Hydrogen Sulfide: Redox Metabolism and Signaling

Ruma Banerjee

Abstract

The recognition of hydrogen sulfide (H_2S) as an endogenously produced gas with signaling potential has stimulated research on a multitude of physiological effects mediated in the cardiovascular, immune, gastrointestinal, genitourinary, endocrine, and central nervous systems. The heightened activity in the area of H2S biology led to convening of the first international conference on H2S in Shanghai in the summer of 2009 and to two Forum issues published in 2010 by Antioxidants & Redox Signaling on the physiological effects of H₂S. Yet, fundamental questions regarding the biogenesis and regulation of H2S, the bioenergetics of its catabolism, its tissue concentrations, and elucidation of its molecular targets remain. Some of these issues are the subject of the current Forum on H₂S. Antioxid. Redox Signal. 15, 339-341.

REACTIONS IN THE SULFUR METABOLIC PATHWAY involving
the amino acids cysteine and homocysteine are potential sources of hydrogen sulfide $(H₂S)$ $(4, 28)$. These include the two enzymes in the transsulfuration pathway, cystathionine β -synthase (CBS), and γ -cystathionase (CSE), which successively convert serine and homocysteine to cystathionine and cystathionine, to cysteine. Lax substrate specificity creates the potential for a multitude of alternative reactions to be catalyzed by both enzymes leading to H2S generation from either cysteine or homocysteine or both (6, 7, 27). A third potential route for H_2S generation is *via* the combined actions of cysteine aminotransferase and mercaptopyruvate sulfurtransferase (26), enzymes involved in cysteine catabolism. However, the product of coupling these two enzymes is persulfide rather than H_2S , which can be liberated in the presence of reductant (15).

An efficient mitochondrial pathway for H_2S oxidation exists (10) and is important for holding steady-state tissue levels of H2S at very low values. This has led to the hypothesis that H2S might function as an oxygen sensor since, under conditions of hypoxia, the catabolic removal of H_2S would be impeded, leading to augmented H_2S levels and activation of its signaling responses (23). Similarities between the effects of H2S and hypoxia and enhancement and abrogation of the hypoxic responses by H_2S precursors and H_2S synthesis inhibitors, respectively, support the proposal that H_2S might be involved in oxygen sensing (23).

The discovery of H2S as a physiological mediator was made by Abe and Kimura, who first reported its neuormodulatory effects (1) and soon thereafter, its vasorelaxant effect on smooth muscle (11). Today, a plethora of physiological effects are associated with H_2S with some of the major links being to the cardiovascular and central nervous systems and to inflammation. H₂S modulates a range of cardiovascular effects, including cardioprotection against ischemic and myocardial reperfusion injury and vascular contraction or relaxation (9, 23, 25, 29). The endothelial-derived relaxing factor activity of H2S in mice lacking the CSE gene is controversial, with two groups reporting conflicting results. Thus, Wang and coworkers reported marked age-dependent hypertension (30), whereas Ishii and coworkers reported a normotensive phenotype in the CSE knockout mice (14) . H₂S stimulates opening of KATP channels, suggesting a mechanism for its vasorelaxant effects in addition to its reported involvement in the Nrf2 and ERK and PI3K/Akt signaling pathways (5, 13, 31). In brain, H_2S has varied effects ranging from enhancing hippocampal long-term potentiation (1), to triggering calcium waves and increasing intracellular calcium levels in astrocytes (22), to increased neuroprotection by stimulating glutathione synthesis (19, 20). A possible mechanism for neuromodulation by H2S involves induction of cyclic AMP synthesis and activating N-methyl D-aspartate-receptor-mediated excitatory postsynaptic currents (18). Both pro- and anti-inflammatory effects have been ascribed to H2S and efforts are underway to develop the therapeutic potential of H_2 S-releasing drugs to counter inflammatory diseases.

Large discrepancies have been reported in the literature on tissue concentrations of H_2S and H_2S production rates in the presence of exogenous substrate. These stem in part from the technical difficulties associated with handling H_2S , which is redox sensitive, and the considerably larger tissue stores of sulfane sulfur and acid-labile sulfur that can be released if adequate precautions are not taken during sample preparation. Additionally, the complexity in utilization of cysteine

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan.

and/or homocysteine for H2S generation by CBS and CSE leads to a significant underestimation of H2S production rates and bias against CBS when only cysteine is applied as substrate, which is commonly the case in the field. Finally, the use of compounds such as hydroxylamine and aminooxyacetate that inhibit many pyridoxal phosphate enzymes and are not specific for CBS or CSE produces results that are not readily interpretable. Two articles in this Forum address these quantitative issues surrounding H2S determination. In one, Levitt and coworkers report that steady-state tissue levels of H2S are negligibly low with the exception of aorta, which exhibits 20–100 times higher H_2S concentrations (21). In the other article, the author's group uses quantitative Western blot analyses to determine the absolute protein levels of CBS and CSE in liver and kidney and reports the tissue H_2S production capacity in the presence of saturating concentrations of cysteine and homocysteine used alone or in combination as substrates (16). These studies reveal the differential importance of CBS versus CSE in various tissues. From simulations of the liver data adjusted for the difference in protein levels of CBS and CSE, it is estimated that CSE accounts for $\sim 96\%$ of H2S production at physiologically relevant concentrations of substrate.

Bouillaud and coworkers discuss sulfide bioenergetics in the context of the mitochondrial catabolic pathway and the similarities between cyanide and H_2S inhibition of cytochrome c oxidase (3). They also discuss potential mechanisms for neutralizing sulfide particularly as it pertains to the biology of colonocytes, cells that are routinely exposed to high sulfide concentrations, and to the invertebrates living in sulfide-rich habitats. The first enzyme in the H_2S oxidation pathway, sulfide quinone reductase, has a very high affinity for sulfide, and oxidation activity can be detected at intracellular sulfide concentrations $\geq 10-20$ nM, thus protecting cytochrome c oxidase from inhibition. These data also argue against significant steady-state H2S levels in tissues under normoxic conditions. However, when oxygen concentrations are limiting, H_2S levels are expected to rise leading to inhibition of cytochrome c oxidase concomitant with enhanced mitochondrial reactive oxygen species generation, which is in fact observed under hypoxic conditions.

Tiranti and coworkers discuss the effects of chronic sulfide exposure as seen in the inherited disorder, ethylmalonic encephalophathy, on degradation of cytochrome c oxidase (8). Ethylmalonic encephalopathy results from mutations in Ethe1, the gene encoding the second enzyme in the mitochondrial sulfide oxidation pathway, sulfur dioxygenase. Using tissue-specific conditional Ethe1 knockouts, the authors demonstrate that the cytochrome c oxidase deficiency is limited to the tissues targeted for ablation. Hence, H_2S acts locally in tissue with disrupted Ethe1, leading to heme a inhibition and enhanced degradation of cytochrome c oxidase subunits.

López-Garriga and co-workers (24) discuss hemeproteins such as cyctochrome c oxidase, myoglobin, and hemoglobin as targets for H2S. Inhibition of cytochrome c oxidase is responsible for decreasing metabolic activity and inducing a hibernation-like state (2). The basis for the differential reactivity of H2S with hemeproteins that results in formation of stable hexacoordinate low spin Fe^{III} -SH₂ complex versus iron reduction and conversion to an unligated Fe^H heme and the influence of the iron oxidation state are discussed.

The remaining two articles focus on the neurophysiological effects of H_2S . One, a comprehensive review by Jin-Song and colleagues (12), covers the current state of our understanding of the neurophysiology and neuropathology of H_2S , discussing the underlying cellular mechanisms and the neuroprotective effects of this gaseous mediator. The original research article by Ichinose and coworkers examines the protective effects of H2S on a murine model of Parkinson's disease induced by the neurotoxin, 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (17). They demonstrate that the neuroprotective effects of H2S are correlated with induction of antioxidant genes, including glutamate cysteine ligase and heme oxygenase-1.

Acknowledgment

This work was supported in part by a grant from the National Institutes of Health (HL58984 and DK64959).

References

- 1. Abe K and Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16: 1066–1071, 1996.
- 2. Blackstone E, Morrison M, and Roth MB. H2S induces a suspended animation-like state in mice. Science 308: 518, 2005.
- 3. Bouillaud F and Blachier F. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 15: 379–391, 2011.
- 4. Braunstein AE and Goryachenkova EV. The beta-replacementspecific pyridoxal-P-dependent lyases. Adv Enzymol Relat Areas Mol Biol 56: 1–89, 1984.
- 5. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, and Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105: 365–374, 2009.
- 6. Chen X, Jhee KH, and Kruger WD. Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279: 52082–52086, 2004.
- 7. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, and Banerjee R. H2S biogenesis by cystathionine gamma lyase leads to the novel sulfur metabolites, lanthionine and homolanthionine, and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284: 11601–11612, 2009.
- 8. Di Meo I, Fagiolari G, Prelle A, Viscomi C, Zeviani M, and Tiranti V. Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal 15: 353–362, 2011.
- 9. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, and Lefer DJ. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104: 15560–15565, 2007.
- 10. Hildebrandt TM and Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275: 3352–3361, 2008.
- 11. Hosoki R, Matsuki N, and Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant

in synergy with nitric oxide. Biochem Biophys Res Commun 237: 527–531, 1997.

- 12. Hu LF, Lu M, Wong PTH, and Bian JS. Hydrogen sulfide: neurophysiology and neuropathology. Antioxid Redox Signal 15: 405–419, 2011.
- 13. Hu Y, Chen X, Pan TT, Neo KL, Lee SW, Khin ES, Moore PK, and Bian JS. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch 455: 607–616, 2008.
- 14. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, and Suematsu M. Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285: 26358–26368, 2010.
- 15. Kabil O and Banerjee R. The redox biochemistry of hydrogen sulfide. J Biol Chem 285: 21903–21907, 2010.
- 16. Kabil O, Vitvitsky V, Xie P, and Banerjee R. The quantitative significance of the transsulfuration enzymes for H_2S production in murine tissues. Antioxid Redox Signal 15: 363–372, 2011.
- 17. Kida K, Yamada M, Tokuda K, Marutani E, Kakinohana M, Kaneki M, and Ichinose F. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson's disease. Antioxid Redox Signal 15: 343–352, 2011.
- 18. Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267: 129–133, 2000.
- 19. Kimura Y, Goto Y, and Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12: 1–13, 2010.
- 20. Kimura Y and Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18: 1165–1167, 2004.
- 21. Levitt MD, Abdel-Rehim MS, and Furne J. Free and acidlabile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15: 373–378, 2011.
- 22. Nagai Y, Tsugane M, Oka J, and Kimura H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18: 557– 559, 2004.
- 23. Olson KR and Whitfield NL. Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 12: 1219–1234, 2010.
- 24. Pietri R, Román-Morales E, and López-Garriga J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 15: 393–404, 2011.
- 25. Predmore BL and Lefer DJ. Development of hydrogen sulfide-based therapeutics for cardiovascular disease. J Cardiovasc Transl Res 3: 487–498, 2010.
- 26. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, and Kimura H. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11: 703–714, 2009.
- 27. Singh S, Padovani D, Leslie RA, Chiku T, and Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative transsulfuration reactions. J Biol Chem 284: 22457–22466, 2009.
- 28. Stipanuk MH and Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206: 267–277, 1982.
- 29. Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, and O K. Ischemia-reperfusion reduces cystathionine-beta-synthasemediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 297: F27–F35, 2009.
- 30. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, and Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322: 587–590, 2008.
- 31. Zhao W, Zhang J, Lu Y, and Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20: 6008–6016, 2001.

Address correspondence to: Prof. Ruma Banerjee Department of Biological Chemistry University of Michigan Medical School 1150 W. Medical Center Dr. 3320B MSRB III Ann Arbor, MI 48109-0600

E-mail: rbanerje@umich.edu

Date of first submission to ARS Central, January 25, 2011; date of acceptance, January 29, 2011.

Abbreviations Used

 $CBS = cystathionine \beta$ -synthase $CSE = cystathionase$ $H_2S = hydrogen$ sulfide