far, data from exist-
ing literature collectively indicate that asbestos
fiber-induced carcinogenicity involves both
pathways (Barrett, 1992; Kane, 1996; Nymark
et al., 2008; Walker et al., 1992). The cur-
rent section reviews the experimental evidence
of a mutagenic MOA in asbestos fiber-induced
carcinogenicity. The existing evidence suggests
that asbestos fibers are mutagenic carcinogens,
which are defined as cancer-causing agents,

chemical or physical, that induce mutations
in an organism. The potential mechanisms of
asbestos fiber mutagenesis are also summarized
in this section.

It should be noted that most of the evidence
linking a direct mutagenic effect of asbestos
fibers is from in vitro studies. A noninvasive
approach for obtaining biopsy tissues periodi-
cally from animal models or human subjects is
still not available. The limited in vivo evidence
of mutagenicity was identified from tumor tis-
sues of humans or sacrificed animals. In this
case, it was hard to establish the causal effect
of the identified mutations on asbestos-induced
cancers. As such, the current knowledge of
fiber mutagenesis relies mostly on in vitro stud-
ies, where asbestos fiber doses were measured
mostly in micrograms per square centimeter sur-
face area of tissue culture dish and sometimes
in micrograms per millilter. The advantages and
disadvantages of in vitro versus in vivo assays for
studyingasbestosandothersfibersareaddressed
in another review (Mossman et al., 2011, this
issue). Although fiber length is usually not pro-
vided in these studies, it should be pointed out
that most of them used standard reference sam-
ples with well-defined fiber dimensions (Bowes
& Farrow, 1997; Timbrell et al., 1968; Timbrell &
Rendall, 1972).Thefibercount foracertainmass
concentration of asbestos fibers was reported by
(Health Effects Institute-Asbestos Research [HEI-
AR], 1991). For example, the NIEHS chrysotile
(geometric mean length 1.2 μm, Jeffery Mine,
Quebec, Canada) has a total fiber count
of approximately 105 fibers/cm3 (fiber mass
concentration = 10 mg/m3) when measured
by scanning electron microscopy (SEM) (Mast
et al., 1995). Thus, 1 μg asbestos corresponds to
107 fibers measured by SEM, while transmission
electron microscopy (TEM) measurement of the
same mass concentration consistently showed
a more than 10-fold higher number of fibers
(Breysse et al., 1989). The discrepancy is often
due to the detection limit/resolution of the for-
mer methodology. Nonetheless, measurement
data could be used as reference for calculating
the cellular exposure doses under in vitro con-
ditions. Thus, doses reported as micrograms per
square centimeter surface area could be con-
verted into fibers per cell, given a known cell
density.
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Evidence of Asbestos-Induced
Mutagenicity
Although there is considerable evidence

that asbestos fibers induce chromosome aber-
rations (CA), micronucleus (MN) formation,
and aneuploidy, indicative of mutational
events, earlier experimental data failed to
detect any asbestos-induced genetic mutations
in short-term assays. These include gene muta-
tion assays in bacteria, and in vitro mammalian
mutation assays at the hypoxanthine guanine
phosphoribosyltransferase (HPRT), thymidine
kinase (tk), and ouabain (oua) loci using cells
from humans, mouse lymphomas, and Chinese
hamsters (Chamberlain & Tarmy, 1977; Reiss
et al., 1982; Schins & Hei, 2006). Subsequent
studies suggested that this might be a result
of multilocus deletions induced predominantly
by asbestos that are not compatible with the
survival of the mutants (Hei et al., 1992;
Okayasu et al., 1999b). In recent years, sev-
eral mutagenic assays that are proficient in
detecting either large deletions, homologous
recombinations, or score mutants located on
nonessential genes were used successfully to
demonstrate the mutagenic potential of vari-
ous fiber types (Both et al., 1995; Park and
Aust 1998; Rihn et al., 2000). Asbestos fibers
were found to induce large gene mutations,
CA, and aneuploidy in mammalian cells in vitro
(Jackson et al., 1993; Jaurand 1997; Waters
et al., 1999). In March 2009, IARC reassessed
the carcinogenicity of asbestos fibers based on
cohort studies of women heavily exposed to
asbestos in the workplace. It was concluded
that asbestos induced mutagenicity, CA, aneu-
ploidy, polyploidy, and epigenetic alterations in
the disease process (Straif et al., 2009). In vitro
and in vivo evidence, as well as human studies
of asbestos fiber-mediated mutagenesis at both
gene and chromosomal levels, are summarized
in this section (Table 1).

In Vitro Evidence of Asbestos-Induced
Gene Mutations
In the human–hamster hybrid AL cell

system, chrysotile and crocidolite asbestos
induced both intragenic and multilocus

mutations in a concentration-dependent
manner within the tested concentration range
(0.5–8 μg/cm2) (Hei et al., 1992; Xu et al.,
2002). Southern analysis confirmed that the
majority of the induced mutants contained
large deletions ranging from a few thousand to
several million base pairs. In another system,
crocidolite and erionite (50 or 200 μg/ml for
72 h)-treated human lymphocytes were shown
to have increased mutations arising from loss
of heterozygosity (LOH) at the autosomal
HLA-A locus and other distal loci (Both et al.,
1994). Crocidolite exposure at the same
doses (equivalent to 18.75 and 75 μg/cm2)
for 72 h produced similar LOH in a human
mesothelioma cell line (Both et al., 1995). Park
and Aust (1998) observed a twofold rise in the
mutation frequency at the glutamate-pyruvate
transaminase (gpt) locus of G12 (Chinese ham-
ster transgenic hgprt−, gpt+ V79) cells after
exposure to 6 μg/cm2 NIEHS crocidolite for
24 h. Consistently, in primary mouse embryo
fibroblasts (MEFs) isolated from gpt delta
transgenic mice, International Union Against
Cancer (UICC) chrysotile asbestos treatment at
1–4 μg/cm2 for 24 h significantly increased the
number of lambda mutants (Xu et al., 2007b).
Collectively, these gene mutations may arise
from DNA damages, such as DNA adducts
and DNA strand breaks, induced by asbestos
(Jaurand, 1997).

In Vitro Evidence of Asbestos-Induced
Chromosomal Mutations
The chromosomal mutations induced by

asbestos fibers could be structural (deletions,
translocations, inversions, duplications, and sis-
ter chromatid exchanges [SCE]) or numeri-
cal (aneuploidy, polyploidy, or hyperdiploidy).
These mutations are derived from different
types of chromosomal damages induced by
asbestos fibers, including chromosomal break-
ages and fragments (micronuclei), lagging chro-
mosomes, exchange of chromosomal segments
between two chromosomes, and missegrega-
tion of chromosomes.

Numerous studies from the 1970s
to 1990s, with the use of conventional
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cytogenetic analyses, demonstrated that dif-
ferent types of asbestos fibers (chrysotile,
crocidolite, amosite, or tremolite) induced
various numerical chromosomal changes, or
structural chromosomal aberrations in meta-
and anaphases (lagging chromosomes, bridges,
fragments, exchanges), in cultured mammalian
cells, including human lymphocytes, Chinese
hamster ovarian (CHO) cells, human fibrob-
last, human and rat pleural mesothelial cells,
and Syrian hamster embryo (SHE) cells, after
short-term treatments (6–96 h) (Athanasiou
et al., 1992; Hesterberg & Barrett, 1985;
Jaurand et al., 1986; Lavappa et al., 1975;
Lechner et al., 1985; Livingston et al., 1980;
Oshimura et al., 1984; Valerio et al., 1983;
Yegles et al., 1993). The fiber concentrations
used in these studies are arbitrary ranging from
0.5 to 4 μg/cm2 or from 0.1 to 10 μg/ml.
A couple of studies used a relatively higher
dose of 100 μg/ml; however, a significant
increase in overall incidence of aberrations
was observed at a concentration as low as
0.1 μg/ml (Lavappa et al., 1975; Livingston
et al., 1980). Some studies examined the
effects of different types of asbestos and
reported varied potency of these fibers. For
example, 2 μg/cm2 chrysotile was more potent
in inducing cytogenetic effects and cell trans-
formation in SHE cells than crocidolite (both
types of asbestos were UICC fibers) and thin
glass fibers at the same dosage, while thick glass
fibers were much less potent and nonfibrous
alpha-quartz had no effect (Oshimura et al.,
1984). In another study, Canadian chrysotile
was able to induce chromosomal abnormalities
at a concentration of 2 μg/cm2, while UICC
crocidolite induced similar effects at a higher
concentration (7 μg/cm2) (Yegles et al., 1993).
However, when fibers are counted by the
number of long and thin fibers (length > 8 μm,
diameter ≤ 0.25 μm) per μg/cm2, crocidolite
was more potent than chrysotile (Yegles et al.,
1993). Both studies indicated that physical
characteristics of the fibers affected the ability
to induce chromosomal mutations. A more
complete list of these studies is reviewed else-
where (Jaurand, 1997). In later studies, using
a combination of the approaches including

kinetochore staining, supravital ultraviolet
(UV) microscopy, and fluorescence in situ
hybridization (FISH) with tandem DNA probes,
it was consistently shown that UICC standard
amosite, chrysotile, and crocidolite asbestos
fibers (0.5–10 μg/cm2) significantly enhanced
the induction of MN, chromosomal breakage
and loss, and hyperdiploidy in human amniotic
fluid cells (AFC) and hamster SHE cells in a
concentration-dependent manner after 48
or 66 h of exposure (Dopp et al., 1995b,
1997; Dopp, & Schiffmann, 1998). Overall,
these alterations are found to be concentration
dependent in most of the studies, but also
highly dependent on the cell and fiber type.
The low dose effect is addressed later, in the
section “Mutagenesis/Carcinogenesis at Low
Dose.”

Taken together, although some studies were
not conducted in relevant lung or pleural tar-
get cells, the preceding in vitro evidence pro-
vides important molecular insights into asbestos
mutagenicity and carcinogenicity. Many of the
studies were conducted with concentrations
higher than the occupational and environ-
mental exposure in humans, which, however,
is necessary for establishing dose- and time-
response relationships between fiber exposure
and the induction of mutagenic events. The
overdose issues for both cell cultures and ani-
mal studies are addressed later, in the sec-
tion “Effects of Different Fiber Dimensions and
Types and Overdose Issue.”

In Vivo Evidence of Asbestos-Induced
Gene or Chromosomal Mutations
In contrast with the large amount of in

vitro studies, limited in vivo data on asbestos-
induced gene and chromosomal changes are
available. A few studies examined CA, MN
formation, or aneuploidy in bone-marrow or
germline cells of rodents or monkeys, which
are not akin to the relevant target cells of
asbestos exposure, and results were controver-
sial (Lavappa et al., 1975; Osgood & Sterling,
1991; Fatma et al., 1992). Kociok and col-
leagues (1999) observed DNA deletions in the
peritoneal tumors developed in rats exposed to
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a 2-mg dose of crocidolite injected intraperi-
toneally (ip) with a mutation frequency of
14.8% for all the tumors screened. The first
nose-only inhalation study that demonstrated
in vivo mutagenicity of asbestos was conducted
in transgenic mice carrying the lacI reporter
gene (Rihn et al., 2000). The animals were
exposed to crocidolite asbestos (5.75 mg/m3)
for 5 consecutive days (6 h/d). In lung DNA,
there was significantly increased mutation fre-
quency in the lacI gene during 4 wk of expo-
sure, but no increase in hydrophobic lung
DNA adducts among asbestos-exposed ani-
mals. Similarly, intratracheally instillation of
amosite (2 mg single dose, and 4 weekly doses
of 2 mg) significantly elevated the mutation fre-
quency in lung DNA in transgenic lambda-lacI
(Big Blue) rats 16 wk after exposure (Topinka
et al., 2004). Exposure of Big Blue mice to
the same doses of rock wool (RW1) stan-
dard fibers (1700 fibers/μg, median length
23 μm, biological half life 3–4 mo) induced
a significant dose-dependent increase in muta-
tion frequency 16 wk after exposure (Topinka
et al., 2006a). However, glass wool standard
fibers MMVF10 (man-made vitreous fibers 10,
1 μg sample contains 8300 fibers longer than
5 μm, median length 26 μm, weighted half-life
37 d) at all doses did not produce any marked
change in mutation frequency. These results
suggest that durable fibers are more mutagenic
in vivo than biodegradable fibers.

Evidence of Asbestos-Induced Gene or
Chromosomal Mutations From Human
Studies
The evaluation of mutagenicity in the rele-

vant target tissues of human subjects exposed
to asbestos or man-made fibers is techni-
cally difficult due to the lack of noninva-
sive approach in getting biopsy samples. More
importantly, there is a high possibility of miss-
ing the mutagenic or precancerous cells, if
taking random biopsies before tumor forma-
tion. Nevertheless, some supportive evidence is
currently available. On one hand, several stud-
ies examined the mutagenic and cytogenetic
alterations in peripheral blood lymphocytes

of asbestos workers. The findings vary from
each other and the type of asbestos expo-
sure is not available in most of the stud-
ies, but in general the findings indicate an
association between cytogentic alterations in
lymphocytes and asbestos exposure. A sig-
nificant correlation between SCE in group A
chromosomes (large, metacentric human chro-
mosomes, consist of chromosome pairs 1,
2, and 3) and asbestos exposure (a mean
of 27.4 yr) was found in asbestos insulators
(Rom et al., 1983). In Slovakia, 61 chroni-
cally exposed asbestos cement plant workers
(exposure: 5–40 yr) had significantly higher
numbers of CA and oxidized pyrimidines, com-
pared with controls (Dusinska et al., 2004;
Horska et al., 2006). The average rate of
chromosomal aberrant cells in the periph-
eral blood lymphocytes in 31 Russian asbestos
workers (both <1.5 yr and >10 yr of expo-
sure groups) was not statistically different from
that in the control (Bochkov et al., 1991).
The frequency of MN in lymphocytes of 30
Turks (average 59.97, range 32–80 yr) envi-
ronmentally exposed to chrysotile (exposure
since born and terminated at 10 yr before the
study was conducted) was not different from
those in unexposed controls (Donmez-Altuntas
et al., 2007). In mesothelioma patients, the MN
frequency in blood lymphocytes was signifi-
cantly increased, in comparison with lung can-
cer patients and patients with benign asbestos
diseases (Bolognesi et al., 2002). In contrast,
numerous chromosomal abnormalities and
some gene deletions were identified in human
mesothelioma and lung cancer tissues associ-
ated with mixed or single exposure to asbestos
(Ivanov et al., 2009; Jaurand, 2006; Lindholm
et al., 2006; Murthy & Testa, 1999; Musti
et al., 2006; Neragi-Miandoab & Sugarbaker,
2009; Sekido, 2010). For example, these
abnormalities include loss of heterozygosity
(LOH), gene deletion, or change of methy-
lation pattern at chromosome 9p21.3/cyclin-
dependent kinase inhibitor 2A (CDKN2A, or
p14ARF and p16INK4a) and CDKN2B genes,
22q/Neurofibromatosis type 2 (NF2) gene, and
3p/fragile histidine triad (FHIT) gene (Bianchi
et al., 1995; Hirao et al., 2002; Lindholm
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et al., 2007; Pylkkanen et al., 2002; Tug et al.,
2006). For details, see the section “Health
Endpoints With and Without Mutagenicity as a
Key Event.” The identification of these genetic
alterations might lead to better therapeutic
strategies and disease control for mesothelioma
(Crispi et al., 2010).

Although peripheral blood lymphocytes are
not the direct target cells, and a causal effect of
the mutations identified in tumor tissues of ani-
mals and human subjects on asbestos-induced
cancers cannot be easily established, there are
some correlation between the observed in vitro
and in vivo effects and human data. First, simi-
lar gene and chromosomal alteration patterns
were identified in asbestos-induced murine
and human mesothelioma models (Altomare
et al., 2005a, 2005b; Andujar et al., 2007;
Kane, 2006). The results indicate that the
murine mesothelioma model can recapitulate
the molecular features of human malignant
mesothelioma and may be useful for human
risk assessment. Therefore, gene alterations
seen in tumors generated in fiber-exposed
animals may be linked to the carcinogene-
sis of asbestos fibers. Second, a number of in
vivo studies identified nonrandom mutagenic
and/or cytogenetic changes in important genes
(i.e., tumor suppressor genes) that are asso-
ciated with asbestos-induced transformation
(Barrett, 1994; Barrett et al., 1989). However,
futures studies with well defined doses of var-
ious asbestos fibers (fiber numbers measured
by TEM, or fiber surface area) are required
in order for establishing a stepwise associa-
tion between mutagenicity and carcinogenic-
ity in relevant target tissues of animal models
exposed to a variety type of asbestos fibers.
A well-developed mutagenicity testing strategy
with an appropriate selection of in vivo and in
vitro tests will facilitate this process (Eastmond
et al., 2009).

Potential Mechanisms of
Asbestos-Induced Mutagenicity
Unlike chemical mutagens that gen-

erate genetic alterations by covalent
binding to/modifying the DNA structures,

asbestos-induced mutagenicity is mediated
through direct or indirect pathways. Asbestos
fibers may induce mutagenicity and genotoxic-
ity directly through physical interaction with the
mitotic machinery of dividing cells after being
phagocytized by the target cells, or indirectly as
a result of damaging of DNA and chromosome
by asbestos-induced reactive oxygen and
nitrogen species (ROS and RNS, respectively)
(Jaurand, 1997; Kamp & Weitzman, 1999;
Kane, 1996; Shukla et al., 2003a). ROS and
RNS might be generated primarily (by asbestos
fibers, i.e., surface iron [Fe] mediated Fenton
reaction) or secondarily (through fiber-induced
inflammation) (Gulumian, 2005; Hardy & Aust,
1995b; Aust et al., 2011, this issue). Thus, any
physical or chemical properties of the fibers
that might affect the ROS and RNS generating
capability, or promote the physical interference
with dividing cells by the fibers, such as surface
iron content and fiber dimension, affect the
mutagenicity of the fibers. One might expect
that different types of fibers are likely to share
same mutagenic mechanisms, except that the
contribution of each of the mechanisms varies
from one fiber type to another. In addition,
there is evidence suggesting a synergistic effect
of tobacco smoke and asbestos exposure on
mutagenicity and lung cancer risks (Kamp
et al., 1992; Nymark et al., 2008; Selikoff
et al., 1968).

DNA Damage and Mutagenesis
Resulting From Asbestos-Induced ROS
and RNS
Asbestos-generated ROS and RNS may

produce a variety of DNA and chromosomal
damages, such as 8-hydroxydeoxyguanosine
(8-OHdG), DNA single-strand breaks (SSB),
and chromosome fragments (MN) (Jaurand,
1997; Kamp et al., 1992). The involvement of
asbestos-generated ROS and RNS in asbestos
mutagenicity is illustrated by the evidence that
Fe chelator, free radical scavenger (dimethyl
sulfoxide [DMSO]), or antioxidants (superoxide
dismutase [SOD] and catalase [CAT]) attenu-
ate the genotoxic effects of asbestos fibers.
Additional supporting evidence came from the
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findings that the mutation spectrum in asbestos
fibers-treated cells was similar to that produced
by hydrogen peroxide (H2O2). The contribu-
tion of ROS and RNS to asbestos fiber-induced
DNA and chromosomal damage was addressed
in cell-free systems, in vitro cultured cells, and
in vivo animal models.

The observation of 8-OHdG formation, as
a result of ROS/RNS generation by various
asbestos fibers, in cell-free systems and cul-
tured relevant target cells such as pulmonary
epithelial cells and pleural mesothelial cells
was reported and reviewed in many studies
(Jaurand, 1997; Kamp et al., 1992; Shukla
et al., 2003a; Upadhyay & Kamp, 2003). The
protective effects of the Fe chelator defer-
oxamine (DEF), and antioxidants glutathione
(GSH) and DMSO indicate that DNA dam-
age and/or mutagenesis induced by asbestos
fibers is mediated through reactive intermedi-
ate species (Faux et al., 1994b; Howden &
Faux, 1996b; Xu et al., 1999). The inconsis-
tent effect of Fe inhibitors reported in other
studies is probably due to the effectiveness of
different chelators and the valency state of the
Fe (Lund & Aust, 1990; 1992; Kamp et al.,
1992; Hardy & Aust, 1995b; Jaurand, 1997).
Similarly, the induction of DNA strand break-
ages by asbestos was illustrated in plasmid DNA
or calf thymus DNA (Jackson et al., 1987;
Lund & Aust, 1992; Mahmood et al., 1994;
Hardy & Aust, 1995a). Consistent results were
found using cultured human and rodent target
cells, and Fe chelators or CAT exerted pro-
tective effects (Burmeister, et al., 2004, Faux
et al., 1994b; Kamp, et al., 1995; Turver &
Brown, 1987; Xu, et al., 2007b). Iron asso-
ciated with amosite asbestos bodies isolated
from human lungs induced the formation of
SSB in phi X174 RFI DNA (Lund et al., 1994).
Similarly, crocidolite asbestos-induced mutage-
nesis at the CD59(S1) locus of AL cells or gpt
locus of G12 cells was also shown to be atten-
uated by addition of antioxidants or radical
scavengers (Hei et al., 1995; Park & Aust, 1998;
Xu et al., 1999; 2002; 2007a, 2007b). The
mutation spectra induced by crocidolite fibers
in AL cells or primary gpt delta transgenic MEF
were similar to those produced by H2O2 (Xu

et al., 2002, 2007b). In general, DNA lesions
produced by hydroxyl radical (OH) significantly
increased mutation frequency (McBride et al.,
1991). In addition, the mutagenic effects of
asbestos on lymphocytes were also suppressed
by oxygen radical scavengers (Korkina et al.,
1992). Furthermore, crocidolite and chrysotile
asbestos-induced MN formation, an indicator
of CA, in human mesothelial cells was sig-
nificantly reduced after pretreatment of fibers
with Fe chelators phytic acid and DEF, and/or
simultaneous treatment of cells with asbestos
fibers and radical scavengers dimethylthiourea
or SOD (Poser et al., 2004). In another study,
the addition of Fe chelators also reduced MN
formation in chrysotile asbestos-exposed V-79
cells (Dopp et al., 2005). Finally, spindle defor-
mation with disturbed meta- and anaphases
was observed in amosite, chrysotile, or cro-
cidolite asbestos-treated SHE cells, while the
spindle fiber morphology appeared unchanged
(Dopp & Schiffmann, 1998). The results from
these studies show that asbestos fibers may
induce both loss and breakage of chromosomes
in the absence of direct interaction with spindle
fibers, which, together with the data from anti-
oxidant studies, provide evidence of the role of
oxidative stress in producing CA in target cells.

The first in vivo evidence indicating the
involvement of ROS and RNS in mediating
DNA damage associated with fiber mutagenic-
ity was demonstrated in mesothelial cells by
Unfried et al. (2002). Using UICC crocidolite
asbestos fibers (with a 59% fraction of car-
cinogenic fibers, aspect ratio ≥5), a significant
increase in mutation frequency in peritoneal
tissues of transgenic F344 big blue rats at 12 wk
(5 mg fibers only) and 24 wk (2 mg and
5 mg fibers) after ip administration was noted.
The mutational spectrum analysis showed a
dominance of G → T transversions, which
was different from those of spontaneous muta-
tions. In a separate experiment in Wistar rats
conducted by Unfried et al. (2002), a signif-
icant rise in 8-OHdG level after fiber treat-
ment (1 mg or 2 mg) was observed at both
10 and 20 wk after exposure. These results
indicate the involvement of hydroxyl radicals
in crocidolite-induced mutagenesis in vivo.
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Schurkes et al. (2004) observed similar levels
of 8-OHdG induction 10 wk after ip admin-
istration of 14.7 and 29.4 mg of MMVF 11
(man-made vitreous fibers 11, diameter 0.08–
4.20 μm; length 1.7–98.8 μm with a 25%
fraction of carcinogenic fibers). Interestingly,
the results showed that graded doses of
MMVF11 (14.7, 29.4, 50, or 100 mg) induced
a dose-dependent increase in 8-OHdG levels
20 wk after fiber administration. These data
by Unfried and colleagues (2002) confirm the
results from an earlier study, in which a sin-
gle dose of UICC amosite (2.5 mg) induced a
significant increase in DNA strand breaks 14
d after intratracheal instillation of the fibers
(Jung et al., 2000). Jiang et al. (2008) demon-
strated that at 4 wk after a single ip injection
of each of the UICC chrysotile, crocidolite, and
amosite asbestos fibers at 10 mg (5 mg/mL) into
rats, these induced significantly higher levels
of nuclear 8OHdG formation in mesothelium,
spleen, liver, and kidneys. Furthermore, there
were significant Fe deposits in the spleen, com-
pared with control animals (Jiang et al., 2008).
These findings provide evidence of DNA dam-
age effects of asbestos fibers under in vivo con-
ditions. However, ip or intratracheal instillation
is not the normal physiological route of fiber
exposure as it bypasses the mucociliary clear-
ance processes that are associated with inhala-
tion exposure and results in a higher exposure
level (Mossman et al., 2010, this issue). Thus,
inhalation studies are still required to validate
the results observed in the current studies.

Asbestos Fibers Interfere Physically With
Mitosis
Various asbestos fibers were reported to

physically interfere with the mitotic machiner-
ies of cells. In order for fibers to interfere
physically with mitosis of the target cells, two
requirements need to be fulfilled: First, fibers
need to be internalized through phagocytosis
by the target cell population. Second, the target
cell population must be proliferating (dividing)
(Kane, 1996).

Direct physical interference is believed
to be causal of numerical CA in asbestos
fiber-exposed cells. The supportive evidence

comes from the findings that (1) most types
of cells phagocytize fibers, except lympho-
cytes, and (2) crocidolite asbestos was observed
within mitotic cells, and in some cases directly
interacting with the chromosomes (Reinis
et al., 1979). Morphological studies, utilizing
light, electron, or video-enhanced time-lapse
microscopy, demonstrated that most of the
internalized crocidolite asbestos fibers were
surrounded by a phagolysosomal membrane,
preventing direct interaction with chromo-
somes. However, long fibers were found to be
trapped in the keratin microfilament cage pro-
truding into the spindle region of mitotic cells
(Ault et al., 1995; Jensen et al., 1994). Although
a protruding fiber generally did not interfere
with the segregation of chromosomes, it was
able to impair chromosomal migration in some
cases (Ault et al., 1995). These results indicate
that physical interaction of asbestos fibers with
the mitotic machinery induces missegregation
of chromosomes during mitosis, resulting in
aneuploidy. Furthermore, physical interference
of asbestos with the chromosomes of divid-
ing cells also produces structural CA. Anaphase
aberrations including bridges and sticky and
lagging chromosomes as a result of misseg-
regation of chromosomes were detected in
various asbestos fiber-treated mammalian cells
(Hesterberg & Barrett, 1985; Palekar et al.,
1987; Pelin et al., 1992; Yegles et al., 1993;
1995).

Effects of Fiber Characteristics, Fiber
Types, and Overload Issue
As mentioned earlier, fiber dimensions,

durability, and dose (the “three D’s”) as well
as surface properties were shown to be impor-
tant determinants of the biological activities of
fibers (Mossman, 1990; Stanton et al., 1977).
Different types of fibers possess varied physi-
cal and chemical prosperities; as a result, their
pathogenicity, especially carcinogenicity, is dif-
ferent. A recent meta-analysis suggested that
the variation in carcinogenic potency across
published epidemiology studies, especially for
mesothelioma, may be substantially reconciled
after adjusting fiber size and mineral type
(Berman, 2010).
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First, fiber dimension is an important
factor that affects the biological activity of
asbestos fibers. Compared with the relatively
large amount of literature demonstrating fiber
dimension to be an important factor in asbestos
carcinogenesis, there are only a few reported
studies on fiber dimension and mutagenic-
ity. However, given the known knowledge
that long and thin fibers produce increased
and prolonged release of ROS and RNS from
phagocytes due to “frustrated phagocytosis”
(repeated failing and trying to engulf fibers
by phagocytes), long fibers are likely to be
more genotoxic and mutagenic. In addition,
there is evidence that long fibers are also more
likely to interfere physically with mitosis in
dividing cells. Jensen and colleagues (1996)
demonstrated in monkey epithelial cells that
long asbestos fibers (15 to 55 μm) impaired
mitosis by interfering sterically with cytokine-
sis, disrupting cell division, while short fibers
were found to move out of the cleavage
zone. Using vertebrate epithelial cells, Cole
et al. (1991) observed that internalized cro-
cidolite fibers that were less than 5 μm in
length underwent saltatory, jumplike transport,
but not fibers over 5 μm in length. Transport
of long crocidolite fibers was mediated by
cytoplasmic microtubules. In addition, Hart
and colleagues (1994) observed that long–thick
glass fibers (MvL 475, 8 μm in diameter and
>50 μm in length) did not induce abnormali-
ties in the nucleus of CHO cells but provided
substrate for cell attachment. In contrast, the
long and thin glass fibers (MvL 901, aver-
age 1.4 μm in diameter and 22.2 μm in
length) tended to pierce through several adja-
cent cells, while the shorter fibers (MvL 475,
average 7 (diameter) × 18 (length) μm) were
completely phagocytosed by the cells. Both
groups of phagocytable fibers were associated
with abnormal (micro- and poly-) nuclei (Hart
et al., 1994). Current evidence suggests that
respirable fibers with high aspect ratio (the
ratio of the length to its diameter) are more
potent in inducing chromosomal changes in
exposed cells.

It is known that asbestos-associated cat-
alytic Fe is one of the main sources of

asbestos fiber-induced ROS production (Aust
et al., 2011, this issue). Amphiboles have
higher surface Fe content than serpentine.
Compared to chrysotile, similar concentrations
of amphiboles (e.g., crocidolite and amosite)
produce more DNA damage in vitro that is
directly proportional to the levels of redox-
active Fe mobilized and the production of
hydroxyl radical-like species (Kamp et al.,
1992; Hardy & Aust, 1995a, 1995b; Shukla,
et al., 2003a). Consistently, crocidolite and
amosite, but not chrysotile, produced DNA
double-strand breaks (DSB) and 8-OHdG for-
mation in target mesothelial cells (Jiang et al.,
2008). These results suggested that amphi-
boles are more mutagenic than serpentine and
the difference in mutagenic potential might
be accounted by the variance in surface Fe
activity. The opposite result observed in some
other studies may be due to differences in
sample preparation. For example, the prepa-
rations of UICC and NIEHS standard asbestos
fibers involved extensive grinding, which may
alter the physical or chemical characteristics of
these fibers. In addition, the characteristics of
same type of fibers may vary depending on the
sources/deposits (Berman, 2010). For example,
low-Fe serpentine fibers from certain deposits
may carry metal contaminants. Moreover, the
valence state and mobility of Fe are important
determinant factors of fiber mutagenic poten-
tial (Fubini et al., 2001; Gulumian et al., 1993;
Hardy & Aust, 1995a, 1995b). Further investi-
gations are necessary to better understand the
physicochemical properties of different types of
fibers.

The durability/biopersistence of asbestos
fibers is known to contribute to the increased
carcinogenicity of amphiboles observed in vivo
(Berman & Crump, 2008a, 2008b). However,
durability per se probably does not affect the
in vitro short-term mutagenicity of different
types of fibers. The clearance of both natural
and synthetic durable fibers is markedly slower
than that of less durable fibers, thus produc-
ing repeated damage and mutagenic events
as well as prolonged inflammatory responses
in exposed human subjects and animals.
Consistently, when the clearance mechanism
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is impaired, exposure to nondurable carbon
black (CB, 52.8 mg/m3) increased hprt muta-
tions in the rat lungs (Driscoll et al., 1996).
In contrast, subchronic inhalation of CB at
1.1 mg/m3, a low dose that does not affect
the clearance capability of the lung, did not
elicit any detectable adverse lung effects. This
may explain why some biodegradable glass
fibers have short-term in vitro mutagenicity
similar to that of carcinogenic fibers, but there
is lack of evidence of these fibers producing
carcinogenesis in vivo in humans and ani-
mals (Baan & Grosse, 2004; Hesterberg &
Hart, 2001; Lipworth et al., 2009; Topinka
et al., 2006a).

Lung overload is “a consequence of expo-
sure that results in a retained lung burden
of particles that is greater than the steady-
state burden predicted from the deposition
rates and clearance kinetics of particles inhaled
during exposure” (ILSI Risk Science Institute
Workshop Participants, 2000; Aust et al., 2011
this issue). Overload may impair macrophage
activities and subsequently the clearance of
fibers, producing retention of fibers in the body,
promoting carcinogenesis, and changing the
mechanisms of cellular toxicity (i.e., high dose
facilitates necrosis while low dose of exposure
induces apoptosis). Overload of low-toxicity
particles such as carbon black (CB), titanium
dioxide (TiO2), and coal mine dust were noted
to produce lung cancer in rodents, especially
rats (Borm et al., 2004; Driscoll et al., 1996),
though the relevance for human risk assess-
ment is uncertain (ILSI Risk Science Institute
Workshop Participants, 2000). Similarly, studies
show that asbestos fibers and combustion par-
ticles (i.e., particulate matter, PM) coexposure
slows the clearing of asbestos fibers from lungs
(Oberdorster, 1995, 2002). There are many
factors that affect particle loading, including
cumulative effect of multiple exposure, species
difference, individual susceptibility, and tem-
poral factors.

It is of concern that fiber concentrations
used in many published studies, especially in
vitro studies, are much higher than the realis-
tic environmentally relevant concentrations of
occupational and environmental exposure in

human subjects (Mossman et al., 2011, this
issue; Case et al., 2011, this issue). Using the
TEM measurements as reference, 1 μg asbestos
would approximately correspond to 108 fibers
(Breysse et al., 1989; Mast et al., 1995). When
a concentration of 1 μg/cm2 fibers is added
to 106 cells grown on a 100-mm tissue cul-
ture dish (surface area 58.1 cm2), theoreti-
cally, the cellular dose would be about 5800
fibers/cell if the fibers are 100% taken by the
cells (in reality it is usually less). Based on this
estimation, the concentration would be much
higher than the human exposure level in reality,
which is estimated to be less than 1 fiber/cell
based on the threshold limit value of 0.1 f/cm3

(ACGIH, 2001). However, Faux and colleagues
(2003) demonstrated that overload of cells in
culture usually does not occur when the con-
centration of asbestos fibers used is below
10 μg/cm2 fibers. Typically, overload occurs in
vivo at 1–3 mg or 200–300 cm2 fiber surface
area/rat lung (Borm et al., 2004). Therefore,
in this review the majority of studies that were
analyzed were conducted using concentrations
below the overload threshold.

Overload was shown to increase the
mutagenic yield in CB-exposed animal lungs
(Driscoll et al., 1996). It is of interest to know
whether overload might change the mutagenic
mechanisms of asbestos fibers. On one hand,
asbestos fibers produced genotoxicity and cell
toxicity in a concentration-dependent man-
ner (Hart et al., 1994). Frequently, asbestos
fiber-induced mutagenicity demonstrated
a decrease at high concentrations due to
cytotoxicity. In contrast, it is not known
whether overload might change the spec-
trum of asbestos fiber-induced mutations,
for example, in favor of one specific type of
mutation (i.e., chromosomal changes) instead
of another (i.e., gene mutations). Importantly,
it should be noted that, despite the disad-
vantage of studies conducted with graded
concentrations of fibers that are higher than
environmentally relevant occupational and
environmental exposure, these studies (1) are
necessary for mechanistic investigation of fiber
mutagenicity, (2) allow for a shortening of the
experimental period, and (3) are important
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for establishing a dose-response relationship
between fiber-exposure and the induction of
mutagenic events.

Enhanced Mutagenic Effects due to
Coexposure to Tobacco Smoke
There is evidence that concurrent exposure

to both asbestos fibers and cigarette smoke
resulted in a DNA-damaging response that is
synergistic in nature in both cell-free systems
and lung epithelial cells in vitro (Kamp et al.,
1992; 1998; Yuan et al., 2004; Testa et al.,
2011, this issue). Furthermore, exposure
of Sprague-Dawley rats to a combination
of 2.5 mg UICC amosite (single dose) and
cigarette smoke increased the number of
DNA strand breaks in lung epithelial cells 2
and 14 d after exposure (Jung et al., 2000).
Benzo[a]pyrene (BaP), a prototype carcino-
gen found in tobacco smoke, demonstrated
significant synergistic mutagenic effects with
amosite asbestos (single doses at 1, 2 mg, or
multiple doses of 2 mg/dose/wk for 4 wk) in
Big Blue rat lungs 4 wk after administration by
the same route—intratracheal instillation (Loli
et al., 2004). Similar effects were observed
with coexposure of BaP and man-made fibers,
including rock wool standard fibers RW1 (1700
fibers/μg, median length 23 μm, biological half
life 3–4 mo) and glass wool MMVF10 standard
fibers (1 μg sample contains 8300 fibers longer
than 5 μm, median length 26 μm, weighted
half-life 37 d) (Topinka et al., 2006b). The
potential mechanisms include that (1) tobacco
smoke carcinogens may be adsorbed on the
surface of asbestos fibers, thereby increasing
the uptake and retention time of these car-
cinogens, and (2) chemical carcinogens from
cigarette smoke or other sources may augment
the penetration of target cells by asbestos
fibers via oxidative radicals mediated pathway
(Churg et al., 1989; Fournier & Pezerat, 1986;
Kamp et al., 1992; Nelson & Kelsey, 2002;
Nymark et al., 2008). Nevertheless, further
studies are needed to better understand the
biologic basis for the well-established synergis-
tic interaction between asbestos and tobacco
smoke on the incidence of bronchogenic
carcinoma.

Nonmutagenic Mechanisms of Asbestos
Carcinogenesis

The influence of different types of asbestos
fibers in inducing nonmutagenic alterations in
relevant target cells and tissues was reviewed
previously. Chronic inflammation is a recog-
nized risk factor of human cancer (Federico,
et al., 2007, Kundu & Surh, 2008, Weitzman
& Gordon, 1990). Frustrated phagocytosis of
long asbestos fibers by alveolar macrophages
triggers inflammatory responses and the release
of ROS and RNS from the cells (Branchaud
et al., 1993; Kane, 1996). Reactive radical
species further recruit more macrophage and
other inflammatory cells to the lung. Thus,
persistence of asbestos fibers in the lungs
may trigger prolonged radical production and
chronic inflammation at the sites of fiber depo-
sition. In addition to inducing direct DNA
damage and mutagenesis, these processes also
lead to the sustained release of inflammatory
mediators and growth factors, expression of
transcription factors, and early response proto-
oncogenes, which in turn regulate fibrosis and
malignant transformation in asbestos-induced
pathogenesis.

Asbestos-induced chronic inflammation
and reactive radical species were found to
activate multiple signaling cascades (Kamp &
Weitzman, 1999; Kane, 1996; Manning et al.,
2002; Mossman & Churg, 1998; Shukla et al.,
2003a; Mossman et al., 2011, this issue). A
rapid increase of mitogen-activated protein
kinase (MAPK) signaling subsequently activated
transcription factors such as activator protein-1
(AP-1) and nuclear transcription factor kappa-B
(NFκB) in asbestos-exposed target cells. These
transcription factors are known to be involved
in the activation of a number of downstream
genes that regulate apoptosis, inflammation,
and proliferation changes, including cytokines,
chemokines, adhesion molecules, growth
factors, enzymes such as inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2
(COX-2), and proto-oncogenes such as c-fos,
c-jun, and c-myc. These genes might be asso-
ciated with asbestos-induced fibrogenesis and
carcinogenesis. Asbestos-induced oxidative
stress may also potentially regulate genes
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involved in other signaling cascades, including
DNA repair and cell cycle signaling, such
as tumor suppressor gene p53 (Kamp &
Weitzman, 1999, Kane, 1996). Recently,
ROS-dependent inflammasome (a caspase-
activating complex) activation was shown to be
an important sensor of asbestos and trigger of
pulmonary inflammation in target cells (Cassel
et al., 2008; Dostert et al., 2008).

Importantly, asbestos-associated mutagenic
and nonmutagenic pathways are interrelated
with each other and may coordinate each
other in promoting mutagenicity and carcino-
genesis. For example, asbestos-triggered muta-
genic events in critical genes associated with
cell growth, DNA repair, or other functional
processes may lead to modification of corre-
sponding signaling pathways. Similarly, chronic
inflammation may lead to the accumulation
of mutagenic events by increasing prolifera-
tion and producing apoptosis-resistant cells. In
addition, asbestos-induced biological activities,
such as production of ROS and RNS, may
induce both mutagenic effects and nonmuta-
genic signaling alterations in relevant target cells
(Kamp & Weitzman, 1999; Kane, 1996; Shukla
et al., 2003a).

MUTAGENESIS/CARCINOGENESIS AT
LOW DOSE

The mutagenicity of multiple types of
asbestos fibers was investigated in a wide
range of in vitro cell systems and some in
vivo experiments. Answering the question of
the effects at low doses leads to the neces-
sity for addressing a threshold issue. Threshold
is defined as the lowest dose of a chem-
ical (in this case asbestos fibers) at which
a specified measurable effect (in this case
mutagenicity/carcinogenicity) is observed and
below which an effect is not observed. To
address whether there is a threshold for
asbestos-induced mutagenicity/carcinogenicity
requires the knowledge of statistical dose-
response relationships that can only be
extracted from studies conducted with multiple
doses of fibers. However, few of the current

available animal and cell studies provide dose
response relationships. That is, most experi-
ments did not focus on the establishment of
a threshold value but rather on mechanis-
tic considerations and determination of the
dependence of tissue or cell response on fiber
characteristics, or the molecular mechanisms
accounting for the observed effects. The exist-
ing experiments were generally carried out with
a limited number of fiber doses. Therefore,
determination of a threshold for asbestos fibers
is limited by the existing database.

This section aims to summarize literature
findings on mutagenicity and carcinogenic-
ity focusing on relations between fiber doses
(animal experiments) or fiber concentrations
(cell systems) and DNA damage, chromosomal
changes, or tumor yield, respectively. Studies
are summarized in Tables 1A–1E. Types of
assays were quoted as “DNA” (referring to
8-OHdG, DNA breaks, and DNA repair), muta-
genesis, “chromo” (chromosomal aberrations,
SCE and MN), tumorigenicity in animals (as
“Tumor”), and transformation. In this process,
several situations were encountered:

1. Animal data dealing with a small number
of fiber doses. Statistical analyses were not
always provided or possible.

2. In vitro data determining mutagenic effect
in cell systems using a small number of fiber
concentrations, with or without statistical
analyses.

3. Experimental results providing dose-effect
relationships. It needs to be noted that
the presentation and format of data dif-
fer between different publications. Some
provide dose-response curves while others
provide table or histogram formats. As the
shape of the dose-effect curve is of inter-
est for threshold evaluation, in some cases
where the curve was not provided, a dose-
effect curve was constructed from estimated
values reported in the paper.

Despite a rather low number of experiments
carried out with a wide range of fiber doses,
this review attempts to be as comprehensive
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as possible to allow the comparison between
different studies in terms of dose and effects.
The idea was to determine an experimental
dose level (or range of dose levels) in which the
authors find/did not find an effect. Consensus
reports that summarize and evaluate the rel-
evant literature pertaining to the mutagenicity
and carcinogenicity of asbestos fibers are avail-
able. The purpose of this review is not to detail
each individual study analyzed by these con-
sensus reports. Instead, this review primarily
focuses on outlining the low-dose effects seen
from these reports.

Ideally, it would have been interesting to
determine LOAEL (lowest-observed-adverse-
effect level) and NOAEL (no-observed-
adverse-effect level). LOAEL is defined as the
lowest level at which there are statistically or
biologically significant increases in adverse
effects in exposed population compared with
controls. NOAEL is the highest exposure level
at which there is no statistically or biologically
significant increase in adverse effects, while
comparing exposed population with controls.
These values are generally estimated based
on animal data with multiple doses. However,
currently available asbestos mutagenesis stud-
ies were mainly carried out in cell systems with
rather few fiber concentrations. Due to the
aforementioned limitation of currently avail-
able data, some approximations have been
employed when determining whether a thresh-
old exists. First, a “surrogate” term is used when
“canonical” data are not available. In this case,
the LOAEL will be written as sLOAEL (surrogate
LOAEL) and the NOAEL as sNOAEL (surrogate
NOAEL). Second, when an insufficient number
of doses was used or when statistical analy-
ses were not given, lowest or highest doses
were quoted as potential lowest-observed-
adverse-effect level (pLOAEL) or potential
(highest) no-observed-adverse-effect level
(pNOAEL).

Animal Data on Tumor Incidence
The existing mutagenicity and carcino-

genicity studies in animals used different
routes of exposure including inhalation,

intratracheal instillation, and intracavitary
injection. Table 1D lists the experiments that
were carried out in vivo to test the tumori-
genicity in animals. Experiments reported
by Stanton and colleagues (1981) examined
the effects of both asbestos and nonasbestos
fibers, after implanting the fibers in the pleural
cavity of female Osborne-Mendel rats for more
than 1 yr. For all types of fibers tested by
these experiments, the probability of pleural
tumors correlated best with the number of
fibers with a size of less than 0.25 μm in
diameter and greater than 8 μm in length,
and correlated well with the number of fibers
<1.5 μm in diameter and >4 μm in length.
These data show that fiber dimensions play
an important role in the incidence of pleural
tumors. Nevertheless, data suggest that other
factors are likely to play a role, since tumors are
sometimes found in the absence of fibers of the
indicated size. This observation is confirmed by
post-analyses of the original data done by other
groups (Bonneau et al., 1986; Wylie et al.,
1987). Injection studies were also reviewed in
a U.S. Environmental Protection Agency (EPA)
report, and it was concluded that “reasonable
dose-response curves have been generated
using various sample masses of a single material
in some of these studies” (Berman & Crump,
2003). In these studies, dose-response curves
were demonstrated for UICC crocidolite and
chrysotile “A” (Bolton et al., 1984). These
results indicate that the relationship between
tumor incidence and log(dose) may be linear
and there is no effective threshold ( Berman &
Crump, 2003).

One study examined the relationship
between the injected dose and the devel-
opment of peritoneal mesothelioma in rats
using the UICC standard reference samples
of chrysotile, crocidolite, and amosite (Davis
et al., 1991). Doses injected into the peri-
toneal cavity ranged from 0.005 to 25 mg
(10 doses), thereby allowing the generation of
a dose-response curve that was found to be
logarithmic. Results demonstrated that “at the
lower end of the dose range, chrysotile and
amosite still produced a small proportion of
tumors although crocidolite did not.” In these
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experiments, the NOAEL is estimated to be
between 0.001 and 0.05 mg depending on the
fiber type (Table 1D). The fiber mass was con-
verted into number of fibers of different dimen-
sions in order to evaluate (1) whether mass
dose is the most appropriate dose parameter
and (2) the importance of fiber dimensions.
There were about 8 × 106–108 fibers in total,
among them 3 × 104–6 × 105 fibers with a size
of >5 μm in length and <0.25 μm in diam-
eter, and 1.5–9 × 105 fibers that are greater
than 8 μm in length. Moreover, time to death
from mesothelioma was analyzed using a stan-
dard hazard model. When dose was expressed
as the number of long fibers injected (>8 μm
in length), the hazard slopes for chrysotile, cro-
cidolite, and amosite were relatively close to
each other (Davis et al., 1991). This study
estimated relative hazard between fibers but
not absolute hazard. Nevertheless, data sug-
gested that a sample containing far fewer than
1.5 × 105 “Stanton” fibers (>8 μm in length)
rarely produces mesothelioma in rats. Other
data from these experiments showed that the
latent period for tumor induction increased as
the dose decreased. These results suggest that
a threshold exists, since at low doses the tumor
did not develop within the animal lifetime.
However, this finding does not imply that sim-
ilar dose-relationship would be found in other
species.

Berman et al. (1995) reviewed inhalation
studies conducted with AF/HAN rats exposed
to different types of asbestos fibers, and deter-
mined which exposure parameter(s) could be
used to predict the observed lung tumor or
mesothelioma incidence. A series of animal
studies all employing a common inhalation pro-
tocol was conducted (Berman et al., 1995;
Davis et al., 1978, 1980, 1985, 1986; Davis
& Jones, 1988). Consistent with the limitations
discussed in inoculation studies, no satisfying
univariate measure of exposure was found,
although the length parameter (>20 μm in
length) was highly correlated with tumor inci-
dence. In addition, the analysis defined an
“optimum exposure index” attributing a weight
to different classes of dimensions (Berman
et al., 1995). No consistent dose response was

noted between aerosol mass concentration of
fibers or total number of fibers per cubic cen-
timeter and lung tumor incidence, but a consis-
tent dose-response relationship was identified
between weighted airborne fiber concentration
and lung tumor incidence. This relationship did
not show a threshold.

Lippmann (1994) also reviewed published
animal data on chronic inhalation studies in
rats. Data were examined to determine dose-
response relationships for lung cancer and
mesothelioma according to fiber types and
dimensions. Dose-response relationships for
lung cancer, or both lung cancer and mesothe-
lioma, did not show a threshold limit. A poly-
nomial relationship of degree 2 was found for
lung cancer, and the correlation coefficient was
the best for fibers >20 μm in length.

Overall, limited animal data from chronic
inhalation studies did not show a thresh-
old limit for lung cancer and mesothelioma,
according to the fiber types and dimen-
sions tested (Lippmann, 1994). Intraperitoneal
injection with a dose as low as 50 μg pro-
duced a significant increase in the incidence
of mesotheliomas after exposure (Davis et al.,
1991). It seems that the effective dose is differ-
ent for mesothelioma and lung cancer induc-
tion, and for different types of fibers (i.e.,
chrysotile vs. crocidolite). Substantial efforts
from future in vivo studies need to clarify this
uncertainty.

Animal Data Mutagenicity and DNA
Damage
Several in vivo mutagenic assays were con-

ducted in animal studies as previously described
(Kociok et al., 1999; Rihn et al., 2000; Topinka
et al., 2004; Unfried et al., 2002) (Table 1C).
In addition, several studies examined fiber-
induced oxidative DNA damage or DNA strand
breaks in vivo (Jung et al., 2000; Unfried
et al., 2002; Schürkes et al., 2004; Jiang
et al., 2008) (Table 1A and earlier discussion).
Rihn and coworkers (2000) administered the
fibers through inhalation at a daily dose of
5.75 mg/m3, 6 h/d for 5 consecutive days,
while in the rest of the studies, animals were
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exposed to fibers through intratracheal instil-
lation or ip inoculation, at either one or two
of the single doses of 1, 2, 2.5, 5, or 10 mg,
or a weekly dose of 2 mg for 4 wk, or both
(Unfried et al., 2002; Schürkes et al., 2004;
Jiang et al., 2008). It is noteworthy that time of
exposure is also an important factor that affects
the DNA damage or mutation yields. Although
most of the studies detected significant effects
at wk 10 to 24 after exposure but not earlier
time points (i.e., 4 wk) (Kociok et al., 1999;
Schürkes et al., 2004; Topinka et al., 2004;
Unfried et al., 2002), in other studies asbestos
fiber significantly increased DNA damage or
mutation events after 4 wk or 14 d of expo-
sure (Jiang et al., 2008; Jung et al., 2000; Rihn
et al., 2000). In addition, the mutagenic effects
of fibers did not always show a time-dependent
increase. These results indicate that for DNA
damage and mutagenic endpoints, the estab-
lishment of NOAEL is difficult because multiple
time points need to be tested. Furthermore, only
a limited number of doses was used in each of
these studies. Therefore, only LOAEL, but not
NOAEL, may be extracted from these data.

According to these few in vivo studies
conducted using a limited dose range (1–10 mg
single dose or repeated doses of 5.73 mg/m3

crocidolite fibers), it seems that DNA dam-
age and mutagenicity were observed with
doses lower than those used in tumorigenetic
assays. Both DNA damage and mutations were
induced by single doses of 1 or 2 mg fibers fol-
lowing intratracheal instillation and ip inocula-
tion, respectively (Kociok et al., 1999; Topinka
et al., 2004; Unfried et al., 2002). Some stud-
ies detected no induction of mutation in animal
lungs at the lowest dose tested (Kociok et al.,
1999; Topinka et al., 2004). However, these
negative results might due to the detection limit
of the assay or the relatively short exposure
periods. Overall, additional in vivo studies need
to be conducted to test a sufficient number of
low-dose groups.

Data Obtained With Cells in Culture
In vitro mutagenic studies provide

important information that are relevant to

carcinogenic potency of fibers by studying
cancer-related cellular phenotypes and the
step-wise processes involved in the mechanism
of fiber carcinogenesis. Studies are summarized
in Tables 1A–1E. Few studies were carried out
using multiple fiber concentrations, rendering
the establishment of dose-response relation-
ship difficult, if not impossible. However, if
dose responses are available, the curve is
generally close to a linear or log shape when
plotted on a linear scale. These data suggest
that no threshold would be expected for
asbestos-induced DNA damage and mutagenic
effects in cultured cells, at least based on the
current knowledge. In the following, highlights
of the in vitro data cited in Tables 1A–1E,
with an emphasis on doses and shape of
dose-response curves, are provided.

Effects on DNA (as Assessed by Base
Oxidation, Breakage) Studies reporting both
LOAEL and NOAEL were not found. Based on
the statistics from an in vitro study, a concentra-
tion of 0.25 μg/cm2 enhanced DNA damage in
comparison with untreated cells (Kamp et al.,
1995). Meta-analysis on data from several pub-
lications identified effects on DNA with a dose
of 2 μg/cm2. When available, dose-response
curves are mostly of a linear or approximate log
shape. There are no sufficient in vivo data for
comparison.

Mutagenesis (Bacteria, HGPRT on
Eukaryotes, etc.)

Bacteria While early studies did not report
mutagenicity in bacteria exposed to asbestos
fibers (Chamberlain & Tarmy, 1977), more
recent studies demonstrated an enhancement
of revertants in the Ames test with crocido-
lite and chrysotile, or chrysotile only or with
richterite (Cleveland 1984; Faux et al., 1994a;
Howden & Faux, 1996a). Dose response was
not investigated in any of the studies.

Eukaryotes In one study, both LOAEL
(4.5 μg/cm2) and NOAEL (3.0 μg/cm2) were
found for NIEHS crocidolite (Park & Aust,
1998). Other studies observed significant muta-
genic effects with fiber concentrations higher
than those produced DNA effects in exposed
cells (Both et al., 1994; Hei et al., 1995; Huang
et al., 1978; Huang, 1979; Okayasu et al.,
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1999b; Reiss et al., 1983). A suggested shape of
dose-response curves cannot be extracted from
the currently available data.

Chromosomal Damage (Micronucleus,
Aneuploidy) Significant enhancement of
chromosome damage appears to be observed
with concentrations of 0.5–1 μg/cm2 for fibers
examined (chrysotile, crocidolite or amosite,
various sources). Concentration-response
relationships are too few to suggest a shape. In
addition, a trend for a threshold limit was not
evident.

Transformation Although the statistical
significance is not known, enhancement of
cell transformation was found with low con-
centrations of asbestos fibers (1–5 μg/cm2)
(Hesterberg & Barrett, 1984; Lu et al., 1988;
Mikalsen et al., 1988). These are similar to
the concentration ranges at which DNA and
chromosome damage and mutagenicity are
observed.

The evidence from the in vitro studies just
discussed suggests that there is no threshold
concentration for asbestos-induced mutagenic
effects. However, the determination of LOAEL
and NOAEL as well as the shape of dose-
response curves requires a sufficient number
of low concentrations to be tested. This is
generally not done in existing studies. This evi-
dence, together with the fact that few in vivo
mutagenic data are available, suggests that the
mutagenic effect of asbestos fibers at low con-
centrations is still unknown and more studies
are required to elucidate this uncertainty.

Summary It was demonstrated that the
biological activity of fibers is dependent, at
least partially, on fiber characteristics such as
dimension. The parameters used to quan-
tify fiber exposure usually are on a mass
basis, rendering comparisons between differ-
ent experiments difficult. Further studies need
to consider both the mass and number/surface
area of fibers while characterizing asbestos
exposure. The mutagenic and carcinogenic
effects of asbestos fibers at low doses are still
not known. The concept of a threshold dose
below which there is no mutagenic and car-
cinogenic responses upon fiber exposure is
still controversial. A better knowledge of the

dose-response relationship would provide a
better understanding of the mechanisms under-
lying mutagenesis and cell transformation by
asbestos. To carry out dose-response studies,
it is necessary to use a wide range of doses of
well characterized asbestos samples. Suggested
dose range may be extracted from the numer-
ous currently available data. Testing systems
already established, such as in vitro chromo-
some mutations and mitosis impairment assay,
in vivo mutagenesis, and large-scale genomic
analyses, may be adopted to develop new
mutagenic assays based on cellular responses
to DNA/chromosome damage in fiber-exposed
cells and tissues.

BIOLOGICAL ACTIVITIES THAT
CONTRIBUTE TO MUTAGENICITY AND
IMPACT OF TARGET CELL/TISSUE TYPE

Considerable in vitro and in vivo evi-
dence show that asbestos fibers act as car-
cinogens on all the major pulmonary and
pleural target cells (e.g., bronchial/alveolar
epithelial and mesothelial cells) (Committee on
Asbestos: Selected Health Effects, 2006). The
implicated mechanisms underlying asbestos-
induced carcinogenesis that are firmly estab-
lished involve mutagenic and nonmutagenic
(i.e., inflammation, mitogenesis, cell signaling
alterations, and cytotoxic apoptosis/necrosis)
pathways. Neither of these two mechanisms
fully accounts for the complex biological abnor-
malities produced by asbestos fibers. Asbestos-
induced pathophysiological responses are not
completely independent of, and may be
interrelated with, each other. Asbestos exerts
pleiotropic cellular and tissue-type specific
effects and nonmonotonic dose response at
the cellular and molecular levels following
exposure to physiologically relevant concen-
trations. Although the mechanisms underly-
ing asbestos-induced mutagenicity are well
established, this section further addresses this
issue from the aspects relevant to asbestos-
induced biological activities, tissue specificities,
and the interrelations between nonmutagenic
and mutagenic responses. The five plausi-
ble biological/pathological responses/activities
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that may contribute to asbestos mutagenicity
and carcinogenicity in relevant target cells,
directly or indirectly, are: (1) ROS and RNS
production, (2) DNA and chromosomal dam-
age, (3) apoptosis, (4) p53 expression, and
(5) inflammatory responses. The substantial in
vitro and in vivo evidence are highlighted in this
section.

ROS and RNS
ROS ROS including O2

·−, ·OH, and H2O2,
are important second messengers of asbestos
toxicity that promote malignant transformation
induced by multiple types of asbestos (Hardy
& Aust, 1995b; Kamp et al., 1992; Shukla
et al., 2003a; Aust et al., 2011, this issue).
As recently reviewed by Liu et al. (2010),
there are at least three mechanisms by which
asbestos generates ROS that include the fol-
lowing: (1) reactions at the surface of mineral
dusts, (2) activation of alveolar macrophages
(AM) or polymorphonuclear neutrophils (PMN),
inflammatory cells in the distal lung responsible
for clearing the fibers, and (3) lung target cell
mitochondrial dysfunction (e.g., lung epithe-
lial cells). In cell-free systems, electron spin
resonance (ESR) spectroscopy studies directly
demonstrated that asbestos induces the pro-
duction of ROS (Kamp et al., 1992; Weitzman
& Graceffa, 1984). Following asbestos inhala-
tion into the lung, asbestos bodies are formed
as the fibers are coated with mucopolysaccha-
rides and Fe on its surface, the latter of which
is redox-active, can cycle between the oxi-
dized and reduced forms, and triggers DNA
damage (Hardy & Aust, 1995b; Kamp et al.,
1992; Shukla et al., 2003a). Consistent with
these observations suggesting that asbestos alters
lung Fe homeostasis, increased levels of bron-
choalveolar lavage fluid (BALF) Fe, transferrin,
transferrin receptors, lactoferrin, and ferritin
were detected in asbestos-exposed individu-
als (Ghio et al., 2008). Further, several lines
of evidence suggest a crucial role for Fe-
derived free radicals in mediating asbestos
toxicity. First, several investigators showed that
Fe chelators inhibit asbestos-induced ·OH for-
mation in cell-free systems as well as in relevant
lung target cells (Kamp et al., 1992; Hardy
& Aust, 1995b; Shukla et al., 2003a; Ghio

et al., 2008). Second, asbestos promotes antiox-
idant enzyme (AOE) expression in lung epithe-
lial and mesothelial cells, while exogenously
administered AOE reduces asbestos-induced
ROS production (Hardy & Aust, 1995b; Kamp
et al., 1992; Shukla et al., 2003a). Finally,
there are considerable in vivo data demonstrat-
ing that asbestos triggers ROS production—for
example, a single intratracheal instillation of
Fe-loaded chrysotile asbestos induces ·OH in
rat lungs as assessed by electron spin resonance
(ESR) spectroscopy (Schapira et al., 1994). As
reviewed in detail elsewhere, there is some
in vivo evidence that Fe chelators and AOE
may attenuate asbestos-induced mesothelial
and epithelial cell toxicity. Collectively, these
data demonstrate that asbestos augments ROS
production in all the relevant lung target tis-
sues and cells. Phagocytosis of fibers is often
associated with extracellular oxyradical produc-
tion from the target cells through activation
of the membrane-associated enzyme complex
NADPH (nicotinamide adenine dinucleotide
phosphate) oxidases. Asbestos-induced ROS
production is not simply the result of “frus-
trated phagocytosis” since, as noted earlier,
asbestos induces cellular enzymes involved in
ROS production and activates the mitochondria
of target cells.

RNS Asbestos also induces the produc-
tion of nitric oxide (.NO) and peroxynitrite
(ONOO−), which may be important in car-
cinogenesis (Thomas et al., 1994; Xu et al.,
2007a). Inhibitors of nitric oxide synthase
(NOS) prevent asbestos-induced formation of
DNA adducts, such as 8-OHdG, in human
A549 lung epithelial cells (Chao et al., 1996).
A significant induction in iNOS protein expres-
sion and the formation of nitrotyrosine, a
marker of ONOO− formation, in mesothe-
lial cells was demonstrated after exposure to
4 μg/cm2 NIEHS chrysotile and crocidolite
fibers for 36 h, while nonfibrous carbonyl
Fe sphere did not show any marked effect
(Choe et al., 1998). NIEHS crocidolite asbestos,
but not cristobalite silica, induced transactiva-
tion of iNOS in murine macrophage-like cells
in vitro at all concentrations (2.5–10 μg/cm2)
24 h after exposure (Quinlan et al., 1998).
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There are also in vivo data implicating that
asbestos induces RNS. For example, Quinlan
et al. (1998) observed steady-state production
of nitrites/nitrates by AM from rats 3 d after
inhalation of 7–10 mg/m3 NIEHS chrysotile
and crocidolite fibers. In rats, .NO level
and NOS activity in AM of the lungs are
increased following intratracheal instillation of
UICC chrysotile asbestos (Iguchi et al., 1996).
One week after inhalation of approximately
6.88 mg/m3 fibers for 2 wk, NIEHS crocido-
lite fibers were found to translocate to the
pleural space of the rat and augment genera-
tion of ROS and RNS that occurred in asso-
ciation with persistent pleural inflammation
and cytokine production (Choe et al., 1997).
Both NIEHS chrysotile and crocidolite fibers
triggered NOS expression in macrophages by
activating an Fe-sensitive transcription factor
in rats exposed intermittently over 2 wk to
6.88–9.24 mg/m3 fibers (Tanaka et al., 1998).
Further, strong immunoreactivity for nitrotyro-
sine was detected in lungs of these rats at the
alveolar duct bifurcations and within the bron-
chiolar epithelium (Tanaka et al., 1998). Thus,
these findings firmly establish the presence of
RNS following asbestos exposure (Zhu et al.,
1998).

Overall, asbestos fibers may generate
ROS and RNS production through several
mechanisms: (1) asbestos-associated surface
Fe-catalyzed ROS production, (2) release of
ROS from phagocytes such as macrophages
upon the activation of these cells by
asbestos, (3) production of ROS from
damaged/interrupted mitochondrial respiratory
chain in target cells, and (4) induction of iNOS by
asbestos and asbestos-induced oxidative stress
(Kamp et al., 1992; Kamp & Weitzman, 1999;
Kane, 1996; Panduri et al., 2004; Shukla et al.,
2003b; Toyokuni, 2009). The in vitro and in
vivo data addressing the causal role of ROS and
RNS in asbestos-induced DNA/chromosomal
damage and mutagenesis in target cells/tissues
was previously summarized. The interrelations
between ROS and RNS and other asbestos-
induced biological activities (i.e., apoptosis,
P53 expression and inflammation) are analyzed
below, if available.

DNA and Chromosomal Damage

DNA and chromosomal damage is an early
event in asbestos-exposed cells that may con-
tribute to the malignant potential of fibers
(Kamp et al., 1992; Hardy & Aust, 1995b;
Shukla et al., 2003a). Over the last 20 yr, accu-
mulating evidence have convincingly estab-
lished that all types of asbestos induce DNA
and chromosomal damage in all the relevant
lung and pleural target cells as assessed using
a variety of techniques. These effects occur in
an asbestos concentration-dependent manner
ranging from 0.05 to 250 μg/cm2 (Jaurand,
1997; Upadhyay & Kamp, 2003). Compared
to alveolar epithelial and mesothelial cells,
bronchial epithelial cells have less DNA dam-
age following asbestos exposure, which was
attributed to their greater antioxidant capacity
(Gadbois & Lehnert 1997; Nygren et al., 2004;
Puhakka et al., 2002). Similarly, in cultured
alveolar type 1 (WI-26 and primary isolated rat
alveolar epithelial cells)- and type 2 (A549)-like
epithelial cell lines, there is a suggestion that
alveolar type 1 cells, which account for >90%
of the lung surface area, are more susceptible to
amosite asbestos (5–250 μg/cm2) and cigarette
smoke-induced DNA damage and subsequent
poly-ADP-ribose polymerase (PARP) activation,
an enzyme involved in DNA repair and apop-
tosis (Kamp et al., 1998, 2001).

As previously described, asbestos-induced
DNA and chromosomal damage may be medi-
ated through various mechanisms including
asbestos-induced ROS and RNS, physical inter-
ference of asbestos fibers with mitosis, syn-
ergistic effect between asbestos and cigarette
smoke, and altered cellular growth and death
signaling pathways. Although fiber-induced
DNA and chromosomal damages are fre-
quently associated with cellular toxicity, there
are occasions whereby non-critically damaged
cells bypass DNA repair pathways, or apop-
totic or other cellular death pathways, and
successfully passing on the damaged genome
to daughter cells. These lead to multiple muta-
genic effects including point mutations, large
deletion at gene and chromosomal levels, and
loss of heterozygosity in various target cells
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(Gulumian, 2005; Jaurand, 1997; Kamp et al.,
1992; Kamp & Weitzman, 1999; Upadhyay &
Kamp, 2003).

It should be noted that although the evi-
dence from many studies indicates that ROS
is one of the major causes of asbestos-induced
DNA and chromosomal damage, there are no
animal models or human studies showing that
blocking any one of these effects is bene-
ficial against mutagenesis. Strategies blocking
site-specific ·OH and ONOO− production or
targeting the various sources of ROS/RNS pro-
duction may be important but need to be
carefully considered. For example, the finding
from large clinical trials (e.g., ATBC and CARET)
that beta-carotene paradoxically increases the
incidence of lung cancer in smoking asbestos
workers, may be explained by beta-carotene
acting as an antioxidant at low concentrations
but as a prooxidant at high concentrations or in
the setting of chronic oxidative stress (Palozza
2005).

Apoptosis Apoptosis (programmed cell
death) is an important mechanism by which
cells with DNA damage are eliminated with-
out eliciting an inflammatory response (Shukla
et al., 2003a; Upadhyay & Kamp, 2003;
Kroemer et al., 2007; Kim et al., 2008; Franco
et al., 2009). Apoptotic cells are characterized
by nuclear chromatid condensation, endonu-
clease activation resulting in DNA fragmen-
tation, translocation of phosphotidylserine to
the outer plasma membrane, and genera-
tion of double-stranded DNA breaks. The two
major pathways regulating apoptosis include
the (1) mitochondrial (intrinsic) pathway and
(2) death receptor (extrinsic) pathway. The
mitochondrial death pathway mediates apop-
tosis induced by DNA damage. The Bcl-2 fam-
ily of anti-apoptotic (e.g., Bcl-2, Bcl-xl, etc.)
and pro-apoptotic proteins (e.g., Bax/Bak and
BH3 only-like proteins) localize to the mito-
chondria and endoplasmic reticulum where
they regulate intrinsic cell death. Diverse apop-
totic stimuli, including asbestos fibers, trigger
cytochrome c release from the mitochondria
that binds apoptosis activating factor 1 (APAF-1)
and caspase-9 to activate caspase-3 (Franco
et al., 2009; Kim et al., 2008; Kroemer et al.,

2007; Shukla et al., 2003a; Upadhyay & Kamp,
2003). Cytochrome c release results from a col-
lapse in the mitochondrial membrane potential
(�ψm) generated by a H+ gradient produced
by the electron transport chain (ETC).

It was established that asbestos triggers
apoptosis in all relevant lung target cells
(Franco et al., 2009; Shukla et al., 2003a;
Upadhyay & Kamp, 2003). Apoptosis occurs in
an asbestos concentration-dependent manner
(1.25–100 μg/cm2) as detected by a variety
of assays including the DNA-specific label-
ing and terminal deoxynucleotidyl transferase-
mediated deoxyuridine triphosphate nick-end
labeling (TUNEL) staining nuclear morphology,
electron microscopy, DNA laddering, annexin
V binding, caspase-3 activation, and a DNA
fragmentation enzyme-linked immunosorbent
assay (ELISA) (Aljandali et al., 2001; BeruBe
et al., 1996; Broaddus et al., 1996; Buder-
Hoffmann et al., 2009; Burmeister et al.,
2004; Davis et al., 1997; Dopp et al., 1995a;
Goldberg et al., 1997; Hamilton et al., 1996;
Jimenez et al., 1997; Kido et al., 2008; Levresse
et al., 2000; Marchi et al., 2000; Narasimhan
et al., 1998; Panduri et al., 2003, 2004,
2006, 2009; Shukla et al., 2003b, 2003c;
Stern et al., 2006; Yuan et al., 2004). In gen-
eral, a relatively low dose of asbestos expo-
sure (<1 μg/cm2) results in proliferative sig-
naling in lung epithelial and mesothelial cells,
while higher asbestos doses result in apopto-
sis and proliferation blockade (Shukla et al.,
2003a; Yuan et al., 2004). It is noteworthy
that asbestos-induced necrosis (not addressed
in this document), another form of cell death,
usually occurs at high cytotoxic doses that
put the cells under extreme physicochemi-
cal stress (Festjens et al., 2006). Compared to
primary cultured mesothelial cells, malignant
mesothelioma cell lines are resistant to apop-
tosis (Goldberg et al., 1997). Several studies
implicated a role for Fe-derived ROS based on
the protective effect of Fe chelators and free
radical scavengers on asbestos-induced apop-
tosis (Aljandali et al., 2001; BeruBe et al., 1996;
Broaddus et al., 1996; Hamilton et al., 1996;
Jimenez et al., 1997). Furthermore, in vitro
studies established that asbestos activated
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mitochondria-regulated apoptosis in cultured
alveolar epithelial cells (AEC) and mesothe-
lial cells based upon the following findings:
(1) Preventing activation and mitochondrial
translocation of protein kinase C δ (PKCδ) is
protective, (2) lung epithelial cells that are
incapable of producing mitochondrial ROS
(ρ0 A549 cells) are resistant to asbestos-
induced intrinsic apoptosis, and (3) overexpres-
sion of mitochondria-targeted 8-oxoG-DNA
glycosylase (a DNA repair protein involved
in base excision repair) attenuates asbestos-
induced intrinsic apoptosis (Aljandali et al.,
2001; Buder-Hoffmann et al., 2009; Kido
et al., 2008; Panduri et al., 2003, 2004, 2006,
2009; Shukla et al., 2003b, 2003c; Stern et al.,
2006). These in vitro studies are corroborated
by in vivo evidence showing that asbestos
(amosite, crocidolite, and chrysotile) induces
apoptosis in cells at the bronchoalveolar duct
junctions and AEC as assessed by TUNEL stain-
ing and TEM as well as in mesothelial cells as
assessed by morphologic change in cytokeratin
(BeruBe et al., 1996; Both et al., 1995; Jung
et al., 2000; Marchi et al., 2000; Panduri et al.,
2006; Stern et al., 2006). These findings sug-
gest various types of asbestos induce apoptosis
in all the relevant lung and pleural target cells.

Because the link between asbestos-induced
apoptosis and mutagenesis is not completely
known, cell and tissue type specific effects
following exposure to different asbestos fiber
types are lacking. Excess apoptosis probably
has been involved in promoting excessive cell
death, pulmonary injury and fibrosis in asbestos-
exposed lungs. Studies showed that asbestos
fibers (1–25 μg/cm2) induced concentration-
dependent apoptosis (up to over 30%) in lung
epithelial cells and rat, rabbit, or human pleu-
ral mesothelial cells. This phenomenon was not
observed after exposure of cells to a number
of nonelongated particles at relatively high con-
centrations (10 or 25 μg/cm2) (BeruBe et al.,
1996; Broaddus et al., 1996; Kamp et al.,
2002). However, failure of apoptosis of cells
with unrepaired DNA and chromosomal dam-
age after chronic exposure to asbestos may lead
to permanent genetic alterations and trigger
the development of a clone of cancerous cells,

thus contributing to asbestos-induced muta-
genicity and carcinogenicity (Thompson, 1995).
Consistently, malignant mesothelioma cells are
found to be apoptosis resistant (Fennell & Rudd,
2004; Narasimhan et al., 1998). Studies are
underway exploring the underlying molecu-
lar mechanisms. Aung and colleagues (2007)
showed that asbestos induces ferritin heavy
chain (FHC) expression in human mesothe-
lial cells and malignant mesothelioma (MM)
cell lines. Notably, FHC acted as an anti-
apoptotic protein against oxidative stress since
silencing FHC using small interfering RNA pro-
motes apoptosis in MM cells (Aung et al.,
2007). In addition, taurolidine preferentially
augmented apoptosis in mesothelioma cells but
not in nonneoplastic human mesothelial cells by
mechanisms involving an inhibition of oxidative
stress and AKT signaling (Aceto et al., 2009).
Altered apoptosis in immune cells may also be
important. For example, a T-cell line rendered
resistant to 10 μg/ml chrysotile B-induced
apoptosis following 8 mo of exposure was char-
acterized by increased Bcl-2 expression, excess
IL-10 expression, and STAT3 activation, all of
which could be blocked to trigger apopto-
sis (Miura et al., 2006). One group showed
that asbestos-induced intrinsic apoptosis in lung
epithelial cells was blocked by overexpression
of mitochondrial aconitase, a key enzyme in
the Kreb’s cycle implicated in preserving mito-
chondrial DNA (mtDNA) (Panduri et al., 2009).
Furthermore, overexpression of mitochondria-
targeted hOgg1 (define), which primarily func-
tions to preserve mitochondrial aconitase,
prevented asbestos- and H2O2-induced AEC
mitochondrial dysfunction and intrinsic apop-
tosis (Panduri et al., 2009). Numerous groups are
targeting a wide range of molecular pathways to
overcome the resistance of malignant mesothe-
lioma to apoptosis (Villanova et al., 2008).
Additional studies are warranted to better
understand the molecular mechanisms underly-
ing asbestos-induced apoptosis, how apoptosis
resistant cells are formed during mutagene-
sis, and whether there are unique molecular
apoptotic signatures in the various lung target
cells. Further, it will be important to determine
the translational significance of these findings
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in animal models and in humans exposed to
asbestos.

p53 Altered p53 expression is also
implicated in the pathophysiology of
asbestos-associated malignancies. p53 is a
transcriptional factor and a critical DNA dam-
age response molecule that affects numerous
genes involved in cell cycle arrest and apoptosis
(when DNA damage is extensive) in part by the
intrinsic death pathway (Janicke et al., 2008;
Vousden & Prives, 2009). A normal functioning
p53 response after exposure to DNA damaging
agents prevents mutations from accumulating.
Not surprisingly, the most common mutations
in human tumors involve the p53 gene family
members (Janicke et al., 2008; Vousden &
Prives, 2009). Mutations in the p53 gene
in lung cancer were associated with asbestos
exposure (Liu et al., 1998; Nymark et al., 2008;
Wang et al., 1995), while opposite results were
also reported (Husgafvel-Pursiainen et al.,
1999). Although the association between p53
mutation and asbestos exposure in lung cancer
patients has been controversial, it is established
that asbestos induces p53 expression in lung
epithelial and mesothelial cells that results
in cell cycle arrest and intrinsic apoptosis
(Burmeister et al., 2004; Johnson & Jaramillo,
1997; Kopnin et al., 2004; Levresse et al.,
1997; Matsuoka et al., 2003; Paakko et al.,
1998; Panduri et al., 2006). p21CIP1/WAF1/SD11

(p21) is a family of proteins (p21, p27 and
p57) downstream of p53 expressed during
a p53 genotoxic stress response following
exposure to DNA damaging agents including
asbestos, resulting in cell cycle arrest to allow
time for DNA repair (Johnson et al., 1997;
Levresse et al., 1997; Tuder et al., 2008).
Activation of p53-dependent transcription is
crucial for triggering asbestos-induced AEC
mitochondria-regulated apoptosis (Panduri
et al., 2006; Topinka et al., 2004). The levels of
p53 accumulation in the respiratory epithelium
of lung cancer patients with asbestosis and p53
point mutations are widely evident (Husgafvel-
Pursiainen et al., 1997; Nuorva et al., 1994;
Panduri et al., 2006; Topinka et al., 2004).
Crocidolite asbestos (0.2–20 μg/cm2) pro-
motes p53 gene mutations predominantly in

exons 9–11 in BALB/c-3T3 cells in a non-
concentration-dependent manner (Lin et al.,
2000). Furthermore, there are in vivo studies
showing that a single dose of 5-h aerosol
chrysotile asbestos exposure induces p53
expression in vivo in lung epithelial cells at
the bronchiolar–alveolar duct junctions where
fibers are initially deposited (Mishra et al.,
1997). Finally, gene expression microarray
studies confirmed a prominent role for p53
expression in mesothelial and lung epithelial
cells (Hevel et al., 2008; Nymark et al., 2007).
Collectively, these data indicate that asbestos
fibers modify the p53 signaling pathway in
exposed lung epithelium and mesothelium.

Despite the prominent role of p53 in medi-
ating asbestos-induced mitochondrial dysfunc-
tion and intrinsic apoptosis in AEC, studies
targeting p53 in order to modulate asbestos-
induced toxicity show conflicting findings. For
example, lung cancers and mesotheliomas that
occur following asbestos exposure develop
more rapidly in mice with compromised p53
function (Vaslet et al., 2002; Morris et al.,
2004; Yee et al., 2008). Asbestos-induced p53
expression in the lung epithelium is blocked
by phytic acid, an Fe chelator that inhibits
asbestos-induced pulmonary fibrosis in vivo
(Mishra et al., 1997; Panduri et al., 2006;
Xu et al., 1999). However, asbestos-induced
pulmonary fibrosis is increased in mice express-
ing a dominant-negative mutant form of p53,
compared with control mice expressing wild-
type p53 (Nelson et al., 2001). The expla-
nation for these seemingly disparate findings
requires further study but may in part be
due to the diverse life and death functions of
p53, and the dynamic expression of p53 over
time. For example, mitochondrial-localized
p53 enhances the accuracy of mtDNA synthe-
sis, suggesting that p53 serves as a guardian
of the mitochondrial genome (Bakhanashvili
et al., 2008). In the absence of functional p53
proteins, it is likely that the resultant increase
in genomic instability due to impaired control
of DNA damage and cell cycle arrest may pro-
mote tumor yield. Thus, additional studies are
necessary to better define the precise role of
p53 in all the relevant lung and pleural target
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cells following asbestos exposure. It is notewor-
thy that the change in expression of other genes
that might be implicated in the pathogenesis of
asbestos-induced carcinogenicity is previously
reviewed.

Inflammation
Biopersistent asbestos fibers trigger chronic

inflammatory responses both in animal models
and in the lungs of patients with asbestos-
related pulmonary diseases (Rom et al., 1991;
Mossman & Churg, 1998; Kamp & Weitzman,
1999; Nymark et al., 2008). Asbestos-induced
lung inflammation can promote secondary
mutagenicity by releasing ROS/RNS from acti-
vated AM, lung epithelial cells, and mesothelial
cells (Kamp & Weitzman, 1999; Mossman &
Churg, 1998; Nymark et al., 2008; Rom et al.,
1991). Kamp et al. (1992) demonstrated all
forms of asbestos activate animal and human
PMN and AM to release ROS. Activated lung
target cells attempting to clear the fibers from
the lung, especially AM and lung epithelial
cells, produce cytokines, chemokines, pro-
teases, and growth factors that promote cellular
proliferation and tissue repair but, if persis-
tently activated, lead to fibrosis and mutage-
nesis (Rom et al., 1991; Mossman & Churg,
1998; Kamp & Weitzman, 1999; Nymark
et al., 2008). A murine laser capture microdis-
section study documented that 10 mg/m3

chrysotile asbestos induced gene expression
(tumor necrosis factor [TNF]-α, transforming
growth factor [TGF]-β, and others) at the
bronchiolar–alveolar duct junctions; this loca-
tion is precisely where fiber deposition is the
greatest in animals exposed for 2 or 3 d (Yin
et al., 2007). TNF-α is prominently implicated
in the direct association between inflammation
and malignancy because it is crucial for medi-
ating tumor promotion and cell transforma-
tion in various model systems (Balkwill, 2006;
Suganuma et al., 1999). In human mesothelial
cells, TNF-α prevented asbestos-induced cell
death via a nuclear factor (NF)-κB-dependent
mechanism despite the presence of cytoge-
netic abnormalities (Yang et al., 2006). It was
established that asbestos-induced expression of

TNF-α and other pro-inflammatory cytokines is
mediated through MAPK pathways. For exam-
ple, evidence shows that in human monocytes,
increased TNF-α gene expression in patients
with asbestosis is due to constitutively activated
p38 and decreased phosphorylated extracel-
lular signal-regulated kinase (ERK) when com-
pared to normal subjects (Tephly & Carter,
2008). Asbestos-induced MAPK pathway mem-
bers are important second messengers crucial
for mediating cell surface signals to the nucleus
(Davis et al., 1997; Jimenez et al., 1997). These
studies underscore the importance of inflam-
mation and, in particular, the role of MAPK,
TNF-α, and NF-κB-dependent signaling path-
ways in the pathogenesis of asbestos-induced
carcinogenesis.

Another recently described mechanism by
which carcinogenic mineral fibers such as
asbestos, but not inert particles, activate pul-
monary inflammation is via ROS-mediated
Nalp3 inflammasome sensing (Cassel et al.,
2008; Dostert et al., 2008). Inflammasome,
a complex of proteins that possess distinct
roles in the innate defense system, is con-
tained in macrophages and neutrophils and
considered as cellular sensors of danger sig-
nals (Drenth & van der Meer, 2006; Tschopp
et al., 2003). Nalp3 stands for Nacht domain-,
leucine-rich repeat-, and pyrin domain (PYD)-
containing protein 3. It is a member of the
NLR (NOD-like receptor) family of more than
20 proteins that contain a caspase activation
and recruitment domain (CARD) and acti-
vates caspase-1 in response to diverse stimuli
(Petrilli et al., 2007). The Nalp3 inflammasome
is formed when Nalp3 activation recruits the
inflammasome adaptor apoptosis-associated
speck-like protein containing a CARD (ASC)
and then caspase-1 by CARD–CARD inter-
actions. After exposure to 40 μg/cm2 or
0.0.5–0.2 mg/ml chrysotile asbestos for 6 h,
lipopolysaccharide (LPS)-primed macrophages
that derived from murine bone marrow of
wild-type C57BL/6 mice showed a signifi-
cant activation of Nalp3 inflammasome and
the subsequent secretion of the proinflamma-
tory cytokine interleukin-1β (IL-1β). Similarly,
LPS-primed macrophages derived from Nalp3,
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ASC, or caspase-1 deficient mice showed a
marked defect in their ability to secrete IL-1β

in response to asbestos exposure (Cassel et al.,
2008; Dostert et al., 2008). Similarly, in Nalp3,
ASC, or caspase-1 deficient mice, NIEHS
chrysotile asbestos (approximately 7 mg/m3

air for 6 h/d for a total of 8 d, animals
sacrificed on d 9) or silica (repeated dose
of 20 mg/ml on d 0 and 14, animals sac-
rificed on d 30)-induced lung inflammatory
cell recruitment and cytokine production (inter-
leukin [IL]-1β and CXCL1 [chemokine (C-X-C
motif) ligand 1]) are reduced compared to
wild-type mice (Cassel et al., 2008; Dostert
et al., 2008). The activation of inflammasome
observed in these studies was triggered by
ROS, which was generated by NADPH oxidase
upon fiber phagocytosis or mitochondria oxida-
tive phosphorylation, or both. These findings
demonstrate a key role for Nalp3 inflamma-
some in recognizing fibers and other airborne
pathogens and triggering chronic inflammation.

The direct link between asbestos-induced
specific inflammatory stimuli and carcinogen-
esis is not established. Current data suggest
that inflammation might mediate this process
by promoting cell proliferation and resis-
tance to apoptosis. In murine lung epithe-
lium, disruption of MAPK-1 (MEK1) using a
dominant-negative transgene targeted to the
bronchiolar epithelium with the CC10 pro-
moter inhibited asbestos-induced proliferation
and procollagen gene expression (Manning
et al., 2008). In addition, IL-1β and TNF-α,
the major cytokines released by macrophages
after inhalation of asbestos, were found to
regulate human mesothelial cell proliferation
by promote the transformation of these cells
(Wang et al., 2004). Furthermore, inactivation
of the AKT and MAPK pathways appears crucial
for triggering asbestos-induced AEC apoptosis
(Baldys et al., 2007). The AKT/mammalian tar-
get of rapamycin (mTOR) signaling pathways
augment tumor formation in part by promot-
ing the formation of cells that are resistant to
apoptosis (Chiang & Abraham, 2007; Guertin
& Sabatini, 2007). Wilson et al. (2008) showed
that mTOR increased survival of MM cells
and that rapamycin, an mTOR inhibitor, or

silencing of p–S6K, a major downstream tar-
get of mTOR, augmented cell death of these
otherwise apoptosis-resistant MM cells. Thus,
targeted disruption of MKP-3 or activated p38
in macrophages may limit TNF-α gene expres-
sion or regulate AKT/MAPK/mTOR signaling in
the lung epithelium or MM cells and yields
novel approaches that merit additional studies.

Although asbestos triggers inflammatory
responses in target tissues and cells, there are
no animal models or human studies showing
that blocking any one aspect of inflammation
is beneficial against mutagenesis or malignant
transformation. The link between inflammation
and malignancies arising in humans exposed to
asbestos merits further study, especially the role
of the Nalp3 inflammasome. Future confirma-
tory studies are required to complete this link
as well as to better characterize which inflam-
matory signal are crucial for asbestos-induced
mutagenesis in humans.

Summary
Overall, five biological responses that might

facilitate each other in promoting asbestos-
induced mutagenicity in a highly interrelated
fashion are described. Data from existing
studies suggest that asbestos fibers induce
ROS/RNS production, DNA and chromoso-
mal damage response, p53 activation, apopto-
sis, and inflammation in all the relevant lung
and pleural target cells. In addition, asbestos-
induced responses show cell type specificity.
Following asbestos inhalation, AM and lung
epithelial cells rapidly internalize the relatively
short fibers, while mesothelial cells also take up
the fibers upon their migration to the pleura.
In comparison with alveolar epithelial and
mesothelial cells, bronchial epithelial cells are
relatively resistant to asbestos-induced DNA
damage, in part because of their greater antiox-
idant capacity (Gadbois & Lehnert, 1997;
Nygren et al., 2004; Puhakka et al., 2002).
Data suggest that alveolar type 1 epithelial
cells are more susceptible than type 2 cells
to asbestos-induced DNA damage and sub-
sequent PARP activation (Kamp et al., 1998,
2001). Confirmatory studies are needed to
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assess these findings in primary isolated human
AEC for a better understanding of the mecha-
nism involved.

The findings from existing studies confirm
that asbestos-induced mutagenic and nonmu-
tagenic pathways are overlapping and interre-
lated with each other. However, it is not clear
how the complex overlapping signaling path-
ways regulating ROS/RNS production, DNA
and chromosomal damage response, p53 acti-
vation, apoptosis, and inflammation are coor-
dinated in promoting a mutagenic response
following asbestos exposure. In addition, clear-
cut evidence that blocking any one of the five
known carcinogenic pathways would be bene-
ficial against asbestos–induced mutagenesis has
not been provided by any animal studies. In
this regard, future studies using transgenic ani-
mal models and pharmacologic and genetic
strategies targeting each of these five key com-
ponents will help to better understand the
crucial role of each in promoting mutagenicity
in relevant target cells. Furthermore, with rare
exceptions, there are inadequate human data
validating the major in vitro and in vivo ani-
mal studies implicating ROS/RNS, DNA dam-
age, apoptosis, and p53 activation in mediating
asbestos-induced mutagenesis in each of the
lung target cells. Therefore, human studies in
asbestos-exposed individuals with or without a
manifestation of asbestos-related diseases are
critically important for validating the in vitro
and in vivo findings.

HEALTH ENDPOINTS WITH AND
WITHOUT MUTAGENICITY AS A KEY
EVENT

The asbestos-induced biological/patho-
logical effects may eventually manifest as dif-
ferent benign or malignant asbestos diseases,
including asbestosis, pleural plaques, malignant
lung cancer, and mesothelioma. It is believed
that asbestos-induced benign diseases and can-
cers share some common underlying mecha-
nisms, such as prolonged induction of radical
species and chronic inflammation (Kamp &
Weitzman, 1999; Mossman & Churg, 1998;

Shukla et al., 2003a). However, asbestos-
induced malignancies may occur through dis-
tinct mechanisms, as mutagenicity is at the
center of neoplastic transformation induced by
environmental carcinogens. The kinetics of the
pathologies is clearly different in both humans
and experimental animals. Although some epi-
demiological studies suggest that lung fibrosis is
usually considered a precursor of lung cancer
in humans, the results from six animals show
that the presence of fibrosis is not correlated
with the presence of lung tumors on the single-
animal level (Borm et al., 2004). Evidence
indicated that asbestos workers developed can-
cers without having asbestosis, and the asbestos
burden in the lungs of asbestos-associated
mesothelioma or lung cancer patients had huge
variations (Dodson et al., 1997; Roggli et al.,
2004). Asbestosis, on the contrary, is more
directly associated with asbestos fiber burden
in the lung and may develop without muta-
genicity as a key event.

Pleural Plaques and Diffuse Pleural
Thickening
Scars on the parietal pleura that become

calcified are visualized on x-rays of the lung
and are called pleural plaques (Kane et al.,
2011, this issue). Scars (1) typically occur 20
to 30 yr after exposure, (2) are frequently bilat-
eral and symmetric, and (3) occur primarily on
the posterolateral chest wall between the fifth
and eight ribs, over the mediastinal pleura, and
on the dome of the diaphragm. The under-
lying mechanism is pleural inflammation that
may result either from direct injury from fibers
within the pleural cavity, or indirectly from
cytokines or other factors released from the
lung (Chapman et al., 2003). These pleural
plaques are considered to be a biomarker of
exposure to asbestos, but based on epidemiol-
ogy studies do not appear to increase the risk
of either mesothelioma or lung cancer (Kane,
1996). Therefore, this form of lung damage
is not believed to play a role in carcinogene-
sis. Diffuse pleural thickening (DPT) refers to
extensive fibrosis of the visceral rather than
the parietal pleura (Miles et al., 2008). In this
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form of asbestos injury, subpleural fibroblasts
and mesothelial cells produce scar tissue and
collagen deposition. DPT and pleural plaques
frequently coexist, and although they produce
different symptomatology, functional impair-
ment, and prognosis, their underlying mech-
anisms may be similar. Both are believed to
involve the cytokine TGF-β, which is expressed
by mesothelial cells (Miles et al., 2008). The
roles of other cytokines and growth factors
and the role of ROS in pleural fibrosis were
reviewed by Mutsaers et al. (2004). In addition,
the activation Factor VII leading to fibrin depo-
sition in the coagulation pathway contributes
to fibrosis. There does not appear to be a role
for mutagenesis in the development of pleural
fibrosis. The lack of increased risk for lung can-
cer or mesothelioma in these diseases of pleural
fibrosis argues strongly for a lack of mutage-
nesis in their development. In addition, our
understanding of the role of pathways of gene
expression in the pathogenesis of these diseases
supports this conclusion.

In summary, there is reasonable certainty
that mutagenesis does not play a role in
the development of pleural plaques and dif-
fuse pleural thickening produced by asbestos.
Rather, these conditions appear to be produced
by changes in gene regulation induced by the
generation of ROS including inflammation.

Mesothelioma
One characteristic of mesothelioma is the

long latency for the production of this cancer
following asbestos exposure. In animal studies,
such a characteristic has usually been asso-
ciated with a role of tumor promotion by
asbestos-induced alterations of redox-signaling
pathways. However, there may also be a lag
created by the required translocation time for
asbestos fibers to reach the parietal pleura.
Furthermore, multiple genetic alterations were
initially found in mesotheliomas. These strongly
suggest the operation of mechanisms that might
primarily involve a direct mutagenic effect of
asbestos fibers and a prevention of the repair
of DNA damage through stimulation of cell
proliferation.

Recent publications pointed to initial
events involving mutagenicity. The studies that
found ROS and 8-oxodG generation, chro-
mosome damage, and mitosis impairment in
rat and human mesothelial cells, upon the
phagocytosis of asbestos fibers, were previously
described. It is noteworthy that several in vivo
studies observed increased levels of 8-OHdG,
DNA strand breaks, or mutagenic events in ani-
mals exposed to asbestos fibers for a short term
(Kociok et al., 1999; Rihn et al., 2000; Topinka
et al., 2004; Unfried et al., 2002).

Specific chromosomal defects have
now been discovered to be associated with
asbestos-induced mesothelioma in humans
that argue for specific mutations being initial
events in this disease (Musti et al., 2006).
The loss of one copy of chromosome 22
was reported to be a consistent aneuploidy
found in mesothelioma, and cytogenetic
alterations involving Neurofibromatosis type
2 (NF2), whose genetic position is 22q12,
is found in up to 100% of mesothelioma
cases but not in lung cancers (Toyooka et al.,
2008). There is evidence that alterations in
chromosomes 1, 14, 21, and 22 might be an
early indicator of disease process (Hansteen
et al., 1993). Other common cytogenetic
abnormalities in mesothelioma involve the
tumor suppressor genes for cyclin-dependent
kinase (CDK) inhibitor proteins (Musti et al.,
2006). Involvement of these genes in human
mesotheliomas was further affirmed using
specific gene knockout mice (Fleury-Feith
et al., 2003; Altomare et al., 2005a, 2005b;
Lecomte et al., 2005; Jongsma et al., 2008).
It is believed that the continuing elucidation
of genetic defects involved in mesothelioma
may lead to better therapeutic strategies for
this disease (Crispi et al., 2010). Inactivations
of genes by epigenetic effects were described
in melanoma involving methylation of tumor
suppressor genes. The methylation profiles
are different in mesothelioma and lung can-
cer; however, in some cases, these effects
may be produced by infection of the SV40
virus (Toyooka et al., 2008). Other paracrine
growth factors, including epidermal growth
factor (EGF) and hepatocyte growth factor
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(HGF), as well as increased expression of
receptor proteins for EGF, HGF, and other
growth factors, may be involved in regulating
enhanced cell proliferation in asbestos-induced
mesothelioma. Growing evidence suggests a
role of asbestos-induced redox-dependent
signal pathways in malignant mesotheliomas
and lung cancer. A better understanding of
the dysregulation of these signaling pathways
may benefit the prevention and therapy of
asbestos-related mesothelioma (Heintz et al.,
2010).

In summary, specific genetic and chromo-
somal abnormalities are found in human and
animal mesotheliomas. Asbestos-induced DNA
and chromosomal damages, as well as the cor-
responding mutagenic events, were produced
experimentally in human or rodent mesothelial
cells. However, the direct causal link between
asbestos-induced mutations and mesothelioma
has not been established in animals or humans.
In addition, alterations in gene expression
and epigenetic changes may contribute to the
pathogenesis of mesothelioma but additional
information is needed to confirm the results.

Asbestosis
Fibrosis is the hallmark of asbestosis.

Several lines of evidence suggest that asbestos
and asbestos-induced ROS produce a num-
ber of sequential changes that do not involve
mutagenic events, including inflammation, cell
proliferation, and fibrosis, thereby produc-
ing asbestosis. Mossman (1990) found that
crocidolite instillation produced signs of inflam-
mation in rats, such as macrophages and
neutrophils, which might be prevented by cata-
lase subcutaneous administration. This find-
ing suggested that H2O2 was involved in
generating ROS through the Fenton reaction.
Schapira et al. (1994) demonstrated that ·OH
radicals were produced by instillation of Fe
loaded chrysotile, which might be prevented
by salicylate. The generation of ROS leads to
alterations in the expression of various genes
involved in redox-sensitive signaling pathways.
For example, ROS could stimulate growth fac-
tors IGF1 (insulin-like growth factor 1) and PDG

(platelet-derived growth factor) and increased
proliferation of epithelial and interstitial cells,
leading to a tissue mass rise and macrophage
accumulation after instillation of chrysotile
fibers (Brody & Overby, 1989; Donaldson,
1996). Depletion of GSH resulting from oxida-
tive stress leads to activation of AP-1 and
therefore cell proliferation as shown by in vitro
studies (Donaldson, 1996; Janssen et al., 1995).
The production of TNFα by macrophages that
have phagocytosed asbestos fibers also leads
to the depletion of GSH (Donaldson, 1996).
The promotion of cell proliferation observed in
these studies might be an intermediate process
related to the generation of fibrosis. The other
signaling pathways that might be potentially
involved in asbestos-induced fibrosis, including
altered p53 and p21 expressions, MAPK path-
ways, cytokines (i.e., TNF-α, TGF-β, IL-1β, and
CXCL1), and inflammasome activation, were
previously described here and by Mossman
et al. (2011, of this issue).

Importantly, apoptosis has been related to
the generation of fibrosis by asbestos (Albrecht
et al., 2004; Kamp, 2009). The same mecha-
nism that has been implicated in neoplasia, i.e.,
generation of ROS, may also produce genotox-
icity that produces cell death through apopto-
sis or even necrosis. Excessive cell deaths are
associated with pulmonary tissue injury and
fibroblast proliferation, which leads to fibro-
sis (Albrecht et al., 2004; Kamp, 2009). Thus,
there might be a role for DNA damage but not
mutagenesis in the production of asbestosis.

In conclusion, there may be not be a direct
role for mutagenicity in the pathways that pro-
duce asbestosis; however, genotoxicity may
produce cell death and apoptosis, which may
contribute to inflammation, cell proliferation
and fibrosis. There is reasonable certainty that
asbestos-induced genotoxicity and the subse-
quent alterations in cellular signaling produce
asbestosis, especially those involved in inflam-
matory processes.

Lung Cancer
There are two primary types of lung can-

cer: small-cell carcinoma and non-small-cell



224 S. X. L. HUANG ET AL.

carcinoma. The latter includes three histo-
logical types: large-cell carcinoma, squamous-
cell carcinoma, and adenocarcinoma. All these
four histological types of lung cancer occur
in asbestos-exposed patients (Churg, 1985). In
recent years, there are an increasing number
studies addressing the cytogenetic changes in
asbestos-related lung cancer (Nymark et al.,
2008). An early CA occurs in lung cancer
is located in 2p and 3p (Nymark et al.,
2006; Wikman et al., 2007). This specific CA
occurs more frequently in asbestos-exposed
patients. Other asbestos specific aberrations
were detected in chromosomes 1, 5, 8, 9, and
19p. Microsatellite analysis found statistically
significant differences in 19p13 allelic imbal-
ance between asbestos-exposed and unex-
posed lung cancer cases (Wikman et al.,
2007). Allelic imbalance was found for 9q31.3-
q34.3 in 100% of asbestos-exposed versus
64% of unexposed cases (Nymark et al.,
2009). Kettunen et al. (2009) demonstrated
an association in lung cancer patients between
asbestos exposure and DNA copy number
loss and allelic imbalance at 2p16, which
was one of those that differed most between
asbestos-exposed and nonexposed patients.
It is noteworthy that most of the asbestos-
exposed subjects were also cigarette smokers.
So far the available research has not located
a specific genetic change that is clearly linked
to asbestos exposure, but rather increases in
changes that occur without asbestos exposure
and usually in a background of cigarette smok-
ing. Nevertheless, there is evidence that spe-
cific gene alterations, such as the inactivation
of p16INK4A in asbestos-associated non-small-
cell lung cancer, occur mainly through dele-
tion. In contrast, inactivation by methylation
is more often associated with non-asbestos-
associated lung cancer cases (Andujar et al.,
2010). In addition, mutations in TP53 in lung
cancer patients have been positively associ-
ated with asbestos exposure (Nymark et al.,
2008).

For at least some cases of lung cancer,
there appears to be a synergistic effect of
cigarette smoking and asbestos (Erren et al.,
1999). The fact that the mutagenic potential of
cigarette smoking is promoted by the processes

leading to asbestosis may be an explanation
for synergy, which is observed experimentally
in initiation–promotion studies of carcinogens.
In such experiments, noncarcinogenic doses of
tumor promoters greatly enhance the carcino-
genic effects of mutagenic carcinogens.

In some cases, the presence of asbesto-
sis is associated with increases the risk of lung
cancer. However, it is uncertain whether the
development of asbestosis is merely a dose-
related biomarker for asbestos exposure or
whether asbestosis produces a necessary or an
enhanced environment for the production of
cancer. There has been considerable debate
regarding the requirement of asbestosis and
cigarette smoke exposure for asbestos-related
lung cancer development. In general, there
have been studies supporting both possibili-
ties, and so far there is no consensus whether
or not asbestosis promotes lung cancer (Hessel
et al., 2005; Kane, 1996). However, the devel-
opment of both asbestosis and lung cancer
might be produced by the same agents, i.e.,
ROS generated secondary to asbestos-induced
inflammation. The alterations in the expression
of genes involved in inflammation, cell prolif-
eration, and apoptosis, such as p53 and p21,
MAPK pathways, cytokines TNF-α, TGF-β,
IL-1β, and CXCL1, may also be involved in
the development of asbestos-associated lung
cancer (Kamp, 2009).

In conclusion, there is some indication
for the role of mutagenicity in asbestos-
associated lung cancer development; further
study is necessary to establish this mechanism.
Increased incidences of allelic alterations found
in asbestos-exposed cases are also present
in many asbestos-unexposed patients. These
changes may represent enhancement of muta-
gens from cigarette smoke or other exposures.
There is a reasonable certainty of the involve-
ment of nonmutagenic effects, that is, alter-
ations in gene expression, in asbestos-induced
lung cancer development.

DETERMINANT FACTORS OF TOXICITY
IN MUTAGENICITY

Various in vitro and in vivo studies indi-
cated that fiber dimensions, surface properties,
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shape and crystallinity, chemical composi-
tion, and physical durability are important
determinant factors of asbestos pathogenic-
ity (Mossman, 1990; Sanchez et al., 2009;
Stanton et al., 1977). The morphology and
aspect ratios of inhaled asbestos fibers deter-
mine their deposition, subsequent transloca-
tion, and finally the primary cellular targets for
mutagenic and genotoxic action. In addition,
chemical composition and surface reactivity are
known to modulate asbestos toxicity. Fibers
that are rich in Fe content, e.g., crocidolite,
are more reactive in ROS and RNS production
and contribute to their mutagenic and geno-
toxic potential. Asbestos fibers or other aerosol
particles that have an insoluble or poorly sol-
uble core onto which adsorbed mutagens (or
carcinogens) are carried from the environment
into and throughout the human body can
facilitate the each other’s mutagenic response.
Significant contributors to this mutagenic path-
way include the polycyclic aromatic hydrocar-
bons (PAH) and tobacco carcinogens, which
upon biotransformation convert into reactive
intermediates that form bulky adducts to the
DNA. This mode of action from tobacco car-
cinogen was postulated to account for the
synergism in lung cancer incidence observed
among asbestos workers who also smoked
(Hammond et al., 1976). Furthermore, the
ability of asbestos to remain physically intact
in the lung is considered an essential crite-
rion for fiber toxicity. As such, fibers that are
durable, e.g., crocidolite and amosite, are sig-
nificantly more biologically active than glass
fibers and chrysotile (Hume & Rimstidt, 1992).
Finally, it is noteworthy that fiber toxicity also
depends on the exposure concentration and
duration. These factors modify fiber mutagenic-
ity and show bidirectional effects. On one
hand, increases in the time or dose of fiber
exposure enhance cellular toxicity and geno-
toxicity in target cells. However, at sufficiently
high doses, the mutation yield in short-term
assays was found to decrease due to cytotox-
icity (Unfried et al., 2002; Xu et al., 1999,
2002). The chronic effects of cytotoxicity and
cell/tissue injury are associated with inflam-
mation, fibrosis, and cell proliferation, which

eventually may contribute to asbestos car-
cinogenicity through nonmutagenic pathway
(Mossman, 1993; Mossman & Churg, 1998).
On the other hand, exposure at high concen-
tration or chronic exposure may produce lung
overload and impair the clearance of fibers by
macrophages, enhancing the carcinogenic and
mutagenic potential of asbestos fibers (Borm
et al., 2004; Driscoll et al., 1996; ILSI Risk
Science Institute Workshop Participants, 2000;
Oberdorster 2002; Oberdorster et al., 2005).
Another factor that might affect asbestos fiber
toxicity and mutagenicity is individual suscep-
tibility such as genetic background or nutrition
status (Mossman et al., 2011, this issue; Case
et al., 2011, this issue).

SUMMARY

What is Known
1. Asbestos is clearly mutagenic when assayed

using a variety of in vitro and in vivo model
systems and induces both gene and chro-
mosomal mutations in target cells by mecha-
nisms ranging from generation of oxidants to
physical interaction with the mitotic appara-
tus of dividing cells.

2. Specific genetic and chromosomal abnor-
malities are found in human mesothelioma
tissues associated with asbestos exposure.
Similar mutation profiles have been identi-
fied in murine mesothelioma models.

3. Mutagenesis does not play a role in the
development of pleural plaques and dif-
fuse pleural thickening induced by asbestos.
Rather, these conditions appear to be pro-
duced by changes in gene regulation pro-
duced by the generation of ROS and
inflammation.

4. Asbestos-induced alterations in gene
expression induce asbestosis, especially
those involved in inflammatory processes.

What Is Postulated to Be True But
Requires Confirmation

1. Asbestos fibers induce DNA damage and
mutation in vivo in rat lung tissues after



226 S. X. L. HUANG ET AL.

ip or intratracheal instillation or, in lim-
ited cases, inhalation exposure. Additional
long-term inhalation studies at doses that
are relevant to human exposure experi-
ence are needed to confirm the incidence
and spectrum of the mutagenic events in
animals.

2. The mutagenic effects of asbestos may result
primarily from fiber–cell interaction, or sec-
ondarily from fiber-induced ROS/RNS. The
latter may involve a threshold depending
on the exposure concentration and treat-
ment period that induces chronic inflamma-
tion and overwhelms the antioxidant and
DNA damage repair capacity of the tar-
get tissues. Further studies dissecting these
pathways are required to reveal the precise
molecular mechanisms of asbestos-induced
mutagenesis.

3. Asbestos-induced biological responses,
including ROS/RNS production, DNA
and chromosomal damage response, p53
activation, apoptosis, and inflammation,
that contribute to asbestos mutagenicity are
observed in all the relevant lung and pleural
target cells but show cell type specificity.
In comparison with alveolar epithelial
and mesothelial cells, bronchial epithelial
cells are relatively resistant to asbestos-
induced DNA damage in part because
of their greater antioxidant capacity.
Confirmatory studies are needed to provide
a better understanding of the mechanism
involved.

4. There is some evidence that alterations in
gene expression and epigenetic changes
may contribute to the pathogenesis of
asbestos-associated mesothelioma but addi-
tional information is needed to confirm the
results.

5. Genotoxicity may not be directly involved
in the development of asbestosis; however,
genotoxicity may produce cell death and
apoptosis, which may contribute to inflam-
mation, cell proliferation and fibrosis. The
alterations in gene expression involved in
these pathways may also be involved in lung
cancer development, but more information
is needed.

Areas of Uncertainties That Require
Additional Research

1. Fiberdimension isoneof the importantdeter-
minant factors of asbestos carcinogenicity.
Occupational exposure limit levels are based
on determination of fibers greater than 5 μm
in length. However, in most experiments,
dose-effect relationships are generally con-
sidered on an asbestos mass basis, but not on
number of fibers (total or size-adjusted) or
fiber surface area. Although animal data sug-
gest that “long” fibers are more carcinogenic
than “short” fibers, it is not clear whether
the mutagenic potency of “long” fibers is
different from that of “short” fibers. In addi-
tion, many existing studies were conducted
with fiber doses that impair the clearance
of the fibers and produce “overload.” It is
not known whether “overload” will change
the spectrum of asbestos fiber-induced muta-
tions. Therefore, future in vivo and in vitro
studies need to use well-characterized fibers
(taking intoconsiderationfibermass,number,
size distribution, and/or surface area) at real-
istic exposure levels. The results from these
studies will be more reliable for assessing the
potential health risks of exposure for humans.

2. The direct link between asbestos-induced
mutagenesis and carcinogenesis is lacking.
Further in vivo inhalation studies coupled
with transformation endpoints using well-
defined animal models and fibers at relevant
exposure levels are required for studying the
stepwise processes and identifying the crit-
ical tumor-initiating/−promoting mutations
in exposed animals.

3. The mutagenic effect of asbestos fibers at
low doses is still unknown. Some evidence
from in vitro studies suggests that there is no
threshold dose for asbestos-induced muta-
genic effects. However, the determination
of LOAEL and NOAEL as well as the shape
of dose-response curves requires a sufficient
number of low doses to be tested. These
are generally not available in existing stud-
ies. More importantly, in vivo studies are few
and conducted using a limited dose range
(1–10 mg single dose or repeated doses of



MUTAGENICITY IN FIBER-INDUCED DISEASE 227

5.73 mg/m3 fibers) (Jiang et al., 2008; Jung
et al., 2000; Kociok et al., 1999; Rihn et al.,
2000; Topinka et al., 2004; Unfried et al.,
2002). Some studies indicated no induc-
tion of mutation in the animal lungs at the
lowest dose tested. However, these nega-
tive results might due to the detection limit
of the assay, or the relative short exposure
periods. Overall, future studies need to be
conducted to test a sufficient number of
low-dose groups in animals and cultured
relevant target cells.

4. The concept of a threshold dose below
which there is no carcinogenic response
upon fiber exposure is still controversial.
There is indication that the effective dose
is different for mesothelioma induction and
lung cancer induction, and for different
types of fibers (i.e., chrysotile vs. croci-
dolite). Limited evidence from inhalation
studies in rodents indicates that the dose-
response relationship shows no threshold for
asbestos carcinogenicity. Substantial efforts
from future studies, both in vitro and in vivo,
using well-characterized fibers (as described
above in point 1) and several dose metrics,
are needed to clarify this uncertainty.

5. Although ROS/RNS production and the
downstream DNA damages are well estab-
lished in asbestos-treated lung target cells
and tissues, the relative contribution from
each of the sources of ROS production is still
not known. For example, the functional role
of mitochondrial and mtDNA alterations in
promoting asbestos induced mutagenesis is
virtually unknown. More importantly, there
are no animal models or human studies
showing that blocking any one of these
effects is beneficial against mutagenesis.
Therefore, strategies targeting the various
sources of asbestos-induced ROS produc-
tion in lung epithelial and mesothelial cells
are important.

6. Asbestos-associated mutagenic and nonmu-
tagenic pathways are interrelated with each
other. However, it is not known whether
each of the pathways is sufficient in produc-
ing asbestos-associated cancers. In addition,
it is not clear how the complex overlapping

signaling pathways regulating ROS/RNS
production, DNA damage response, p53
activation, apoptosis, and inflammation are
coordinated in promoting a carcinogenic
responses following asbestos exposure. In
this regard, studies using murine trans-
genic models along with targeted over- and
underexpression studies will continue to be
important for furthering our understanding
of the field.

7. Increased incidences of genetic allelic
alterations found in asbestos-exposed lung
cancer patients are also present in many non-
asbestos-related cases, and these changes
may represent enhancement of mutagens
from cigarette smoke or other exposures. The
causal relationship of specific allelic alter-
ations in relation to fiber carcinogenesis in
lung needs to be examined.
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