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SUMMARY
Toll-like receptors (TLR) have a critical role in innate immunity against pathogens. We
investigated the cytokine response to TLR stimulation in peripheral blood cells of subjects
infected with hepatitis C virus (HCV) and / or human immunodeficiency virus (HIV) in the
Women Interagency HIV Study (WIHS) cohort. Interleukin (IL)-6 in response to TLR3 and TLR4
ligands such as polyinosinic-polycytidylic acid and lipopolysaccharide was significantly
compromised in HCV-infected women. High spontaneous secretion of IL-6 suggested pre-existing
cell activation as a factor mediating reduced responses to TLR3 and TLR4 stimulation. To a lesser
extent, tumour necrosis factor-α and IL-1β responses to TLR stimulation were also compromised.
Monocytes, but not B cells or NK cells, were identified as the cell population spontaneously
secreting cytokines and also as the cells responding to TLR stimulation. These results highlight a
functional defect in antigen-presenting cells of women with HCV infection or co-infection. In
women with existing HIV co-infection, decreased cytokine function of antigen-presenting cells
suggests another mechanism contributing to immune dysfunction in addition to the HIV-
associated CD4 defect.
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INTRODUCTION
Infection with hepatitis C virus (HCV) often results in viral persistence and chronically
infected individuals have an increased rate of liver cirrhosis and hepatocellular carcinoma.
Th1-type immune responses and cytotoxic T lymphocyte activity appear associated with
viral clearance [1–3]. Accordingly, T-cell responses to HCV proteins are readily detected
during acute infection, but both CD4 and CD8 functions become significantly impaired in
the chronic phase [reviewed in 4]. The scarcity of HCV-specific memory T-cell responses
during chronic infection has been proposed to be the result of interference by HCV proteins
which bypasses immune mechanisms protective to the host.

In human immunodeficiency virus (HIV)-infected individuals, HCV co-infection appears
linked to increased morbidity and mortality [5–7]. We and others have previously reported
more extensive T helper cell dysfunction in patients with HIV / HCV co-infection compared
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with individuals with either HIV or HCV mono-infection [8,9]. Although reduced CD4 cell
counts in HIV-infected individuals have a significant impact on immune function, emerging
investigations suggest that additional levels of dysfunction linked to HCV may also exist. In
some studies, dendritic cells (DC) generated in vitro from peripheral blood of HCV-infected
individuals appear impaired in their capacity for antigen presentation [10–12]. Although
other studies found reduced percentages of myeloid and plasmacytoid DC, their capacity for
IFN-α secretion and allogeneic antigen presentation was comparable with uninfected
controls [13,14]. Thus, the potential effect of HCV infection on antigen presentation remains
inconclusive. Emerging data [13,14] as well as our unpublished observations suggest that
the T-cell impairment in patients with HCV mono-infection is specific for HCV, while
memory responses to unrelated pathogens like CMV remain robust.

Several studies have demonstrated that HCV could infect and establish a reservoir in
peripheral blood. Cells of the monocytic lineage appear permissive for HCV replication [15–
18]. The effect of such extrahepatic infection remains unclear, although initial studies
reported secretion of tumour necrosis factor (TNF)-α and interleukin (IL)-8 by in vitro
infected monocytes [19] and high IL-8 levels in the serum of infected patients [20].

Toll-like receptors (TLR), primary components of innate immunity, play a critical role in
defense against pathogens [reviewed in 21]. Both TLR3 [reviewed in 22] and TLR4 [23–26]
have a recognized role in antiviral immunity. In this study, we investigated the ex vivo
capacity of peripheral blood mononuclear cells (PBMC) from women with HCV mono-
infection or co-infected with HIV to respond to TLR 3 and 4 ligands. The results highlight a
state of functional activation associated with HCV infection reflected by a reduced response
to TLR ligands and high spontaneous secretion of the pro-inflammatory cytokine IL-6 and to
a lesser extent also TNF-α and IL-1β. Monocytes were found to be the only cell type
secreting spontaneously pro-inflammatory cytokines as shown in depletion experiments and
intracellular staining. The aberrant secretion of pro-inflammatory cytokines by monocytes in
HCV infection does not appear to be driven directly by HCV viraemia.

METHODS
Subjects

This was a cross-sectional study nested within the Women’s Interagency HIV Study [WIHS,
27]. Women with confirmed HCV serological status enrolled in the Southern California
WIHS were evaluated during a scheduled visit between March 2003 and December 2004.
HCV serostatus was established at enrollment, 2–10 years prior to initiation of this study.
None of the HCV+ women were receiving anti-HCV therapy. Cytokine responses to TLR
stimulation were investigated in 43 women, of whom 14 were co-infected (HIV+ / HCV+),
16 were HIV+ only and 13 were HCV+ only. Healthy individuals (n = 20) confirmed to be
seronegative for HIV and HCV were used as a control group. Written consent was obtained
from all subjects, and the Institutional Review Board (IRB) of the University of Southern
California approved the study.

HIV and HCV viral loads
Plasma HIV-RNA levels at the time of cytokine testing were determined using the Nucleic
Acid Sequence Based Amplification assay (NucliSens; bioMerieux, Inc., Durham, NC,
USA) lower detection limit 25 copies / mL. HCV-RNA was detected by real-time PCR
assay using the Cobas Amplicor HCV Monitor 2.0 (Roche Diagnostics®, Basel,
Switzerland), with a dynamic range of 10–200 000 000 IU / mL.
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PBMC stimulation
Fresh PBMC were cultured in serum-free medium (X-vivo 20; BioWhittaker, Walkersville,
MD, USA) at 2 × 105 cells / well for 24 h in 96-well round-bottom plates. Supernatants from
cultures with medium only were used to evaluate spontaneously secreted cytokines. Parallel
cultures received TLR3 and TLR4 stimulants [polyinosinic-polycytidylic acid (pIC), 200
µg /mL or lipopolysaccharide (LPS), 20 ng /mL respectively, both from Sigma, St. Louis,
MO, USA]. These concentrations of pIC and LPS were established as optimal in preliminary
experiments. Supernatants were recovered at 16 h of culture and stored frozen until batch
analysis.

Cytometric bead array assay for IL-1β, IL-6, IL-10, IL-12 and TNF-α
The cytometric bead array (CBA) assay was performed using undiluted tissue culture
supernatants. For samples with high levels of cytokines, supernatants were retested at 1:5
dilution as described by the supplier (BD Biosciences, San Jose, CA, USA). For this assay,
soluble cytokines were captured on microparticles and then measured using a fluorescence-
based detection system and flow cytometry analysis as described previously [28,29]. A
series of 10 dilutions using cytokine standards were run in each assay for generation of
standard curves. Samples were analysed in a FACSCalibur flow cytometer (Becton
Dickinson, Franklin Lakes, NJ, USA) using the BD CBA Analysis Software, (Becton
Dickinson). Spontaneous secretion of each cytokine was defined as the mean ± 3 SD of
background release in PBMC from healthy controls (n = 20). The lower limits for IL-1β,
IL-6, IL-10, IL-12 and TNF-α using this criterion were 12, 73, 3, 2.5 and 24 pg /mL
respectively.

Depletion of monocytes, B cells and NK cells
Specific cell populations were removed by immunomagnetic separation. Briefly, PBMC
were incubated for 30 min at 4 °C with mouse monoclonal antibodies specific for CD14,
CD19 or CD56 for removal of monocytes, B cells or NK cells respectively. Following
washing, anti-mouse Ig-coated magnetic beads (Dynabeads; Dynal, Oslo, Norway) were
added at a 10:1 ratio. Bound cells were retained on a magnetic field. The preparations after
two-rounds of depletion contained <2% of the target population as monitored by flow
cytometry. Depleted preparations were recounted and stimulated with TLR ligands or left in
medium only for spontaneous release.

IL-6 and TNF-α detection by intracellular staining
Peripheral blood mononuclear cells were stimulated for 5 h with TLR ligands or without
stimuli for direct ex vivo detection of cytokines. Frozen PBMC were used for the detection
of TNF-α. For analysis of both cytokines, Brefeldin A (1 µM; BD PharMingen, San Jose,
CA, USA) was added during the last 4 h of incubation. Cells were stained with APC-
labelled anti-CD14, FITC-labelled anti-CD19 monoclonal antibody (MAb) and CyC5-
labelled anti-CD56. After fixation / permeabilization, cells were incubated with PE-labelled
anti-human MAb to IL-6 or TNF-α, or an isotype control in wash / permeabilization buffer
according to the manufacturer’s instructions (all reagents from BD PharMingen). Stained
preparations were analysed on a FACSCalibur flow cytometer (Becton Dickinson). Fifty
thousand eventswere scored for each sample.

Statistical analyses
Student’s t-test was used for the comparison of continuous variables between two groups.
Analysis of variance (ANOVA) was used for comparison of continuous variables between
three or more groups. Further comparisons between any two groups within these multiple
groups were conducted using Scheffe’s method. Proportions between categorical groups

Villacres et al. Page 3

J Viral Hepat. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were compared using chi-squared test or Fisher’s exact test. Wilcoxon Rank Sum test was
used for the comparison of IL-6 ratios. Two-tailed P-value <0.05 was considered
statistically significant.

RESULTS
Characteristics of the study populations

In general, the study groups were similar except that a history of injection drug use was
more common in the 27 women with HCV infection (92% in the 13 mono-infected and 86%
in the 14 co-infected) compared with the 16 women with HIV mono-infection (0%, P <
0.0001, Table 1).As expected, CD4 counts were significantly lower in women with HIV
infection, either as mono-infection (mean 493 cells / µL) or as co-infection (448 cells / µL),
compared with women with HCV mono-infection (1045 cells / µL, P < 0.0001).

High spontaneous cytokine secretion
Compared with healthy controls, HCV (54%) and HIV / HCV positive women (64%) had
high levels of spontaneous IL-6 release (P < 0.05, Fig. 1a). Spontaneous secretion of IL-6 in
women with HIV mono-infection was not statistically different from the value observed in
healthy controls (34.1 and 8.1 pg /mL respectively). Spontaneous TNF-α was significantly
higher among HIV / HCV-positive women (Fig. 1b, 16 pg / mL) compared with both HIV
mono-infected (3.3 pg / mL) and controls (3.2 pg / mL, P < 0.05 for both comparisons).
Compared with controls, levels of spontaneous IL-1β were also significantly enhanced in
HCV-positive women (Fig. 1c, 7.8 and 1.4 pg /mL respectively, P < 0.05). However, IL-6
was the most abundantly spontaneously secreted cytokine among HIV / HCV-positive
women, with overall levels about 10-fold higher than TNF-α and 50-fold higher than IL-1β.
Spontaneous secretion of IL-10 was observed at low levels in only four women, but overall
there were no differences between the groups. No spontaneous secretion was observed for
IL-12.

Compromised IL-6 responses to TLR stimulation
Contrasting the spontaneous secretion, IL-6 response to TLR3 (pIC) stimulation was
significantly reduced in HCV-infected women (Table 2). Moreover, most HCV-mono-
infected and HIV-co-infected women presented both high spontaneous cytokine secretion
and low TLR-mediated cytokine responses. Similar results were obtained in cultures
stimulated with the TLR4 ligand LPS, indicating that aberrant pro-inflammatory cytokine
secretion in these patients comprises both TLR3 and TLR4 responses. Overall, only one
HCV-positive patient (4%) had responses comparable with healthy controls for all
cytokines.

Other cytokine responses to TLR stimulation
Levels of IL-1β and TNF-α in response to TLR3 (pIC) or TLR4 (LPS) stimulation were also
reduced among women with HCV infection, either as mono-infection or in HIV co-infection
(Table 2). Despite the overall trend, IL-1β among HCV-infected women (mono- or co-
infected) was significantly reduced only compared with HIV+ women (but not healthy
controls) for both TLR3 and TLR4 stimulation. A similar pattern was observed for TNF-α,
except that the response to TLR4 ligand among co-infected women was not statistically
different from all other groups. Levels of the regulatory cytokine IL-10 were likewise
reduced among women with HCV infection compared with women with HIV mono-
infection but not different from healthy controls, although IL-10 values were overall lower
than those of IL-6, IL-1β and TNF-α. IL-12 was seldom detected and there were no
differences between the groups (data not shown).
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Monocytes involved in spontaneous secretion of pro-inflammatory cytokines
Following depletion of monocytes / macrophages (CD14+ cells), B cells (CD19+) or NK
cells (CD56+), only depletion with anti-CD14 antibody resulted in nearly abolished
secretion of pro-inflammatory cytokines both for spontaneous and TLR-mediated secretion
(shown for IL-6, TNF-α and IL-1β in Fig. 2a,b). This observation was further confirmed by
intracellular staining for IL-6 and TNF-α (Fig. 2c). Flow cytometry data shown are PBMC
from a woman with HIV / HCV co-infection indicating a positive IL-6 signal in 32.8% of
CD14+ cells (4.4% for the corresponding isotype control, Fig. 2c upper row). No IL-6 signal
was detected in CD19+ or CD56+ cells. Staining for TNF-α indicated a positive signal in
23.1% of CD14+ cells compared to 4.5% in the corresponding isotype control (Fig. 2c,
lower row). No TNF-α signal was detected in CD19+ (panels to the left) or CD56+ cells.
This pattern of cytokine secretion by CD14+ cells but not by CD19+ or CD56+ cells was
identical in a total of six patients in independent experiments.

DISCUSSION
This study detected a reduced IL-6 response to TLR ligands in patients with HCV infection
irrespective of HIV status. High spontaneous secretion of IL-6 was observed among HCV-
infected women. Noteworthy, levels of spontaneous secretion in co-infected women were
similar to the levels observed in women with HCV mono-infection, suggesting that the
cytokine dysregulation is linked to HCV infection. Although the impaired TLR-mediated
IL-6 response was more noticeable in patients with high spontaneous secretion, absolute
levels of stimulated IL-6 secretion were overall reduced in HCV infection.

Toll-like receptors, primary components of innate immunity, play a critical role in defence
against pathogens [reviewed in 21]. Specifically, TLR3 has a well-recognized role in
antiviral immunity [reviewed in 22]. Also TLR4 has been implicated before in responses to
viral infections [23,24]. In humans, respiratory syncytial virus [25] and coxsackie virus B4
[26] stimulate IL-6 secretion via TLR4 signalling. Moreover, the HCV NS5A protein has
been recently reported to activate TLR4 but not TLR3 in human B cells [30]. A recent
microarray analysis indicated compromised expression of mRNA for TLRs in HCV patients
with poor treatment response [31]. However, this defect appears to involve primarily the
receptor for single-stranded RNA TLR7 and only marginally other TLRs.

Our depletion studies demonstrate that cells expressing the monocytic marker CD14
mediated the spontaneous secretion of IL-1β, IL-6 and TNF-α, as well as the TLR-mediated
cytokine secretion. Cells of the monocyte / macrophage lineage are characteristically very
potent producers of cytokines and have a relevant role in amplification and modulation of
innate responses by their release of cytokines. Although abnormal function of B cells and
NK cells have been associated with HCV infection [reviewed in 32], our depletion
experiments found no evidence of contribution by NK cells or B cells in either spontaneous
or induced secretion of the cytokines investigated. Intracellular staining further confirmed
the sole involvement of monocytes / macrophages in this response. Compromised IFN-α and
IL-6 responses to a combination of TLR ligands in plasmacytoid but not myeloid DC from
HCV-infected subjects was reported recently [33]. Although we did not investigate
specifically DC, removal of monocytes / macrophages from PBMC was sufficient to nearly
ablate spontaneous secretion of IL-6, TNF-α and IL-1β.

Several reasons may account for monocyte activation ex vivo and the resulting spontaneous
cytokine secretion. Monocytes may be directly infected by HCV and several studies have
detected negative strand HCV RNA in monocytes indicating HCV replication, albeit to low
efficiency [15–18]. Infection of monocytes by HCV may account for a defective cytokine
response by the infected cells. It is also plausible that non-infected monocytes are affected
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by infected ones in a bystander fashion because of release of viral proteins. For example,
HCV core and NS3 proteins were reported to induce secretion of TNF-α and IL-10 by
normal monocytes in vitro [11]. Our study detected significantly higher levels of
spontaneous TNF-α secretion in a substantial number of co-infected women, but differing
from Dolganiuc’s observations, no evidence of spontaneous IL-10 secretion was found in
our experimental system. Recently, secretion of TNF-α and IL-8 was detected in cultures
containing HCV-infected monocytes [19]. Yet, the question whether the cytokine defect was
mediated in a direct or a bystander fashion remains to be investigated. In other studies, HCV
core and NS3 proteins mediated NFkB and inflammatory activation in vitro by using the
TLR-2 pathway [34]. Such a mechanism involving key elements of intracellular activation is
in agreement with our observation of enhanced spontaneous cytokine secretion but impaired
TLR-mediated cytokine response. In contrast, recent studies characterized two additional
mechanisms of interference with innate immunity involving disruption of retinoic acid-
inducible gene I (RIG-I) and cleavage of the TLR3 adaptor protein TRIF, both effects
mediated by HCV NS3 / 4A [35,36]. In both cases, the end result is inhibition of interferon
regulatory factor 3 (IRF-3) and NFkB in cells expressing NS3 / 4A. The apparently
contradictory observations of our ex vivo studies with these in vitro investigations may be
explained by a dual model of viral interference, where infected cells are subjected to
disruption of RIG-I and TRIF signalling, but bystander uninfected cells are activated by
circulating viral products.

Monocyte / macrophage activation ex vivo could also be a consequence of tissue injury, for
example in liver. High serum levels of IL-6 in chronic HCV infection have been reported
[37–39], as well as IL-6 mRNA in liver tissue of infected patients [40]. Elevated circulating
levels of IL-10, IL-12 and TNF-α have been reported previously [39,41]. However, to our
knowledge, a direct contribution to IL-6 production by monocytes / macrophages in
peripheral blood of HCV-infected patients has not been investigated. Interestingly, a recent
study indicated that IL-6 secretion could be induced by the HCV core protein [42]. Although
the possibility that IL-6 being stimulated by endogenous core protein seems plausible in our
patients, the question requires further investigation because a direct correlation between
spontaneous secretion of IL-6 and levels of viraemia could not be established in the current
groups.

Earlier studies by our group and others provided evidence of lymphocyte activation in
peripheral blood of patients with HIV [43–45] or HIV / HCV co-infection [46]. It seems
plausible that spontaneous secretion of cytokines by monocytes contributes to the activation
of lymphocytes observed ex vivo and further studies are needed to characterize this possible
relationship. It also seems likely that activated monocytes may function inefficiently as
mediators of inflammatory responses during antigen presentation and this may play a role in
the reduced cell-mediated responses reported previously among HIV / HCV co-infected
patients [8,9]. Because of the immunodeficiency linked to reduced CD4 numbers in HIV
infection, such a defect becomes evident in HIV / HCV co-infected individuals but not in
those with HCV mono-infection that have normal CD4 numbers. Further and expanded
investigations are needed to clarify the role of IL-6 and other inflammatory cytokines in
disorders associated with chronic HCV infection, both as mono-infection and in co-infection
with HIV.

Abbreviations

CBA cytometric bead array

DC dendritic cells
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HCV hepatitis C virus

HIV human immunodeficiency virus

LPS lipopolysaccharide

MAb monoclonal antibody

PBMC peripheral blood mononuclear cells

pIC polyinosinic-polycytidylic acid

TLR Toll-like receptors

TNF tumour necrosis factor

WIHS Women Interagency HIV Study
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Fig. 1.
Altered cytokine response in hepatitis C virus infection. Spontaneous release of (a)
interleukin (IL)-6, (b) tumour necrosis factor (TNF)-α and (c) IL-1β. Peripheral blood
mononuclear cells from healthy controls or infected patients were cultured in medium only.
Supernatants recovered at 16 h of culture were tested for released cytokines. Data shown
represent total values of secreted IL-6, TNF-α and IL-1β in pg /mL. Group values that were
significantly different (*P < 0.05) are indicated in each plot.
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Fig. 2.
Monocytes secrete cytokines both spontaneously and in response to Toll-like receptor
stimulation. (a) Untreated peripheral blood mononuclear cells (PBMC) (None) or PBMC
depleted from monocytes (CD14+), B cells (CD19+) or NK cells (CD56+) by immune-
magnetic separation were cultured in medium alone. (b) PBMC untreated or population-
depleted were stimulated with lipopolysaccharide for 16 h. Secreted cytokines in the
supernatants were evaluated by cytometric bead array assay. Data shown [from a patient
with hepatitis C virus (HCV) mono-infection] is representative of identical results from four
separate patients. (c) Intracellular staining for interleukin (IL)-6 (upper row) in B cells
(CD19+) and monocytes (CD14+) from a patient with human immunodeficiency virus/HCV
co-infection. Staining in NK cells (CD56+) was also negative (data not shown). The grey
line depicts the flow cytometric profile with an isotype control antibody (4.4% of CD14+
cells) and the black line indicates IL-6 staining (32.8% of the CD14+ population). Staining
for tumour necrosis factor (TNF)-α was positive in 23.1% of CD14+ cells (4.5% for the
isotype control). No TNF-α signal was detected in CD56+ (NK) cells (data not shown).
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