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Abstract

Human immunodeficiency virus type 1 (HIV-1) genomes often carry one or more mutations associated with drug resistance
upon transmission into a therapy-naı̈ve individual. We assessed the prevalence and clinical significance of transmitted drug
resistance (TDR) in chronically-infected therapy-naı̈ve patients enrolled in a multi-center cohort in North America. Pre-
therapy clinical significance was quantified by plasma viral load (pVL) and CD4+ cell count (CD4) at baseline. Naı̈ve bulk
sequences of HIV-1 protease and reverse transcriptase (RT) were screened for resistance mutations as defined by the World
Health Organization surveillance list. The overall prevalence of TDR was 14.2%. We used a Bayesian network to identify co-
transmission of TDR mutations in clusters associated with specific drugs or drug classes. Aggregate effects of mutations by
drug class were estimated by fitting linear models of pVL and CD4 on weighted sums over TDR mutations according to the
Stanford HIV Database algorithm. Transmitted resistance to both classes of reverse transcriptase inhibitors was significantly
associated with lower CD4, but had opposing effects on pVL. In contrast, position-specific analyses of TDR mutations
revealed substantial effects on CD4 and pVL at several residue positions that were being masked in the aggregate analyses,
and significant interaction effects as well. Residue positions in RT with predominant effects on CD4 or pVL (D67 and M184)
were re-evaluated in causal models using an inverse probability-weighting scheme to address the problem of confounding
by other mutations and demographic or risk factors. We found that causal effect estimates of mutations M184V/I
({1:7 log10 pVL) and D67N/G ({2:1

ffiffiffiffiffiffiffiffiffiffi
CD43
p

and z0:4 log10 pVL) were compensated by K103N/S and K219Q/E/N/R. As TDR
becomes an increasing dilemma in this modern era of highly-active antiretroviral therapy, these results have immediate
significance for the clinical management of HIV-1 infections and our understanding of the ongoing adaptation of HIV-1 to
human populations.
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Introduction

A substantial fraction (&5%–20%) of human immunodeficiency

virus type 1 (HIV-1) variants that are transmitted and establish

infections in individuals who have never been exposed to

antiretroviral drugs (i.e., ARV-naı̈ve) already carry one or more

mutations that are associated with resistance to ARVs [1,2].

Resistance mutations are generally slow to revert in ARV-naı̈ve

hosts [3,4] and can persist at low frequencies in treatment-

experienced hosts as well [5]. The pre-existence of resistance

mutations can significantly diminish effectiveness of subsequent

ARV therapy [6,7]; for example, transmitted K103N mutations are

associated with increased regimen failure and poorer outcomes on

non-nucleoside reverse transcriptase inhibitors (NNRTIs) [8]. On

the other hand, resistance mutations can also incur a measurable

cost with respect to virus replicative capacity in vitro [9–11] and

competitive growth in vivo [12]. Within therapy-naı̈ve hosts, the

fitness costs of transmitted drug resistance (TDR) mutations may

influence the subsequent evolution and population dynamics of

HIV-1. With the exception of limiting the choice of initial ARV

regimens, however, the direct clinical consequences of TDR

mutations in therapy-naı̈ve hosts remain inconclusive [13–17].

Our central hypothesis in this study is that the presence of TDR

mutations in therapy-naı̈ve hosts has a measurable effect on not

only the subsequent rate of growth of the virus population within

the host, but also on the rate of depletion of CD4+ T-lymphocytes
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that are targeted by HIV-1. To evaluate this hypothesis, we assess

the relationship between TDR mutations and prognostic clinical

markers – CD4+ T-cell count (CD4) and plasma HIV-1 RNA load

(pVL) – at baseline using data from the Centers for AIDS

Research (CFAR) Network of Integrated Clinical Systems

(CNICS), an observational cohort created from a data-sharing

collaboration between multiple clinical sites in North America

[18]. ‘Baseline’ refers to the measurements of clinical markers

upon HIV diagnosis and/or entry into clinical care. It does not

correspond to a consistent time point after infection and many

patients will have already progressed into the chronic phase of

infection. Nevertheless, these data can provide useful insight into

the clinical implications of TDR in therapy-naı̈ve hosts.

First, we quantify the effects of TDR mutations at both

aggregate and position-specific levels. An aggregate approach

sums across mutations occupying different positions in HIV-1

protease and reverse transcriptase, implicitly assuming that every

mutation has a similar effect (in both direction and magnitude) on

baseline CD4 or pVL. In contrast, a position-specific analysis

recognizes the possibility that some TDR mutations will have a

disproportionately large effects while others have negligible effects.

Furthermore, it enables us to identify compensatory interactions,

such that the effect of a specific mutation on CD4 or pVL depends

on the presence or absence of other mutations; such interactions

are an important aspect of the evolution of drug resistance in HIV-

1 [11]. Second, we re-evaluate statistically significant associations

of individual TDR mutations in a causal modeling framework, i.e.,

inverse probability-of-treatment weighting [19]. A statistical

association between a treatment (a TDR mutation) and an

outcome (baseline CD4 or pVL) in an observational study may be

biased if one or more variables, such as other co-transmitted

resistance mutations, are not only correlated with the treatment

but also affect the outcome [19]. In the presence of such

confounding factors, the significant association could be wrongly

attributed to a causal effect of the treatment on the outcome.

Using statistical procedures that can adjust for confounding by

weighting observational data has become an important compo-

nent of understanding the consequences of drug resistance in HIV

[20].

Methods

Ethics statement
All patients in the CNICS database have provided informed

written consent, as reviewed and approved by the institutional

review boards of all participating sites – University of Alabama,

Birmingham (UAB); University of California, San Diego (UCSD);

University of California, San Francisco (UCSF); University of

Washington (UW); Case Western Reserve University (CWRU);

and Harvard University (FENWAY) – to have their clinical

information used for the purposes of research. Patients were

informed on the minimum information being collected, alterna-

tives to participation, and possible uses of the data. In addition,

CNICS has received a Certificate of Confidentiality from the

National Institutes of Health (NIH).

Data collection
The study population comprised individuals from 6 CNICS

sites: University of Alabama, Birmingham; University of Califor-

nia, San Diego; University of California, San Francisco; University

of Washington; Case Western Reserve University; and Harvard

University [18]. All patients in the CNICS database have provided

informed written consent, as reviewed and approved by the

institutional review boards of all participating sites, to have their

clinical information used for the purposes of research. HIV-1 pol

sequences in the region encoding protease and/or part of reverse

transcriptase (i.e., the first 246–400 codons of RT) were obtained at

each site by conventional Sanger sequencing directly from RT-

PCR amplification products from sample extractions of viral

RNA. The exact bulk sequencing protocol varied among sites, as

some sites used commercial laboratory services (viz., Monogram,

Quest, Virco, LabCorp) whereas others used in-house assays based

on commercial kits. At the time of this study, 4914 codon or amino

acid sequences were available in the CNICS database but many

were obtained when patients were on-therapy. Amino acid

sequences were reconstituted from reports of residue polymor-

phisms relative to the HXB2 reference sequence. Sequences were

linked to: unique anonymized patient identifiers; CNICS site;

sampling date; age; ARV regimens; demographic factors (self-

reported gender at baseline, race/ethnicity); HIV risk factors (men

who have sex with men, MSM; injection drug use, IDU); baseline

plasma HIV RNA titres (pVL, virus/mL plasma); and baseline

CD4 cell counts (cells/mL). A patient record was included in this

study if: (1) a sequence was sampled before therapy, and (2) CD4

and/or pVL were sampled within 120 days of the sequence sample

date. To normalize the distributions of pVL and CD4, we used

log10 and cube-root transformations [21], respectively. Race and

ethnicity records were aggregated into the following groups: non-

Hispanic white, non-Hispanic black, Hispanic, and other. Non-

random associations between demographic and risk factors were

identified using log-linear models.

Sequence analysis
Sequences were aligned pairwise against the NL4-3 pol reference

sequence using an implementation of the Gotoh algorithm in

HyPhy [22,23] under default settings. Surveillance drug resistance

mutations (SDRMs) were tallied for each amino acid sequence

according to the 2009 update of the World Health Organization

list of surveillance drug resistance mutations (SDRMs) [24]. Amino

acid polymorphisms (e.g., bulk sequence mixtures) were resolved to

the resistant residue when applicable.

Statistical analysis
Resistance scores by drug class (protease inhibitors, PIs;

nucleoside and non-nucleoside reverse transcriptase inhibitors,

NRTIs/NNRTIs) were calculated according to the Stanford HIV

Drug Resistance database algorithm [25]. The Stanford scoring

system is a linear predictor of drug resistance phenotypes that

works by assigning integer weights to a sequence for encoding

resistance-associated amino acid residues at specific positions.

Weights (or ‘scores’) for a given sequences were calculated for

every drug in a given drug class. We used the highest score of any

drug in a drug class as the class-specific score. These quantitative

scores, denoted by SPI, SNRTI and SNNRTI respectively, were used

to analyze the aggregate effects of TDR on baseline CD4 and

pVL. Aggregate or position-specific effects of TDR on baseline

CD4 or pVL were evaluated alongside demographic and risk

factors in linear models. In each case we used a bi-directional

stepwise algorithm in R (stepAIC [26]) to select a ‘best-fitting’ linear

model based on the Akaike information criterion (AIC), which

penalizes model likelihood by the number of parameters. We

seeded the algorithm with the full additive model (without

interaction terms) and limited model complexity to second-order

interactions. To avoid over-fitting the data from evaluating a large

number of alternative models, we averaged parameter estimates

and P values over an ensemble of models (best +5 next-best) using

Akaike weights [27].

Clinical Effects of Transmitted Resistance in HIV
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To estimate causal effects of individual SDRMs, we used inverse

probability-of-treatment weight (IPTW) estimators [19]. The

conditional probability Pr(AjL) for a given ‘treatment’ variable

(A) was computed by fitting a logistic model of A against the set of

all potential confounding variables (L). To account for compen-

satory interactions among mutations, we combined the corre-

sponding presence/absence variables into a single multinomial

treatment as suggested to us by Miguel A. Hernán (pers. comm.).

For example:

AM184~

0 if M184X~0 and (K103X~0 and K219X~0)

1 if M184X~1 and (K103X~0 and K219X~0)

2 if M184X~1 and (K103X~1 or K219X~1)

8><
>:

where X signifies any SDRM residue at that position. Conditional

probabilities for multinomial treatments were obtained by fitting a

multinomial logistic model with the multinom function in the R

package nnet. Because weighting observations by the inverse of

Pr(AjL) can introduce excessive variability, we used stabilized

weights that normalize Pr(AjL) by the marginal probability

Pr(A), which was estimated by fitting a logistic model containing

only the intercept term [19]. The stabilized weights were

incorporated into a linear model of baseline CD4 or pVL on

treatment A using the svyglm function in the R package survey [28],

which uses an estimating equation-based approach to fitting

generalized linear models with robust standard errors. Cases with

missing data were omitted from these analyses.

A Bayesian network analysis to detect co-transmission of TDR

mutations was carried out using a Markov chain Monte Carlo

(MCMC) procedure in HyPhy [29]. A Bayesian network is a

compact representation of the joint probability distribution of

multiple variables (i.e., the presence/absence of TDR mutations),

where ‘joint’ implies that the probability distribution of a variable

may be conditional on other variables in the network [30]. In

other words , a Bayesian network provides an efficient framework

for exploring the statistical interactions among variables. Each

variable is represented by a ‘node’ in the network, and connections

between nodes (‘edges’) are drawn to indicate that one variable is

conditioned on the second. The MCMC procedure obtains a

random sample of Bayesian networks from the posterior

probability distribution defined by the data. The Markov chain

was propagated for 106 steps, discarding the first half as burn-in

and thinning the remaining sample to 100 steps at equal intervals.

Edges in the network signifying co-transmission were accepted if

they were present in 90% or more of the networks in the sample.

Results

Population
The study population was comprised of 14111 individuals with

a median baseline CD4 of 300 cells/mL (n~14011) and a median

baseline pVL of 24400 copies/mL (n~13953). Median year of

birth was 1964. The majority of the population self-reported as

‘white’ (n~8694). 3725 individuals self-reported as ‘black’, 207 as

‘Asian/Pacific Islander’ and 835 as ‘other’; there were 650 non-

respondents. At the time of this study, the CNICS database

contained 1585 sequence records that we classified as therapy-

naı̈ve. Out of these, 1575 naı̈ve sequences were linked to baseline

CD4 and pVL records. 1526 naı̈ve sequences were associated with

baseline CD4 records within 120 days of the sequence sampling

date and were otherwise censored from subsequent analyses.

Likewise, 1516 naı̈ve sequences were associated with baseline pVL

within 120 days of sampling and were otherwise censored. The

median baseline CD4 and pVL of patients with naı̈ve sequences in

this data set were 285 cells/mL and 104:7 copies/mL, respectively.

Composition of the naı̈ve sample with respect to race was

significantly associated with gender (x2~68:2, df ~3,

P~1:03|10{14); e.g., the sample included a disproportionately

greater number of naı̈ve sequences from white males (odds ratio,

OR~3:1) and black females (OR~3:0). Sample composition by

race was also significantly associated with MSM (x2~138:8,

df ~3, P~7:05|10{30), largely because of a greater number of

white MSMs than expected by marginal frequencies (OR~2:85).

Prevalence of transmitted SDRMs
Overall, 225 out of 1585 naı̈ve sequences (14.2%) contained one

or more SDRMs. Of these 225 sequences, 66 (4.2%) contained at

least one PI-associated SDRM, 130 (8.2%) contained at least one

NRTI-associated SDRM, and 131 (8.3%) contained at least one

NNRTI-associated SDRM. In addition, 17 (1.1%) sequences

contained SDRMs in all three drug classes, which is substantially

greater than the number expected by chance (v0:5 sequences) if

the joint transmission of mutations was independent of drug class.

A decline from pre-2003 levels in the fraction of naı̈ve sequences

with at least 1 SDRM was mirrored by a similar decline in the

mean number of SDRMs per naı̈ve sequence (Figure 1). However,

we observed an increase in the most recent sample year (2008) in

the upper 95% quartile of the distribution in the number of

SDRMs. Neither measure of prevalence was significantly associ-

ated with demographic or risk factors in generalized linear models

(Pw0:05). Counts of SDRMs by residue position are provided in

Table 1. A Bayesian network analysis detected significant co-

transmission of SDRMs in four groups (Figure 2). The largest

group generally corresponded to NRTI resistance-associated

Figure 1. Prevalence of transmitted surveillance drug resis-
tance mutations (SDRMs) over time. Sampling years 1998–2002
were grouped into a single level (‘pre-2003’) to adjust for small sample
sizes (n~3,5,18, and 56, respectively). Sample sizes for the bins are
displayed below the x-axis. Dashes (2) indicate the fraction of naı̈ve
sequences in a given sampling period that contain at least one SDRM
(right y-axis). The trend in mean number of SDRMs per naı̈ve sequence
(left y-axis) over time is displayed as a solid line annotated with the
actual values. The 95% quantile per time point is depicted by a lighter
line bounding a shaded region to illustrate the trend in the distributions
(all medians were zero).
doi:10.1371/journal.pone.0021189.g001

Clinical Effects of Transmitted Resistance in HIV

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21189



mutations (with the exception of K103, I54 and V82) and

contained well-characterized mutational pathways, e.g., D67/

T69/K70/K219 and T215/M41/L210. Two smaller groups

(M46/I84/I85 and D30/N88) comprised mutations associated

with PI resistance, the latter group being associated with resistance

to nelfinavir in particular. The remaining group (K101/G190)

comprised mutations associated with resistance to NNRTIs. In

sum, co-transmitted SDRMs tended to confer resistance to the

same drug or drug class.

Aggregate SDRM predictors of baseline CD4 and HIV
RNA

The summated Stanford scores for NRTI and NNRTI (SNRTI,

SNNRTI) and race/ethnicity were significantly (a~0:05) associated

with baseline CD4 (Table 2). For every 10 units of SNRTI and

SNNRTI, the model predicted a decline in
ffiffiffiffiffiffiffiffiffiffi
CD43
p

by about 0:07
and 0:04 units, respectively. For example, if a hypothetical patient

whose CD4 count matched the study median (285 cells/mL)

became infected by an HIV-1 variant carrying SDRMs such that

SNRTI~100 and SNNRTI~100, we would predict a baseline CD4

count of (
ffiffiffiffiffiffiffiffi
2853
p

{0:069|10{0:044|10)3&162 cells/mL. The

joint effect of transmitted RTI resistance on CD4 is illustrated in

Figure 3. Only about 5:8% of the variance in
ffiffiffiffiffiffiffiffiffiffi
CD43
p

was

explained by this model. Similarly, SNRTI, SNNRTI, gender and

race/ethnicity were significantly associated with baseline pVL

(Table 2). For every 10 units in SNRTI, pVL was predicted to

decline by about 0:03 log10 units; in contrast, pVL was predicted

to increase by about 0:02 log10 units for every 10 units in SNNRTI

(Figure 4). Only 2% of the variance in log10 pVL was explained by

this model. SPI was not significantly associated with either CD4 or

pVL at baseline.

Position-specific SDRM predictors of baseline CD4 and
HIV RNA

Although aggregate SDRM-based statistics such as Stanford

scores are convenient and easy to interpret as proximate measures

of drug class-specific resistance, they may mask the effects of

individual mutations on clinical outcome. Consequently, we

assessed the effects of position-specific SDRMs in linear models

of baseline CD4 and pVL. To minimize the number of predictor

variables and avoid over-fitting of the data, we limited our analysis

to positions with a minimum SDRM frequency of 1% in naı̈ve

sequences (see Table 1). These positions were: M46, I54, and L90

in protease, and; M41, D67, M184, L210, T215, K219, K103,

Y181, and G190 in reverse transcriptase. The presence or absence

of SDRMs at each position was represented by a binary variable

(herein denoted by appending an ‘X’ to the amino acid positional

notation, e.g., M46X = {0,1}).

D67X and K219X were each associated with significantly lower

baseline CD4 (Pv0:04; Table 3); both sets of SDRMs are

thymidine analog mutations (TAMs) conferring resistance to

NRTIs. For example, the model would predict a hypothetical

decline from 400 cells/mL to 146 and 235 cells/mL with the

introduction of SDRMs at positions D67 and K219, respectively.

In addition, there was a significant interaction effect between

D67X and K219X associated with a compensatory increase by

Table 1. Number and percentage prevalence of putatively transmitted surveillance drug resistance mutations (SDRMs) by residue
position in antiretroviral (ARV)-naı̈ve sequences.

Class position count % prevalence Class position count % prevalence

PI L23 1 0.06 NRTI(cont’d) K70 9 0.57

L24 1 0.06 L74 11 0.69

D30 15 0.95 V75 2 0.13

V32 2 0.13 F77 1 0.06

M46 20 1.26 Y115 1 0.06

I47 2 0.13 F116 1 0.06

G48 0 0 Q151 0 0

I50 2 0.13 M184 40 2.52

F53 1 0.06 L210 29 1.83

I54 16 1.01 T215 77 4.86

G73 3 0.19 K219 30 1.89

L76 1 0.06 NNRTI L100 1 0.06

V82 12 0.76 K101 7 0.44

N83 0 0 K103 82 5.17

I84 10 0.63 V106 2 0.13

I85 2 0.13 V179 1 0.06

N88 15 0.95 Y181 24 1.51

L90 30 1.89 Y188 10 0.63

NRTI M41 49 3.09 G190 24 1.51

K65 3 0.19 P225 1 0.06

D67 28 1.77 M230 0 0

T69 9 0.57

PI = protease inhibitor; NRTI = nucleoside reverse transcriptase inhibitor; NNRTI = non-nucleoside reverse transcriptase inhibitor.
doi:10.1371/journal.pone.0021189.t001
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about z2.5 units
ffiffiffiffiffiffiffiffiffiffi
CD43
p

(P~0:006; Figure 5). This model

accounted for 6.8% of the variance in
ffiffiffiffiffiffiffiffiffiffi
CD43
p

.

M184X was significantly associated with an approximately ten-

fold lower pVL at baseline (P~1:3|10{7; Table 3). M46X and

L210X were also significantly associated with lower baseline pVL

(Pv0:01) and D67X was associated with greater pVL (P~0:009).

We also observed several significant mutational interaction terms

in the model. For instance, interactions between M184X and

either K103X or K219X were associated with a compensatory

increase in pVL (P~0:018 and P~0:023, respectively; Figure 5).

Similarly, a decline in pVL associated with M46X was

compensated by T215X (P~0:033). An interaction term between

D67 and K219, which was encountered in the preceding model on

CD4, was also statistically significant in this model of pVL

Figure 2. Bayesian network depicting conditional dependen-
cies among surveillance drug resistance mutations (SDRMs) in
ARV-naı̈ve sequences. Each labeled node corresponds to a position
in protease [rectangular] or RT (rounded). Nodes without dependencies
(L23, L24, V32, I47, I50, F53, G73, L76, K65, V75, F77, Y115, F116, L100,
V106, V179, Y181, and Y188) were omitted from the graph for clarity.
Connections between nodes (edges) are labeled with the log10 odds
ratio of the 2|2 contingency table for the presence/absence of SDRMs
at the respective sites, e.g., an SDRM at position PR-D30 is estimated to
be 103:6&4000 times more likely to be present in an ARV-naı̈ve
sequence that contains an SDRM at position PR-N88. Line widths for
edges are also drawn in proportion to the log10 odds ratios.
Inf = infinity, i.e., unable to estimate because of zero count(s) in the
contingency table.
doi:10.1371/journal.pone.0021189.g002

Figure 3. CD4 cell count (raw) plotted against the sum of
Stanford scores for nucleoside and non-nucleoside reverse
transcriptase inhibitors (SNRTI and SNNRTI, respectively). The
upper limit of CD4 (2073 cells/mL) was truncated to 1000 cells/mL
(omitting 19 outliers) to emphasize the overall trend. Because the
predicted baseline CD4 tended to decline with both SNRTI and SNNRTI ,
we combined the scores into a single ordinal variable to facilitate
interpretation. The linear model prediction is displayed as a solid line
(generated by fitting a smoothing spline to the predicted values with
smoothing parameter a~0:9), with 95% confidence intervals displayed
as dashed lines.
doi:10.1371/journal.pone.0021189.g003

Table 2. Coefficient estimates from Akaike Information Criterion (AIC)-selected linear models of baseline
ffiffiffiffiffiffiffiffiffiffi
CD43
p

and plasma HIV
RNA on Stanford scores by drug class and demographic and risk factors.

ffiffiffiffiffiffiffiffiffiffi
CD43
p

log10 plasma HIV RNA

Estimate (95% CI) P value Estimate (95% CI) P value

SNRTI {6:9 ({12:2, {1:1)|10{3 0.02 {3:2 ({0:8, {5:7)|10{3 0.009

SNNRTI {4:4 ({8:4, {0:5)|10{3 0.035 1.7 (0.04, 3.4)|10{3 0.045

Male NS 0.19 (0.06, 0.32) 0.006

Race/ethnicity

Black {0:35 ({0:61, {0:09) 0:008 {0:15 ({0:26,0:04) 0.007

Hispanic {0:57 ({0:86, {0:28) 1:1|10{4 NS

All estimates were averaged over an ensemble of linear models using Akaike weights. Only statistically significant (a~0:05) terms after weighting are reported. Linear
effects of factors were estimated relative to the model intercept, i.e., a hypothetical female white individual. NS = not significant.
doi:10.1371/journal.pone.0021189.t002
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(Pv0:05) with the presence of K219X diminishing the effect of

D67X on pVL by about 0.6 log10 units. Approximately 6.7% of

variation in pVL was explained in this model, over three times as

much as the aggregate model.

Causal inference
We used an inverse probability weighting scheme (using

stabilized weights) to disentangle the causal effects of SDRMs

from confounding variables that influence both the probability of

the ‘treatment’ (an SDRM at the position in question) and CD4 or

pVL. Based on the results of the preceding section, we focussed on

the compensated and uncompensated effects of M184X on

baseline pVL, and of D67X on both pVL and
ffiffiffiffiffiffiffiffiffiffi
CD43
p

. K103X

and K219X were assumed to be interchangeable with respect to

their compensatory interactions with M184X. Consequently, the

multinomial outcome AM184 comprised n~1445, 19 and 15 cases

for the respective levels 0, 1 and 2 (i.e., wildtype, uncompensated

M184X, and M184X compensated by K103X and/or K219X). In

an unweighted univariate linear model, M184X was significantly

associated with a {1:1 decline in log10 pVL in the absence of

K103X and/or K219X (Table 4). Stabilized weights adjusting for

the conditional probability of carrying M184X ranged from 0.02

to 18.72 with a mean of 1.016. Adding stabilized weights to the

model exposed a greater deleterious effect of M184X on log10

pVL ({1:69 units) when uncompensated by K103X and/or

K219X. Similarly, re-weighting linear models resulted in larger

estimated effects of uncompensated D67X on both baseline CD4

({2.1 units
ffiffiffiffiffiffiffiffiffiffi
CD43
p

) and pVL (2.5-fold increase; Table 4).

Stabilized weights adjusting for the conditional probability of

carrying D67X ranged from 0.006 to 12.3 with a mean of 1.003.

For both pVL and CD4, the effects of D67X compensated by

K219X became statistically significant and reversed sign relative to

the unadjusted models (Table 4).

Discussion

The overall prevalence of transmitted drug resistance (TDR)

mutations in therapy-naı̈ve patients has been reported in a large

number of study populations around the world and ranges from 0

to 25% [1]. On the other hand, the transmission of a specific

mutation is a relatively infrequent event whose prevalence requires

very large samples (over 1000 individuals) to estimate. This

requirement has generally been achieved by integrating study

populations from similar geographic regions, such as the

Combined Analysis of Resistance Transmission over Time of

Chronically and Acute Infected HIV Patients (CATCH) study

encompassing 27 countries in Europe [31], the Swiss HIV Cohort

Study [32], the UK Collaborative HIV cohort study [14], and the

Centers for AIDS Research (CFAR) Network of Integrated

Clinical Systems (CNICS) cohort reported in this study. Here we

briefly compare and contrast the prevalence of drug class-specific

and site-specific TDR across these integrated cohorts. First,

NRTI-associated SDRMs generally tend to be more prevalent

than SDRMs associated with PIs or NNRTIs. Our sample

deviates slightly from this trend in that the prevalence of naı̈ve

sequences with §1 NNRTI-associated SDRM is similar to

sequences with §1 NRTI-associated SDRM, largely due to an

atypically high frequency of transmitted mutations at RT-K103

(5.2%) in our sample. Second, SDRMs that are slow to revert in

the absence of selection (e.g., M41L, K103N, and T215X in RT

and L90M in protease), implying a negligible cost to fitness [1],

tend to have relatively high prevalence in therapy-naı̈ve sequences.

The foremost and best -documented clinical implication of

TDR is that it impedes the virological response to subsequent drug

therapy [6–8]. In contrast, the clinical implications of TDR in the

absence of drug therapy are subtle and less well understood. These

effects have been difficult to elucidate because the transmission of

SDRMs remains an infrequent event at the scale of individual

mutations. Investigators have attempted to overcome the limita-

tions of insufficient sample sizes by evaluating the effects of

aggregate statistics of TDR, such as an ‘all-or-none’ statistic that

groups sequences carrying one or more SDRMs [14,16,17]. While

this approach is convenient and easy to interpret, it is subject to

confounding because different drug classes or mutations can have

opposite effects on prognostic clinical markers. Our use of a large

data set from a multi-center cohort enabled us to overcome some

limitations of sample size, and to break down the effects of TDR

on baseline CD4 and pVL by drug class or amino acid position.

For example, we found that SNRTI and SNNRTI had opposing

associations with pVL; because these quantities are correlated,

their effects on pVL would have been confounded in an ‘all-or-

none’ analysis. Similarly, we have observed several compensatory

interactions among mutations that would otherwise mask the

actual effects of individual mutations on CD4 or pVL (e.g., D67N/

G and K219Q/E).

Because this study population was comprised of seroprevalent

rather than seroincident individuals , each baseline measurement

of CD4 and pVL was sampled at a point in time following an

unknown date of transmission. Consequently, there is no

guarantee that these baseline measurements were taken at a

consistent stage of infection. In other words, the CD4 count or

pVL at baseline is the result of dynamics over an unknown period

of time, starting from an unknown value upon infection. These

missing data would be required to calculate rates of change, which

would be easier to generalize to specific cases in clinical practice

where these quantities (time since infection and prognostic markers

at infection) may be known. This is a common problem of

observational cohort studies and may explain why a substantial

Figure 4. Three-dimensional scatterplot of log10-transformed
plasma viral load (pVL) as a function of Stanford scores for
NRTI and NNRTIs (SNRTI and SNNRTI). Overall, higher SNNRTI was
associated with higher pVL, while SNRTI was inversely associated with
pVL. The range of log10 pVL (1:58,6:96) was truncated to emphasize the
overall trend (omitting 73 outliers). The linear model prediction is
displayed as a wireframe surface (generated by local polynomial
regression with smoothing parameter a~0:8).
doi:10.1371/journal.pone.0021189.g004
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Figure 5. Box-and-whisker plots illustrating (A) the effects of SDRMs at positions D67 and K219 on CD4 cell count and (B) the
effects of SDRMs at positions M184 and K103 on plasma viral load (pVL). ‘Wildtype’ denotes sequences lacking SDRMs at both positions,
irrespective of whether any other SDRMs were present at other positions in protease or RT. Solid lines indicate the group median and open circles
denote outliers that fall outside the region defined by 1.5 times the interquartile range. Plot (A) was rescaled with respect to untransformed CD4
counts to emphasize differences among groups, trimming 4 outliers from the ‘wildtype’ group (1602, 1626, 1838, and 2073 cells/mL) from the plot
region. Sample sizes per group are annotated on each plot.
doi:10.1371/journal.pone.0021189.g005

Table 3. Coefficient estimates from AIC-selected linear models of baseline
ffiffiffiffiffiffiffiffiffiffi
CD43
p

and log10 plasma HIV RNA on position-specific
SDRMs and demographic and risk factors.

ffiffiffiffiffiffiffiffiffiffi
CD43
p

log10 plasma HIV RNA

Estimate (95% CI) P value Estimate (95% CI) P value

M41X 1.0 (0.05, 1.95) 0.04 NS

M46X NS {0:98 ({1:6, {0:35) 0.003

D67X {2:1 ({3:9, {0:4) 0:026 0.96 (0.25, 1.7) 0.009

M184X NS {1:06 ({1:44,{0:67) 1:3|10{7

L210X NS {0:6 ({1:0, {0:17) 0.007

K219X {1:2 ({2:4, {0:08) 0:037 NS

D67X:K219X 2:5 (0:14, 4:8) 0:006 {0:59 ({1:6, 0:4) 0.047

K219X:G190X {3:0 ({5:6, {0:4) 0:014 NS

L90X:M41X {1:7 ({4:4, 0:1) 0:007 NS

I54X:L210X 2:0 ({0:59, 4:7) 0:04 NS

M46X:T215X NS 1.7 (0.88, 2.5) 0.033

M184X:K103X NS 0.58 ({0.14, 1.3) 0.018

M184X:K219X NS 0.87 ({0.07, 1.8) 0.023

K219X:Y181X NS 1.43 (0.34, 2.5) 0.013

Male {0:58 ({0:9, {0:24) 7:5|10{4 NS

Sample date 23.3 (7.4, 38.9) |10{5 0:004 {20:0 ({38:4, 0:1) |10{5 0.04

Race/ethnicity

Black {0:35 ({0:61, {0:10) 0:007 {0:16 ({0:26, {0:05) 0.003

Hispanic {0:57 ({0:85, {0:29) 8:3|10{5 NS

other {0:53 ({0:98, {0:08) 0:02 NS

SDRMs are annotated by HXB2 reference residue and position (gene-specific numbering), followed by an ‘X’ to indicate a non-reference residue. Positions 46, 54, and 90
are in protease and all others are in reverse transcriptase. All estimates were averaged over an ensemble of linear models using Akaike weights. Only terms that were
statistically significant (a~0:05) are reported here. NS = not significant.
doi:10.1371/journal.pone.0021189.t003
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fraction (&90%) of variation in baseline CD4 or pVL remained

unaccounted for in the linear models. Furthermore, because the

baseline samples were taken either upon entry into care or prior to

initiating ARV therapy (ART), they may constitute a biased

sample of the patient population with respect to CD4 and pVL.

Recent guidelines, for example, indicate that patients should be

initiated on ART when their CD4 cell count falls below a

threshold of 500 cells per mL regardless of HIV RNA [33]

However, treatment guidelines have evolved over time [34] and

using a large sample size covering a decade of clinical practice can

ameliorate some of these biases. As guidelines have pushed

initiation of therapy to earlier time points, it could be argued that

less fit virus, with lower HIV RNA and higher CD4, would not

merit clinical significance since virtually every patient should start

therapy soon after identification; in other words, an association of

TDR with lower viral load would not result in a longer delay

between detection of HIV and the need to start therapy. However,

viral fitness and replication level may be very significant in the

prevalence of resistance mutations in the circulating virus

population, the pool of virus in a community that could potentially

be transmitted. As the pool of patients with suppressed virus

increases due to ARV treatment, the relative rates of transmitted

resistance may paradoxically increase due to a diminishing pool of

untreated wildtype virus and a greater prevalence of resistance in

the circulating virus population (10%–20% of patients who are

failing therapy [1]). In this scenario, viral fitness and its effect on

HIV RNA could determine which viruses are transmitted.

Mutations such as M184V may be transmitted less often due to

the reduced overall viral load in those subjects, whereas mutations

such as K103N may increase in prevalence. THe overall rates of

transmitted resistance would be a complex interplay between

many host and viral factors.

Some of these issues might be resolved by the analysis of

longitudinal data that are available for this study population [18].

However, this approach would create even more problems than it

could potentially address. First, we would have to accommodate

the effects of antiretroviral therapy that generally follows soon after

HIV genotyping at baseline. This is not a trivial task, not only

because it introduces a potentially large number of variables to the

analysis (one for every drug, or a minimum of three for the

predominant drug classes), but also because variation in adherence

and confounding due to variation in prescribed regimens across

clinical sites would severely complicate the interpretation of results.

Second, we would have to accommodate large amounts of missing

data due to differential follow-up among patients as well as a

sparsity of HIV sequence data relative to CD4 and pVL

measurements. In other words, HIV genotyping is performed

much less frequently. Third, it is more difficult to adjust for

confounding in longitudinal than cross-sectional data sets by

inverse probability weighting. Previous studies have successfully

employed a marginal structural modelling approach in similar but

simplified contexts [20,35]. Marginal structural models are

essentially a time-dependent generalization of the inverse proba-

bility weighting approach used here [19]. However, they are

difficult to apply in highly-structured contexts (where pVL, CD4,

drug regimen and HIV genotype all influence one another over

time) and large numbers of missing data. In sum, the analysis of

longitudinal data is a substantially different question outside the

scope of this study on the effect of TDR on pre-therapy pVL and

CD4 and must be left to future work.

Of all position-specific effects of SDRMs on baseline prognostic

markers inferred from these data, one of the largest and most

statistically significant was M184V/I. The effects of these

substitutions on the kinetics and fidelity of HIV-1 reverse

transcriptase and replication capacity in vitro are well-characterized

[36–38]. Previous studies have also documented compensatory/

epistatic interactions of other mutations acting on M184V/I,

including K219Q [11] and N384I [39]. Furthermore, Paredes and

colleagues have recently observed that in vivo fitness is reduced in

viruses carrying the M184V mutation in the absence of lamivudine

[12]. Even so, the effect of M184V/I on viral fitness in vivo is

confounded by the effects of other SDRMs and demographic/risk

factors that should be handled using a causal modeling approach

[19]. Taking such an approach, we have found that uncompen-

sated M184V/I mutations are causally associated with a 50-fold

reduction (10{1:7) in baseline pVL in therapy-naı̈ve patients.

Table 4. Unadjusted and stabilized weight-adjusted linear models of multinomial exposure variables AM184 (M184X and (K103X or
K219X)) and AD67 (D67X and K219X) on log10 plasma HIV RNA and

ffiffiffiffiffiffiffiffiffiffi
CD43
p

, respectively.

Level Unadjusted model Adjusted model

Estimate (95% C.I.) P Estimate (95% C.I.) P

log10 plasma HIV RNA *AM184

AM184~0 4:63 (4:58,4:67)

AM184~1 {1:10 ({1:57,{0:63) 4:4|10{6 {1:69 ({2:63,{0:74) 4:85|10{4

AM184~2 {0:236 ({0:568,0:096) 0:16 0:207 ({0:35,0:763) 0:47
ffiffiffiffiffiffiffiffiffiffi
CD43
p

*AD67

AD67~0 6:22 (6:12,6:33)

AD67~1 {1:77 ({2:8,{0:74) 7:97|10{4 {2:14 ({2:66,{1:63) 7:5|10{16

AD67~2 {0:768 ({1:93,0:40) 0:196 0:51 (0:07,0:89) 0:016

log10 plasma HIV RNA *AD67

AD67~0 4:61 (4:56,4:65)

AD67~1 0:41 (0:21,0:62) 9:0|10{5 0:40 (0:32,0:48) v2|10{16

AD67~2 {0:21 ({0:64,0:22) 0:34 0:23 (0:05,0:41) 0:011

The model intercepts are taken to be A~0 by default, i.e., none of the designated mutations are present; these estimates are unchanged in the adjusted model and are
not repeated for clarity of presentation. Significant (a~0:05) effect estimates are bolded.
doi:10.1371/journal.pone.0021189.t004
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Previous studies have reported no greater than a 3-fold (10{0:5)

reduction in pVL due to M184V/I [38,40,41], while M184I itself

has been estimated to reduce fitness by 23% relative to M184V

[42]. This discrepancy may be due to failing to account for

interactions with other mutations such as the compensatory

interactions with K103 and/or K219, or confounding by other

genetic and non-genetic factors affecting pVL. On the other hand,

experimental studies of M184V/I-containing recombinant HIV-1

are potentially not subject to these confounding factors, and

M184V has been reported to reduce fitness by as much as 16-fold

in vitro [11]. However, it is difficult to estimate the fitness effect of a

mutation in vivo from in vitro measures of its effect on replication

efficiency as there are other components of RT functionality that

can be affected [43].

In contrast, the clinical consequences of D67N/G and K219Q/

E are not as well known. The effects of D67N/G and K219Q/E

on CD4 in our study were mirrored by significant effects on pVL;

i.e., substitutions at D67 were causally associated with a 2.5-fold

increase in pVL that was only partially compensated by

substitutions at K219. These residues potentially form a salt

bridge and likely affect the formation of the RT 39 pocket during

polymerization [44]. Substitutions at these sites have previously

been suggested to incur a moderate fitness cost in vitro [11,45],

although these previous studies had not employed statistical

methods to separate out the effects of these substitutions from

confounding by other mutations and demographic or risk factors .

Our results give the first evidence that the transmission of D67N/

G may have deleterious virological and immunological conse-

quences in therapy-naı̈ve patients that may be compensated by

K219Q/E.
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