Skip to main content
. 2011 Jan 5;278(1716):2325–2332. doi: 10.1098/rspb.2010.2518

Table 1.

Parameter estimates. Mean-variance (U1). The mean parameter estimates of θ1 ± s.d. of a mean-variance decision-maker obtained from the linear regression analysis of the subjects' indifference points (see figure 2). Mean-Variance (U2). The mean parameter estimates of θ2 ± s.d. (estimated using bootstrapping with 1000 repetitions) of a mean-variance decision-maker obtained using a maximum-likelihood analysis of a noisy decision-maker. Prospect theory. The mean parameter estimates of α ± s.d. and γ ± s.d. (estimated using bootstrapping with 1000 repetitions) of a prospect theory decision-maker obtained using a maximum-likelihood analysis of a noisy decision-maker.

subject
1 2 3 4 5 6 7 8 9 10 11 12 13 14
mean-variance (U1)
θ1 0.46 0.16 0.16 0.14 0.12 0.12 0.11 0.08 0.04 0.03 0.02 −0.05 −0.05 −0.2
 ± 0.18 0.03 0.02 0.02 0.03 0.03 0.04 0.03 0.01 0.04 0.05 0.03 0.04 0.06
mean-variance (U2)
θ2 0.43 0.18 0.22 0.25 0.27 0.13 0.16 0.13 0.19 0.1 0.06 −0.18 −0.07 −0.34
 ± 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03
prospect theory
α 0.28 0.12 0.13 0.13 0.22 0.09 0.06 0.09 0.25 0.28 0.12 2.61 2.76 4.76
 ± 0.05 0.04 0.03 0.04 0.05 0.03 0.03 0.06 0.14 0.18 0.04 0.23 0.45 0.22
 γ 0.54 1.28 1.45 0.94 0.76 1.67 1.59 2.31 0.88 0.93 2.05 1.22 3.87 1.71
 ± 0.1 0.14 0.13 0.1 0.08 0.31 0.21 0.26 0.11 0.12 0.17 0.15 0.24 0.08