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Abstract

It is well established that genomic alterations play an essential role in oncogenesis, disease progression, and response of
tumors to therapeutic intervention. The advances of next-generation sequencing technologies (NGS) provide
unprecedented capabilities to scan genomes for changes such as mutations, deletions, and alterations of chromosomal
copy number. However, the cost of full-genome sequencing still prevents the routine application of NGS in many areas.
Capturing and sequencing the coding exons of genes (the ‘‘exome’’) can be a cost-effective approach for identifying
changes that result in alteration of protein sequences. We applied an exome-sequencing technology (Roche Nimblegen
capture paired with 454 sequencing) to identify sequence variation and mutations in eight commonly used cancer cell lines
from a variety of tissue origins (A2780, A549, Colo205, GTL16, NCI-H661, MDA-MB468, PC3, and RD). We showed that this
technology can accurately identify sequence variation, providing ,95% concordance with Affymetrix SNP Array 6.0
performed on the same cell lines. Furthermore, we detected 19 of the 21 mutations reported in Sanger COSMIC database for
these cell lines. We identified an average of 2,779 potential novel sequence variations/mutations per cell line, of which 1,904
were non-synonymous. Many non-synonymous changes were identified in kinases and known cancer-related genes. In
addition we confirmed that the read-depth of exome sequence data can be used to estimate high-level gene amplifications
and identify homologous deletions. In summary, we demonstrate that exome sequencing can be a reliable and cost-
effective way for identifying alterations in cancer genomes, and we have generated a comprehensive catalogue of genomic
alterations in coding regions of eight cancer cell lines. These findings could provide important insights into cancer pathways
and mechanisms of resistance to anti-cancer therapies.
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Introduction

All cancer cells have somatic mutations in their genomes, such as

single nucleotide mutations, insertions, deletions, and copy-number

gain or loss. Genomic lesions in cancer cells disrupt normal

functions and pathways such as proliferation and apoptosis, and are

essential for tumor genesis, growth, and metastasis. In addition,

each tumor carries a unique combination of mutations in its

genome, leading to heterogeneity in cancer prognosis and responses

to therapeutic intervention. Our limited understanding of the more

common mutations has already affected therapeutic regimens. For

example, treatment with small molecule inhibitors of the epidermal

growth factor receptor (EGFR) has been shown to primarily benefit

lung cancer patients that carry certain somatic mutations in their

EGFR gene [1,2]. Similarly, certain antibody therapies directed

against EGFR only show efficacy in the subset of colorectal cancer

patients with a wild-type KRAS gene [3,4]. Deep systematic

characterization of somatic mutations in cancer genomes promises

to be a powerful tool for both understanding cancer pathways and

developing targeted therapeutics.

Over the last two decades, focused studies on candidate genes have

led to the identification of mutations occurring with high frequency in

crucial cancer pathway genes such TP53, KRAS, and PTEN [5]. In

recent years, the coding regions of breast, lung, colon, and brain

tumor genomes have been analyzed using capillary-based sequencing

technologies. These efforts have led to the identification of causative

mutations in previously unsuspected genes such as IDH1, highlight-

ing the power and importance of unbiased, genomic-scale mutation

discovery [6,7,8]. However, large-scale capillary-based sequencing

technologies are time consuming and expensive, and thus not feasible

for wider use.

Next-generation sequencing (NGS) technologies have increased

the throughput and decreased the cost of DNA sequencing by

several orders of magnitude. A number of studies have applied

NGS technologies to sequence cancer genomes, as summarized in

recent reviews [9,10]. However, sequencing the whole genome is

still cost-prohibitive for many potentially valuable applications.

One alternative to whole genome methods is exome sequencing,

which captures and sequences only coding exons in the genome.

Exome sequencing methods can deliver sequencing information for

much of the functionally relevant genome at increased coverage and

reduced cost. Recent studies have successfully applied exome

sequencing to identify causal mutations of Mendelian diseases

[11,12]. Large cancer genome initiatives such as The Cancer Genome
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Atlas project also include exome sequencing as part of their strategy to

characterize cancer genomes [13].

Protein kinases are the most ubiquitous family of signaling

molecules in human cells and play essential roles in regulating

most cellular functions [14]. Since the protein kinase family is one

of the most frequently mutated gene families in cancers [5], it has

been subjected to several focused genomic sequencing studies.

Bardelli et al. conducted the first systematic screen of mutations in

the receptor tyrosine kinase subfamily of protein kinases, in

colorectal cancer samples [15]. Since then, studies in primary

tissues and cell lines have identified many mutations in protein

kinases across multiple tumor types [16,17,18]. The interest in

mutations of kinases has continued with recent genome-wide

mutation discovery studies [13,19,20].

Cell line models of human cancer have played a critical role in

our understanding of cancer disease pathways, identification and

validation of cancer target genes, and our ability to screen

potential anticancer drugs. These cell lines carry genomic

mutations inherited from their source tumor cells, although

additional mutations can be acquired during the course of cell

line development and passage. In general, comparisons between

cell lines reveal substantial heterogeneity in genomic mutations

and reflect cancer pathways similar to those found in primary

tumors. For example, comparison of a panel of breast cancer cell

lines with a collection of primary breast samples showed that gene

expression and copy number profiles in cell lines mirror those

found the primary tumors [21]. Similarly, genomic mutations

reported in the COSMIC database for cell lines have a similar

spectrum to those in primary tumors [22]. As additional large-

scale tumor genome sequencing results become available, there is

a growing need for corresponding cell models to determine how

novel variants affect protein function. Comprehensive character-

ization of genomic alterations in cancer cell lines will advance our

understanding of cancer biology, and could also provide a basis for

choosing relevant cell line models to study a particular aspect of

cancer disease biology, or to screen for antagonists of certain

cancer pathways.

To evaluate NGS technologies and to characterize genomic

mutations in cancer cell lines, we have analyzed data from the

Roche Nimblegen exome capturing array and Roche 454 NGS

technologies, applied to eight commonly used cell lines representing

several major cancer types. We demonstrate that exome sequencing

can be a reliable and cost effective way for identifying genomic

alterations in cancer genome, and generated a comprehensive

catalogue of genomic alterations in coding regions of eight cancer

cell lines.

Results

Exome capture and sequencing results
Exome capture and 454 sequencing technologies were applied to

DNA samples from eight cancer cell lines (A2780, A549,

COLO205, GTL16, NCI-H661, MDA-MB468, PC3, and RD,

as described in Methods. The results of initial data processing are

summarized in Table 1. For each cell line, about 1.9 million

sequencing reads (688 million bases; 98.5% of total sequencing

reads) could be successfully mapped to the human genome

NCBI36/hg18 reference assembly (http://www.ncbi.nlm.nih.gov).

The average read length across all cell lines is 364 bases, consistent

with the long read length reported for the 454 sequencing

technology. On average, 89.5% of the circa 180,000 exons on the

Nimblegen 2.1 M human exome array (target regions) were covered

with at least one sequencing read, and the average sequencing read

depth for all cell lines is 7.3 in target regions. The exome capture

and sequencing results are within the normal range of performance

specified by the manufacturer and are comparable with published

results using the same technology [23].

We detected on average 14,340 sequence variants (differences

from the human reference genome) per cell line. The majority of

these differences are known polymorphisms in normal human

population (i.e. recorded in NCBI dbSNP database, build 130). On

average 2,779 variants per cell line are not found in the dbSNP

database, and therefore represent novel sequence variations and/or

somatic mutations. On average 1,904 of the 2,779 novel variants are

non-synonymous, i.e. they alter codon specificity. These variants are

more likely to change protein functions and impact cellular

phenotypes.

Concordance with genotyping results
As another means to assess the accuracy of exome sequencing, we

compared the data with genotyping results across the eight cell lines

(Table 2). The Affymetrix Genome-Wide Human SNP Array 6.0 is

Table 1. Exome capture and sequencing results.

Cell-line A2780 A549 COLO205 GTL16 NCI-H661 MDA-MB468 PC3 RD Average

Cancer type ovary lung colon stomach lung breast prostate soft tissue

Number of mapped
reads (% total reads)

2112926
(98.29%)

1906737
(98.87%)

1707216
(98.39%)

1932251
(98.42%)

1774006
(98.55%)

1843735
(98.36%)

1789248
(98.42%)

2150836
(98.76%)

1902119
(98.5%)

Number of mapped
bases (% total bases)

751 Mb
(99.14%)

730 Mb
(99.53%)

613 Mb
(99.11%)

715 Mb
(98.42%)

641 Mb
(99.41%)

665 Mb
(99.3%)

657 Mb
(99.4%)

735 Mb
(98.76%)

688 Mb
(99.1%)

Average read length 355 382 360 368 360 359 365 366 364

Target regions coverage 87.6% 90.8% 90.8% 89.4% 91.7% 85.6% 87.1% 92.6% 89.5%

Average read depth
(target regions)

7.7 8.1 6.7 7.6 6.7 6.6 6.7 8.5 7.3

Total variant detected
(target regions)

16036 14283 13768 14296 13966 14931 12701 14741 14340

Novel variant detected
(target regions)

3563 2769 2075 3111 2759 3021 2150 2786 2779

Novel non-synonymous
variant (target regions)

2243 1977 1463 2121 1974 1949 1538 1967 1904

doi:10.1371/journal.pone.0021097.t001
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designed to detect genotype information for about one million known

SNP positions. It can therefore provide independent verification of

variations observed in the exome sequence data. For each cell line, we

identified SNP Array 6.0 positions with successful genotype calls that

were also covered by at least two unique exome sequencing reads.

The overlap yielded between 26,407 and 29,650 SNP positions

(depending on cell line) for further analysis. Overall, there was an

average of 91% concordance between genotype calls from SNP array

6.0/Birdseed and those determined by exome sequencing. In the RD

cell line, for example, 26,154 (91.5%) out of 28,594 SNP positions

have the same genotype call (i.e., AA, AB, or BB) by SNP array 6.0

and by exome sequencing (Table 2).

It is expected that the accuracy of genotype detection by sequencing

will be influenced both by sequencing read depth and

by heterozygosity at a given genomic location. We calculated

concordance of genotype calls at difference sequencing read depth,

and separately for homozygous or heterozygous SNPs. As shown in

Figure 1, concordance is high for homozygous SNPs (average 97%)

regardless of sequencing read depth. Concordance for heterozygous

alleles is lower, but increases with sequence read depth, starting with

Table 2. Comparison of genotype calls by SNP 6 chip and exome sequencing.

All SNP homozygous SNP heterozygous SNP

cell-line all SNP
same
genotype call percent

homozygous
SNP

same
genotype call percent

heterozygous
SNP

same
genotype call percent

A2780 29193 25493 87% 22079 21559 98% 7114 3934 55%

A549 26407 24065 91% 22627 22188 98% 3780 1877 50%

Colo205 27638 24780 90% 23526 22797 97% 4112 1983 48%

GTL16 29650 27474 93% 26447 25691 97% 3203 1783 56%

NCI-H661 29117 26901 92% 26737 25756 96% 2380 1145 48%

MDA-MB468 29360 27088 92% 25914 25221 97% 3446 1867 54%

PC3 27914 25505 91% 24421 23729 97% 3493 1776 51%

RD 28594 26154 91% 24616 23870 97% 3978 2284 57%

Average 28484 25933 91% 24546 23851 97% 3938 2081 52%

doi:10.1371/journal.pone.0021097.t002

Figure 1. Sequencing depth and concordance between genotype. The graph displays a plot of average concordance of genotype calls
obtained from the Affymetrix SNP Array 6.0 and from exome sequencing, as a function of sequencing read depths. Square markers indicate
concordance at homozygous positions, diamond markers indicate concordance at heterozygous positions. The dashed line shows the theoretical rate
of detecting heterozygous positions by sequencing (as described in Methods). Triangle markers display average number of heterozygous SNP
locations per cell-line as a function of sequencing read depths (Y-axis on the right).
doi:10.1371/journal.pone.0021097.g001

Exome Sequencing of Eight Cancer Cell Lines

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21097



31% concordance at a read depth of 3 and reaching . 90% at a read

depth of 10 or higher. In theory, sequencing DNA fragments from a

region that contains a heterozygous SNP is a process of random

sampling. At lower sequencing depth, there is a higher chance of

missing one of the two alleles. We calculated the theoretical rate of

detecting both alleles by sequencing at different read depths, assuming

no error in sequencing (Figure 1, dashed line). At low read depths, our

experimental observations are close to the theoretical rate, indicating

that low concordance at low read depths is likely due to the random

sampling process rather than poor quality of sequence data.

Comparison of exome sequencing to the COSMIC
database of cancer mutations

The protein-coding exons and immediate flanking intron

sequences of 61 common cancer genes have previously been

systematically determined in about 800 cell lines by the Welcome

Trust Sanger Institute, using capillary-based sequencing [22]. Of the

eight cell lines in this study, all except one (GTL16) have been

screened in that project. We compared somatic mutation information

from the Sanger COSMIC database with our exome sequencing

results for the seven cell lines. As shown in Table 3, exome sequencing

re-discovered most of the 21 mutations reported in the COSMIC

database, including point mutations and small insertion/deletions.

The two missing cases are due to lack of sequence coverage in the

locus of interest: the documented STK11 mutation in A549 is not

measurable due to lack of STK11 gene coverage in the Nimblegen

2.1 M human exome arrays, and the TP53 gene is covered by the

Nimblegen array but lacks sufficient reads in the PC3 line to verify in

this study (there are sufficient reads for the TP53 gene in other lines,

as in Table 3).

Large homozygous deletions, such as the known deletions of the

CDKN2A gene in A549 and SMAD4 in Colo205 cells, cannot be

directly observed with exome sequencing. But a deletion of gene

regions can be inferred where the read depth is zero for several

consecutive exons (see next section for detailed discussion). All five

genomic deletions reported in the COSMIC database are

identifiable from exome sequencing results (Table 3). For example,

in the A549 cell line we observed 14 consecutive regions around

CDKN2A gene with a read depth of zero. In the Colo205 cell line,

a documented 904-base deletion in the SMAD4 gene manifests as

4 consecutive target regions with a read depth of zero.

Detecting gene amplification and deletion
Deletions or amplifications of chromosomal segments are common

alterations in cancer genomes. In principle, the sequencing read

depth in a region should be proportional to its copy number.

However, the relatively modest read depth of the current study could

give undue weight to random variations in read depth. Variability in

read depth could also arise from technical aspects of the exome

sequencing process. For example, the exome capturing array could

vary in efficiencies for different exon regions due to diverse sequence

composition. To assess the possibility of estimating copy number

Table 3. Comparison of exome sequencing results with mutations reported in the COSMIC database.

Cell-line Gene COSMIC report
Exome sequencing (reference allele
reads : variant allele reads) Notes

A2780 PTEN KGR128–130 del (Hom) KGR 128–130 del (0:3)

A549 KRAS G12S (Hom) G12S (0:5)

A549 SMARCA4 Q729fs (23 bp del) (Hom) Q729fs (23 bp del) (0:4)

A549 CDKN2A large region deletion (Hom) large region deletion (Hom) zero read depth in 14
consecutive regions

A549 STK11 Q37* (Hom) Not in exome capture array gene not in exome
capture array

Colo205 BRAF V600E (Het) V600E (1:2)

Colo205 TP53 26 bp del (Hom) 26 bp del (0:4)

Colo205 SMAD4 904 bp del (Hom) large region deletion (Hom) zero read depth in 4
consecutive regions

Colo205 APC T1556fs (insertion A) (Hom) T1556fs (insertion A) (6:5) within a stretch of 6 A

NCI-H661 TP53 R158L (Hom) R158L (5:2)

NCI-H661 TP53 S215I (Het) S215I (2:4)

NCI-H661 SMARCA4 L1161fs (deletion G) (Hom) L1161fs (deletion G) (0:6) within a stretch of 6 G

NCI-H661 CDKN2A chr9_21960900 GRT (Hom) chr9_21960900 GRT (0:7) splicing site

MDA-MB468 PTEN chr10_89680827 GRT (Hom) chr10_89680827 GRT (0:9) splicing site

MDA-MB468 TP53 R273H (Hom) R273H (0:4)

MDA-MB468 RB1 large region deletion (Hom) large region deletion (Hom) zero read depth in 35
consecutive regions

MDA-MB468 SMAD4 large region deletion (Hom) large region deletion (Hom) zero read depth in 16
consecutive regions

PC3 PTEN large deletion (Hom) large region deletion (Hom) zero read depth in 34
consecutive regions

PC3 TP53 K139fs (Hom) no sequencing read no sequencing read

RD NRAS Q61H (Hom) Q61H (5:10)

RD TP53 R248H (Hom) R248H (Hom)

doi:10.1371/journal.pone.0021097.t003
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information from our exome sequencing data, we compared average

sequence read depths with copy-number data estimated from SNP6

platform. As show in Figure 2, there is a positive correlation between

sequence read depth and copy-number, with Pearson correlation

coefficient of 0.41. The variation in read depth makes it challenging

to accurately detect low-level copy-number changes. On the other

hand, we find that accurate detection of high-level gene amplifica-

tions and homozygous deletions is possible.

Homozygous deletion of the SMAD4 gene region has been

reported in the MDA-MB468 cell line (Sanger COSMIC

database) and is thus illustrative for comparing deletion detection

methods. The sequencing read depths of exon regions in SMAD4

gene and surrounding area were determined for MDA-MB468

and plotted according to their chromosomal location (Figure 3A).

Sixteen consecutive exon regions on chromosome 18 have a read

depth of zero in the data for MDA-MB468. The genomic locations

of the 16 exon regions are from 46.75 MB to 46.86 MB, which

spans the SMAD4 gene. For comparison, we performed copy-

number analysis of the Affymetrix SNP array 6.0 data as described

in the methods section. For MDA-MB468, this analysis indicated a

homozygous deletion of genomic region 46.76–46.86 Mb on

chromosome 18 (Figure 3B), in good agreement with results from

read depth analysis.

A read depth of zero could result from technical issues, such as

probe design in the Nimblegen 2.1 M array. In fact, we identified

2,513 exon regions that have a read depth of zero for all 8 cell lines

(Table S1). However, since the median read depth across all 8 cell

lines is greater than zero for all of the 16 exon regions (Figure 3A),

it is unlikely that the observed depth of zero in the MDA-MB468

cell line is due to a systematic failure of exome capture. Random

variation in read depth is another reason for lack of sequencing

coverage. In the MDA-MB468 cell line, there are 17,161 exon

regions with a read depth of zero (from 194,706 total regions,

excluding the 2,513 regions mentioned above). It is highly unlikely

that 16 consecutive exon regions around SMAD4 gene would

have a read depth of zero due to random variation (p = 1.3e-17,

calculated from the binomial distribution).

We were also able to re-identify previously documented gene

amplification events using the read depth data. For example,

amplification of EGFR1 in the MDA-MB468 cell line has been

documented by fluorescence in situ hybridization and by

quantitative PCR [24]. We observed that the 53 exon regions

around the EGFR gene on chromosome 7 have very high read

depths in the MDA-MB468 data (Figure 4A; the exons between

55.58–55.73 Mb have an average read depth of 107). Our copy

number analysis of the Affymetrix SNP array 6.0 data also

indicated that the EGFR gene region is highly amplified in the

MDA-MB468 line (Figure 4B, genomic region 55.48–55.81 Mb).

Novel non-synonymous variants in protein kinases
Since mutations in protein kinases have important roles in

cancer biology, we chose to examine the sequence data for protein

kinases and focus on non-synonymous variations, which produce

amino acid substitutions that may have functional consequences.

As noted above, exome sequencing revealed circa 2,000 novel

non-synonymous variants in each of the eight cell lines. After

applying a stringent filter (as described in Methods), between 199

to 479 genes have novel non-synonymous variants, depending on

the cell-line (Table S2). The Nimblegen 2.1 M capture array used

in this study included exons for 440 of the 518 protein kinases in

the human genome (Table S3) [25]. In each cell line, an average of

122 non-synonymous variations were detected in kinase genes.

After removing likely germline variants (found in dbSNP) and

applying a stringent filter described above, each cell line has an

average of eight kinases with non-synonymous variations (Table 4).

These sequence variations in protein kinases are listed in Table 5.

Most of these sequence variations are not reported in the

COSMIC database or reported in the literature, but several have

independent confirmation. For example, we identified EGFR

variant A1048V in the GTL16 gastric cell line. The same variant

in EGFR has been reported in the MKN45 gastric cell line [26],

which is the parental cell line of GTL16 [27]. A second example is

the R796S variant of the insulin receptor gene (INSR) in the RD

cell line (Table 5). We had previously identified this variant in the

RD cell line using capillary sequencing technology (data not

shown).

Discussion

Analysis of data from eight diverse cancer cell lines shows that

Roche Nimblegen and 454 exome sequencing technologies can be

successfully applied to identify variations in gene-coding regions.

From sequencing data with an average of 7.3-fold coverage,

variants from the NCBI36 reference genome were identified in

about 8% (14,340 regions) of all target regions on the exome

capture array. While the majority of these variants could be

confirmed in dbSNP database, on average 0.16% (2,779) of total

target regions carry a novel variant.

A comparison of SNP genotype calls from exome sequencing with

data generated on the Affymetrix Genome-Wide Human SNP Array

6.0 showed that there is high concordance between the two

technology platforms. The concordance is 97% for homozygous

sites, and ranges from 30% to .90% at heterozygous positions, with

accuracy dependent on sequencing read depth. Our analysis of the

relationship between read depth and power of detection suggested

that a minimum of ten-fold read depth is required for reliably

detecting both alleles at heterozygous sites. These results provide

guidance in planning future genome sequencing projects.

For the seven examined cell lines that are also present in the

COSMIC database, we show that 19 of 21 known mutations can

be re-discovered by exome sequencing. Two previously described

Figure 2. Comparison of sequencing read depth with copy
number data in MDA-MB468 cell-line. Average sequencing read
depths in capture regions were plotted against copy number data
estimated from Affymetrix SNP 6.0 data as described in the methods
section. The blue line shows the linear regression line. The Pearson
correlation coefficiency (r = 0.41) of sequencing read depth and copy
number data is printed on the figure.
doi:10.1371/journal.pone.0021097.g002
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mutations were missing due to lack of sequence coverage. In one

case this was due to incomplete coverage of the human exome in

the Nimblegen 2.1 M capture array, indicating a need for

improvements in array design.

By successful re-identification of the EGFR amplification and

the SMAD4 homozygous deletion in the MDA-MB468 cell line,

we demonstrate that copy number alterations can be inferred from

the sequencing read depth data. However, because of the

stochastic nature of sequencing read depth and likely unevenness

in the exome capturing process, in general it is not possible to

reliably estimate copy-number information from our data.

Applying the technology to more samples would help improve

our ability to estimate and correct for systematic biases in the

platform, and increasing the depth of sequencing reads would

reduce the variance due to random fluctuation in read number.

To bring context to the genomic variation identified in this

study, we chose to focus on protein kinases as an illustrative class.

In this work, we identified with high confidence at least four novel

variant protein kinases in each cell line. Most of the novel

sequence variations in protein kinases identified in this study have

not previously been reported, and probably reflect the high

diversity of genomic alteration in cancer. Our results expand the

knowledge of sequence variations in protein kinases and other

potential cancer-related genes. These novel variants could be

either germline SNPs not yet reported in the dbSNP database, or

somatic mutations in these cancerous cells. Several large-scale

human genome sequencing projects currently in progress will

expand identification of germline SNPs and help to categorize the

nature of novel variants found in tumors.

In conclusion, we showed that exome sequencing can be a reliable

and cost-effective approach to identify genomic alterations in cancer

cell lines, and suggest ways to further improve exome-sequencing

technologies for applications in cancer genomics. A comprehensive

catalogue of genomic alterations in the coding regions of eight cancer

cell lines was generated, which should contribute not only to our

knowledge of these models in particular, but also to our understanding

of cancer genomics and cancer biology in general.

Materials and Methods

DNA Preparation
A2780, A549, Colo205, GTL16, NCI-H661, MDA-MB468,

PC3, and RD cell lines were originally obtained from ATCC.

Cell lines were grown in RPMI 1640 (Gibco) with 10% heat-

inactivated Fetal Bovine Serum (FBS; CellGro) with the

exception of RD (additional 25 mM HEPES) and A549 (Ham’s

F12 (Gibco), with 10% FBS). Genomic DNA (10 ug) was

prepared by QIAamp DNA Mini Kit (Qiagen) using manufac-

turers protocols, and provided to the Roche 454 Sequencing

Center.

Figure 3. Sequencing read depth around the SMAD4 gene on chromosome 18 in the MDA-MB468 cell line. A. Plots of read depth data
on consecutive exons around the SMAD4 gene region on chromosomal 18. The blue line shows sequencing read depth data for MDA-MB468, and the
pink line shows the median sequencing read depth of all eight cell lines. B. Copy-number data from Affymetrix SNP6 chip data around the SMAD4
gene region on chromosomal 18. The black line shows the segmented copy-number data (log2 ratio to normal samples) generated by the
aroma.affymetrx package in R as described in the methods section.
doi:10.1371/journal.pone.0021097.g003
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Exome Capture and Next-Generation Sequencing
Exome capture and next-generation sequencing was performed

by Roche NimbleGen and Roche 454 Life Science according to

manufacturer’s protocols. Genomic DNA was captured on the

Nimblegen Sequence Capture Human Exome 2.1 M Array,

which has 197,218 total regions (capture regions) covering about

175,278 exons and miRNA regions (target regions, large target

region may consist of several capture regions). For each cell line,

captured DNA was sequenced with two runs of the 454 GS FLX

Titanium Sequencing technology.

Array-based Genotyping and Copy-number Analysis
Two aliquots of 250 ng genomic DNA per sample were digested

by restriction enzymes NspI and StyI, respectively. The resulted

products were ligated to the corresponding adaptors and PCR

amplified. The labeled PCR products were hybridized to the

Affymetrix Genome-Wide Human SNP Array 6.0 according to

the manufacturer’s recommendations. The Birdseed algorithm

Figure 4. Sequencing read depth and amplification around the EGFR gene on chromosome 7 in the MDA-MB468 cell line. A. Plots of
read depth data on consecutive exons around the EGFR gene region on chromosomal 7. The blue line shows sequencing read depth data for MDA-
MB468, and the pink line shows the median sequencing read depth of all eight cell lines. B. Copy-number data from Affymetrix SNP6 chip data
around the EGFR gene region on chromosomal 7. The black line shows the segmented copy-number data (log2 ratio to normal samples) generated
by the aroma.affymetrx package in R as described in the methods section.
doi:10.1371/journal.pone.0021097.g004

Table 4. Number of protein kinase genes with non-
synonymous variants in each cell-line.

All Novel (2dbSNP)
Novel (high
confidence*)

A2780 125 49 9

A549 131 61 7

Colo205 107 42 10

GTL16 122 52 4

NCI-H661 124 55 15

MDA-MB468 121 50 8

PC3 113 40 6

RD 133 63 5

*at least 3 reads show the variation, and allele frequency for the variant
. = 40%.
doi:10.1371/journal.pone.0021097.t004
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[28] implemented in Affymetrix Power Tools (APT) Software

Package (version 1.10.0) was used for genotype determination. For

copy-number analysis, the Cel files were processed using the

aroma.affymetrix package [29] for the R-project. Segmentation of

normalized raw copy number data was performed with the CBS

algorithm [30] implemented in the aroma.affymetrix package.

Bioinformatics analysis
The Human genome NCBI36/hg18 reference assembly

( http://www.ncbi.nlm.nih.gov/genome/ guide/ human/release

_notes.html#b36) was used as the framework for all analyses.

Sequence data processing, mapping to the human genome, and

initial calls of variation from the reference sequence were

performed by Roche 454 Life Science using GS Reference

Mapper software (Roche Inc.). To qualify as a variant from the

reference genome sequence, there must be at least two

independent reads that 1) show the difference, 2) have at least 5

bases on both sides of the difference, and 3) have few other isolated

sequence differences in the read. Variants identified as ‘high

confidence’ were subject to a more stringent filter, requiring at

least three independent reads with the variant comprising at least

40% of all independent reads covering the allele genomic position.

To identify non-synonymous variants, the impact of each variant

on translated protein sequence was assessed by mapping its

genomic coordinates back to genes in RefSeq collection [31]

release 37, and identifying changes in codon specificity.

We calculated the theoretical rate of detection at heterozygous

positions as a function of different read depth as follows: N sequencing

reads covering a heterozygous position could be considered as random

sampling of the two alleles repeated N times, thus should follow the

binomial distribution. Assuming that allele A is reported in the human

reference genome and allele B is the variant allele, we require at least

two sequencing reads with the B allele for declaring the detection of

allele B. The probability of detecting both A and B alleles at a

heterozygous position can be calculated as: PAB = 12P12P2. P1 is the

probability of finding 0 or 1 read with the A allele in N sequencing

reads according to the binomial distribution, which would lead to a

genotype call of AA. P2 is the probability of finding N reads with the B

allele in N sequencing reads according to the binomial distribution,

which will lead to a genotype call of BB.

Supporting Information

Table S1 Catpure regions that have zero read depth in all 8 cell

lines.

(XLS)

Table S2 All novel non-synonymous variants in eight cell-lines.

(XLS)

Table 5. High confidence* non-synonymous variants in protein kinase genes in each of 8 cell-lines.

A2780 A549 Colo205 GTL16

ALPK2 721fs ALPK2 G286C ADRBK1 443fs EGFR A1048V

EPHA2 D232G BRD3 K508- EPHA2 R315Q MAP3K4 395fs

FLT3 Q771P HIPK3 D713G EPHA8 L559F PSKH2 E227G

HIPK3 G586R MKNK1 406fs FRAP1 P1193L STK31 S160T

HSPB8 E179Q PAK6 302fs LRRK2 G1213S

LATS2 D1013N SGK196 169fs NEK9 D84N

MAP3K5 M375V ZAP70 I342T NTRK2 A203T

MYO3A 248fs RNASEL G59S

TRPM6 C943G TAOK2 A867V

TTN S597C

H661 MB468 PC3 RD

ATR 2428fs ADCK2 R390C BCR 316fs INSR R796S

CAMKV A475D CAMK4 R338C DAPK2 G223R MYLK3 747fs

ICK KPSP368 del CDKL2 T471I PRKCA 398fs PHKG1 M220T

IRAK3 426fs CSNK1G1 260fs TRRAP R696H PTK2B D424Y

JAK3 E698K DDR2 V824A TYRO3 E489K STK33 S504SGS

LRRK2 1638fs; Q1648P GAK L1218R ULK1 T452S

NTRK2 K308Q MAP4K3 A163G

PAK6 Y471C RIPK3 R422*

ROS1 A1443S

SIK1 615fs

STK33 S469*

TEC P587L

TRIO R1593W

TSSK4 T45S

ZAK G23C

*at least 3 reads show the variation, and allele frequency for the variant . = 40%.
doi:10.1371/journal.pone.0021097.t005
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Table S3 440 protein kinase genes covered by the Nimblegen

2.1 M capture array.

(XLS)
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