Table 1.
Parameter estimates. Mean-variance (U1). The mean parameter estimates of θ1 ± s.d. of a mean-variance decision-maker obtained from the linear regression analysis of the subjects' indifference points (see figure 2). Mean-Variance (U2). The mean parameter estimates of θ2 ± s.d. (estimated using bootstrapping with 1000 repetitions) of a mean-variance decision-maker obtained using a maximum-likelihood analysis of a noisy decision-maker. Prospect theory. The mean parameter estimates of α ± s.d. and γ ± s.d. (estimated using bootstrapping with 1000 repetitions) of a prospect theory decision-maker obtained using a maximum-likelihood analysis of a noisy decision-maker.
subject |
||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
mean-variance (U1) | ||||||||||||||
θ1 | 0.46 | 0.16 | 0.16 | 0.14 | 0.12 | 0.12 | 0.11 | 0.08 | 0.04 | 0.03 | 0.02 | −0.05 | −0.05 | −0.2 |
± | 0.18 | 0.03 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.03 | 0.01 | 0.04 | 0.05 | 0.03 | 0.04 | 0.06 |
mean-variance (U2) | ||||||||||||||
θ2 | 0.43 | 0.18 | 0.22 | 0.25 | 0.27 | 0.13 | 0.16 | 0.13 | 0.19 | 0.1 | 0.06 | −0.18 | −0.07 | −0.34 |
± | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 |
prospect theory | ||||||||||||||
α | 0.28 | 0.12 | 0.13 | 0.13 | 0.22 | 0.09 | 0.06 | 0.09 | 0.25 | 0.28 | 0.12 | 2.61 | 2.76 | 4.76 |
± | 0.05 | 0.04 | 0.03 | 0.04 | 0.05 | 0.03 | 0.03 | 0.06 | 0.14 | 0.18 | 0.04 | 0.23 | 0.45 | 0.22 |
γ | 0.54 | 1.28 | 1.45 | 0.94 | 0.76 | 1.67 | 1.59 | 2.31 | 0.88 | 0.93 | 2.05 | 1.22 | 3.87 | 1.71 |
± | 0.1 | 0.14 | 0.13 | 0.1 | 0.08 | 0.31 | 0.21 | 0.26 | 0.11 | 0.12 | 0.17 | 0.15 | 0.24 | 0.08 |