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Abstract
This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for
whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are
simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best
of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is
derived in a shape space of intensity images and point sets (such as curves and surfaces) in a
unified manner. We describe the Euler–Lagrange equation associated with this algorithm with
respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic
flow. The numerical implementation for solving this variational problem, which involves large-
scale kernel convolution in an irregular grid, is made feasible by introducing a class of
computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data.
Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM
algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and
subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than
combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute
matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of
cortical and subcortical volume segmentation.
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Introduction
Whole brain mapping has been widely used in neuroimaging research for multiple purposes,
including structural segmentation, voxel-based and tensor-based morphometry, group
analysis on functional magnetic resonance imaging (MRI) and positron emission
tomography (PET) (e.g., Miller and Qiu, 2009). Due to the complexity of the human brain
anatomy, it is challenging to accurately warp one brain to the other (van Essen et al., 1998).
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There has been great emphasis on developing volume-based nonlinear registration
approaches for whole brain mapping (e.g., Beg et al., 2005; Ashburner, 2007; Vercauteren et
al., 2009; Collins and Evans, 1997; Christensen et al., 1997; Davatzikos, 1997; Fischl et al.,
2004). Such approaches seek a deformation field that is driven by intensity information, and
hence, provide accurate mappings in subcortical and ventricular regions where intensity
contrast is clear and structural shapes are relatively simple. However, these approaches fail
to accurately align the cortical region since the convoluted cortical sheet cannot be well
characterized based on image intensity alone. There is an additional need to consider the
geometric property of the cortex as functionally distinct regions are close to each other in a
volume space but geometrically distant in terms of distance measured along the cortex. Such
a geometric property of the cortex has been well preserved in a cortical surface model (van
Essen et al., 1998; van Essen, 2004; Fischl et al., 1999a; Clouchoux et al., 2005; Lyttelton et
al., 2007). As tools are available for the automated construction of gyral/sulcal curves and
cortical surfaces (e.g., Mangin et al., 2004; Dale et al., 1999), registration approaches for
aligning the cortical surfaces across individuals have been recently developed based on
sulcal/gyral curves, the geometry of the cortical surface, and the spherical representation of
the cortical surface (Qiu and Miller, 2007; van Essen, 2005; Glaunès et al., 2008; Fischl et
al., 1999b; Thompson et al., 1996; Vaillant et al., 2007; Zhong and Qiu, 2010). These
registration approaches have shown superior performance in the alignment of highly
complex cortical folding pattern over volume-based registration approaches, and thus
resulted in increased statistical power for averaging of functional data in the cortical region
across subjects. This is presumably due to their accurate alignment of functionally
homologous regions across subjects (Anticevic et al., 2008). This accuracy stems from the
direct use of the geometric representation of the cortex that well characterizes the folding
pattern and functional properties of the cortex and is generally unavailable in the volume-
based registration. However, unlike volume-based registration approaches, surface-based
mapping approaches suffer from the inability of providing the deformation field across the
entire brain, such as the white matter, subcortical, and ventricular regions.

As mentioned previously, volume-based registration fails to align cortical regions partly
because the initialization using volume-based affine transformation cannot bring the cortical
regions close enough to facilitate nonlinear intensity-based alignment. Therefore, to alleviate
this problem, a number of iterative approaches have been proposed to first align the cortical
regions using landmarks, gyral/sulcal curves, or cortical surfaces (Collins et al., 1998;
Johnson and Christensen, 2002; Hellier and Barillot, 2000; Cachier et al., 2001; Joshi et al.,
2007; Postelnicu et al., 2009; Joshi et al., 2009) before registering the whole brain using
image volumes. Recent works by Postelnicu et al. (Postelnicu et al., 2009) and Joshi et al.
(Joshi et al., 2007) have employed the spherical cortical surface mapping implemented in
FreeSurfer (Postelnicu et al., 2009) or the harmonic cortical surface mapping constrained by
gyral/sulcal curves (Joshi et al., 2007) to first seek the deformation field on the cortical
boundary and then extend it to the 3D volume for further brain volume registration. These
two approaches have shown tremendous improvement in mapping accuracy when compared
to the advanced volume-based approach, hierarchical attribute matching mechanism for
image registration (HAMMER) (Shen and Davatzikos, 2002), where geometric features of
the cortex have been intrinsically incorporated. However, HAMMER simultaneously aligns
the cortical and subcortical regions by integrating geometric features of the cortex and image
intensity into one optimization procedure. This avoids the cortical misalignment while the
volume registration is applied without constraints on the cortical geometric information in
the iterative approaches given in Postelnicu et al. (2009) and Joshi et al. (2007).
Furthermore, HAMMER does not need to extend the deformation field on the cortical
surface to the 3D volume as it is in recent work by Postelnicu et al. (2009) and Joshi et al.
(2007), which does not provide useful initial alignment to the subcortical and ventricular
regions.
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Taking into consideration the advantages of HAMMER (Shen and Davatzikos, 2002) and
the iterative approaches (Postelnicu et al., 2009; Joshi et al., 2007), we introduce a novel
large deformation diffeomorphic metric mapping for whole brain registration. Unlike
previous LDDMM whole brain approaches based on the image intensity (LDDMM-image)
(Beg et al., 2005), the proposed approach provides a one-to-one, differentiable, and
invertible deformation field that simultaneously aligns gyral/sulcal curves, cortical surface,
and intensity image volume from one subject to the other. For the first time, a diffeomorphic
metric from one brain anatomy to another is derived in a shape space of images and point
sets (such as curves and surfaces) in a unified manner. For sake of simplicity, we call this
new algorithm as 6D-LDDMM from the differential geometry point of view where curves,
surfaces, and volumes are respectively considered as one-, two-, and three-dimensional
manifolds and simultaneously integrated in our new LDDMM. We associate 6D-LDDMM
with a variational problem whose Euler–Lagrange equation is characterized using
momentum, a linear transformation of the velocity vector field of the diffeomorphic flow.
We numerically solve this problem by introducing a class of computationally friendly
kernels to make it feasible to compute large-scale kernel convolution in an irregular grid
involved during the optimization process. Finally, the 6D-LDDMM accuracy is quantified in
terms of gyral/sulcal curve anatomical variation, sulcal region alignment, as well as
structural segmentation in both cortical and subcortical regions when compared to that of
LDDMM-image (Beg et al., 2005), HAMMER (Shen and Davatzikos, 2002), and combined
volumetric and surface registration approaches (Postelnicu et al., 2009).

Methods
Overview: 6-dimensional diffeomorphic metric mapping

The geometry and photometric information of the brain can be characterized using gyral or
sulcal (gyral/sulcal) curves, cortical surfaces, and intensity image volumes. In the
differential geometry point of view, a curve can be locally seen as a one-dimensional
manifold in the sense that the local region of every point on the curve is equivalent to a line
which can be uniquely defined by this point and the tangent vector at this location; a surface
can be locally seen as a two-dimensional manifold such that the neighborhood of every point
on the surface is equivalent to a two-dimensional plane in a Euclidean space; a volume is
seen as a three-dimensional manifold whose local region can be characterized as a function
of three variables defined in a Euclidean space. We thus call this unified brain representation
as 6-dimensional manifold and denote it as O = {γi, i = 1, 2,…, nγ; Si, i=1, 2,⋯, nS; Ii, i=1,
2,⋯··, nI}, where nγ, nS, nI represent the number of curves, surfaces, and images,
respectively. We propose a diffeomorphic metric mapping under the setting of LDDMM,
denoted as 6D-LDDMM, that seeks a flow of diffeomorphisms to simultaneously align the
6D brain representation from one to another. Assume two brains: one as template, Otemp,
and the other as target, Otarg. 6D-LDDMM can be solved through a variational problem in
the form of

(1)

where ρ determines the metric distance of the geodesic connecting Otemp and Otarg in a
shape space. The E terms quantify the dissimilarity between the two objects based on the
geometry of curves and surfaces as well as image intensity, respectively. ϕ denotes the
diffeomorphic group action on objects. λIi, λγi, and λSi are weights associated with images,
curves, and surfaces, respectively.
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We discuss how to define each term in Eq. (1) in the following sections. We first describe
the metric distance in a general form before discussing its specific expressions associated
with images, curves, and surfaces, respectively. In particular, we interpret the metric
distance as a length of a geodesic diffeomorphic flow connecting one shape to the other
through momenta that are directly viewed from physics as a product of a mass of the object
and the velocity of the geodesic flow. We interpret the object mass through a kernel, which
is discussed below. We then define EIi, Eγi, and ESi based on the intensity of the image, the
geometry of curves and surfaces, respectively.

Diffeomorphic metric for curves, surfaces, and images
In the setting of LDDMM (Miller et al., 2002), the brain is modeled by assuming that its
anatomy can be generated from one to another via flows of diffeomorphisms, solutions of
ordinary differential equations ϕ̇t=υt(ϕt), t∈[0,1], starting from the identity map ϕt=id. They
are therefore characterized by time-dependent velocity vector fields υt, t∈[0, 1]. We define a
metric distance between a target Otarg and a template Otemp as the minimal length of curves
ϕt · Otemp, t ∈ [0,1], in a shape space such that, at time t=1, ϕ1·Otemp is as similar as possible
to Otarg. The latter notation represents the group action of ϕ1 on Otemp. For instance, in the
image case, for which Otemp=Itemp (x), x ∈ Ω⊂ℛ3, it is  .
Lengths of such curves are computed as the integrated norm ‖υt‖V of the vector field
generating the transformation, where υt∈V, a reproducing kernel Hilbert space, with kernel
kV and norm ‖·‖V. To ensure solutions are diffeomorphisms, V must be a space of smooth
vector fields (Dupuis et al., 1998). Using the duality isometry in Hilbert spaces, one can
equivalently express the lengths in terms of mt, interpreted as momentum, and defined as

follows. For each u ∈ V,  where we let 〈m, u〉2 denote the L2 inner
product between m and u, but also, with a slight abuse, the result of the natural pairing
between m and υ in cases where m is singular (e.g., a measure). This identity is classically
written as  , where  is referred to as the pullback operation on a vector measure,

mt. Using the identity  and the standard fact that energy-minimizing curves
coincide with constant-speed length-minimizing curves, one can express the geodesic
distance, ρ, as

(2)

The minimum is computed over all mt such that  , ϕ0=id, and
ϕ1·Otemp=Otarg. Note that since we are dealing with vector fields in ℝ3, kV (x, y) is a matrix
kernel operator in order to get a proper definition. We now discuss the expression of the
metric distance in Eq. (2) for images, curves, and surfaces, respectively.

Image case—Assume Itemp(·) and Itarg(·) are functions defined over Ω⊂ℛ3. The
momentum, mt, takes the form mt=α(t, ·)⊗dx, such that 〈mt, u〉2=∫α(t, x)·u(ϕt(x))dx, where
u(x)∈V. We refer to α(t, x) as momentum vector at location x ∈Ω and time t. dx is volume
measure. Eq. (2) can then be simplified as

(3)
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Curves and surfaces—Assume  are the point sets,
where Otemp and Otarg can be curves or surfaces. The momentum, mt, becomes singular and
is defined as a sum of Dirac measures on Otemp

(4)

such that for any u∈V,  , where α(t, xi) is the momentum
vector of the ith point at time t. Thus, Eq. (2) can be simplified as

(5)

subject to  , ϕ0=id and ϕ1 ·Otemp=Otarg.

Based on the knowledge described in Eqs. (3, 5), we now define the metric distance in a
unified manner when Otemp and Otarg contain images, curves, and surfaces. We first

introduce measure  , which is the sum of Lebesgue's measure and Dirac
measure. The momentum in this 6D-LDDMM problem (Eq. (1)) takes the form of

 .

We assume u=υt ∘ ϕt. Over all α(t):  , the diffeomorphic
metric in Eq. (2) can be written as
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(6)

EI, Eγ, and ES
Since EI, Eγ, and ES have been previously defined in the LDDMM image (Beg et al., 2005),
curve (Qiu and Miller, 2007; Glaunès et al., 2008), and surface (Vaillant et al., 2007;
Vaillant and Glaunès, 2005) mapping algorithms, we briefly review their definitions for the
completion of the paper.

In Eq. (1),  quantifies the similarity between the deformed template image,

 , and the target image,  , based on the intensity value.

Thus, the matching functional EIi is defined as

(7)

It is well known that both curves and surfaces are geometric objects. Previous studies
(Vaillant and Glaunès, 2005; Vaillant et al., 2007; Glaunès et al., 2008) have associated the
geometry of curves and surfaces with vector-valued measures, μx=Σiwi⊗δxi, such that 〈μx,
u〉2=Σi〈wi, u(xi)〉2 for all vector fields, u, in a re-producing kernel Hilbert space, W. wi is the
tangent vector at xi for the curve case, while wi is the normal vector at xi for the surface case.
The action of ϕ1 on the discrete measure μx is given by

We use a kernel norm to compare ϕ1·μx and μy. Let kW be a kernel and μx be a measure. We
define
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The W in the notation comes from the fact that kW can be interpreted as the reproducing
kernel of a vector space (W) of smooth vector-valued functions and ‖·‖kw is then the dual
norm (Qiu and Miller, 2007; Glaunès et al., 2004; Vaillant and Glaunès, 2005; Glaunès et
al., 2008). We will let

(8)

With  , this is equal to

(9)

We now briefly describe how this representation is implemented with curves and surfaces in
the discrete setting (details about the continuous case in Glaunès et al. (2008); Vaillant and
Glaunès (2005)). For the sake of simplicity, here we only discuss one pair of curves, γtemp
and γtarg, and one pair of surfaces, Stemp and Starg.

When each curve is represented by a sequence of points, still denoted as
 , we use the representation of Glaunès et al. (2008) and

Qiu and Miller (2007)

with cj=(xj+1+xj)/2 and wj=xj+1−xj, and similarly for y. This representation in terms of
vector-valued measure is sensitive to both the location and the first order local geometry of
the curve.

Now, let Stemp and Starg be triangulated meshes with vertices  ,
respectively. Then, we let (Vaillant and Glaunès, 2005; Vaillant et al., 2007)

where ℱx is the set of faces in the triangulation, and, for a positively ordered face

 ; μy is defined
similarly. The representation makes a direct use of the geometry of the point set as a
triangulated surface. Note that the definitions of μx in the curve and surface cases come from
discretizations of mathematical objects called currents, as described in Vaillant and Glaunès
(2005).
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Euler–Lagrange equation for 6D-LDDMM
We now rewrite the variational problem in Eq. (1) by combining the metric distance defined
in Eq. (6) and the dissimilarity metrics of images, curves, and surfaces given in Eqs. (7, 9).
This variational problem optimizes a time-dependent momentum vector based on the
geometry of curves and surfaces as well as image intensity in the form of

(10)

where EIi, Eγi and ESi are defined in Eqs. (7) and (9), respectively. Its Euler–Lagrange
optimality conditions imply

(11)

where ∇1 denotes taking derivative of kV with respect to its first variable. This is completed
by boundary conditions

where ∇ϕ1EIi, ∇ϕ1Eγi and ∇ϕ1Esi are the derivatives of EIi, Eγi and Esi with respect to ϕ1.
∇ϕ1Eγi was discussed in Beg et al. (2005), ∇ϕ1Eγi in Glaunès et al. (2008), and ∇ϕ1ESi in
Vaillant and Glaunès (2005). The proof of Eq. (11) is similar to the one given in Glaunès et
al. (2008) for curve matching.
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Numerical implementation
The numerical implementation of 6D-LDDMM is not as straight-forward as that of the
LDDMM-image mapping algorithm (Beg et al., 2005). In LDDMM-image mapping, images
were represented by discrete regular grids such that the convolution with kernels involved in
the metric distance calculation can be computed using Fast Fourier Transform (FFT).
However, 6D-LDDMM integrates images discretized on regular grids, curves and surfaces
discretized on irregular grids. FFT cannot be directly applied for the convolution
computation. In this section, we provide a simple way to make it feasible to numerically
solve the 6D-LDDMM problem. In addition, we give the numerical scheme of solving 6D-
LDDMM with respect to momentum, which was not given in the LDDMM-image algorithm
(Beg et al., 2005).

In discretization, we first represent the ambient space, Ω⊂ℛ3, using a finite number of

points,  for the template coordinates and

 for the target coordinates. Here,  is a regular

grid on images  are the

curve sets with respective tangent vectors wxj
γi of the template and  of the target, where

 denote the number of points in the curve γi of the template and target

respectively. Similarly,  are the surface sets with respective

normal vectors  of the template and  of the target, where  denote the
number of point in the surface Si of the template and target respectively.

Thus, the discrete form of J is given by:

(12)

where  are kernels associated with curves and surfaces, respectively.

The gradient descent method is used to perform the minimization of J in Eq. (12) with
respect to the momentum α(t, xi) with the initialized values described below. During each
iteration, J and its gradient are updated in the following steps:

1. Use the forward Euler method to compute the trajectory based on the flow
equation:
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(13)

2. Compute ∇ϕ1 EIi, i=1,…nI (Beg et al., 2005), ∇ϕ1 Eγi, i=1,…nγ (Glaunès et al.,
2008) and ∇ϕ1 ESi, i=1,…, nS (Vaillant and Glaunès, 2005).

3. Solve η(t, xi) using backward Euler integration of the ODE equation,

(14)

given 

4. Compute the gradient ∇J(t, xi)=2α(t, xi)+η(t, xi).

5. Evaluate J when α(t, xi)=αold (t, xi)−λ(∇J (t, xi)).

When N + Np is large, where  , the convolution with kernel k
involved in ρ(Otemp, Otarg), ESi and their derivatives is intensive (in the order of O((N +
Np)2). We adopt the work in Arrate (2010); Durrleman (2010) where only surfaces were
discussed and had defined a numerical kernel that allows one to use a Fast Fourier
Transform (FFT). Assume that the ambient space is discretized into a regular grid with N
points. The kernel, k, is defined as

where  and ul and uh are trilinear basis functions for
extrapolation and interpolation, respectively. Convolution with k decomposes as

(15)

for i=1,2,…,N + Np. Three steps are involved in the implementation of Eq. (15):

1. Extrapolation of the momentum to the regular grid;

2. Convolution of the momentum with Gaussian kernel using FFT;

3. Interpolation of the data back to the points in Ω.
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This reduced the computation cost to c(N + Np) + N log N, where c is constant and
dependent on the extrapolation and interpolation functions. This numerical kernel
convolution scheme is applied to compute ESi and Eqs. (13) and (14).

Whole brain mapping procedure
Fig. 1 shows the procedure for the whole brain mapping using 6D-LDDMM given T1-
weighted MR images, including the image preprocessing, mapping initialization, and 6D-
LDDMM. In the preprocessing, the intensity-inhomogeneity corrected T1-weighted MR
images (Sled et al., 1998) were first aligned to the Montreal Neurological Institute (MNI)
space using the affine transformation when maximizing the cross-correlation of the subjects'
images with the MNI atlas (Jenkinson and Smith, 2001). FreeSurfer (Dale et al., 1999) is
then applied to reconstruct the cortical surfaces at the boundary of the white matter and gray
matter (termed as inner surface) and at the boundary of the gray matter and CSF (termed as
outer surface) of each hemisphere. The outer surface is constructed by propagating the inner
surface to the boundary of gray matter and CSF via a flow with the force based on the image
labeling and gradient such that the topologies of the outer and inner surfaces are preserved
(Dale et al., 1999). Thus, the middle surface of each hemisphere can be generated by
averaging the inner and outer surfaces and is used as the geometric surface representation of
the cortex. Fourteen sulcal and twelve gyral curves (Table 1) are semi-automatically
delineated from the middle surface of each hemisphere using dynamic programming
(Ratnanather et al., 2003). These curves are chosen because they are consistently present and
easily identifiable on the cortex. The anatomical definitions of these curves are described in
Zhong et al. (2010) and Zhong and Qiu (2010) and online
(http://www.bioeng.nus.edu.sg/cfa/mapping/curveprotocol.html). Briefly, the initial starting
and ending points of each curve are manually defined on the middle surface and the gyral
(or sulcal) curve between them is automatically generated using dynamic programming by
maximizing (or minimizing) the curvature information along the curve (Ratnanather et al.,
2003).

To reduce the complexity of the 6D-LDDMMwhole brain mapping, especially in the cortical
region, we identify the initial value of the momentum in the 6D-LDDMM alignment process
through coarse-to-fine multi-manifold LDDMM (MM-LDDMM) cortical surface mappings
when the sulcal and gyral curves as well as the middle surface are considered as mapping
objects (Zhong and Qiu, 2010; Zhong et al., 2010), and LDDMM landmark mapping
(Vaillant et al., 2004). In this coarse-to-fine scheme, the middle surface is first smoothed by
changing the location of each vertex toward the barycenter of its neighbors (average of the
coordinates of its neighbor vertices) to reduce noise features and geometric variation of the
cortical shape (Toro and Burnod, 2003). This is the solution of a variational problem that
minimizes the surface curvature with respect to the locations of the surface vertices. This
smoothed surface is then registered with its sulcal and gyral curves to those of the target
using MM-LDDMM described in Zhong and Qiu (2010) and Zhong et al. (2010). We
further seek the paired correspondence points between the target surface and the template
surface deformed by MM-LDDMM using the shortest distance criteria. Such information is
then used in the LDDMM-landmark mapping to find the time-dependent momentum that
drives the template inner and outer surfaces to those of the target. This time-dependent
momentum is considered as initial values of the optimization process in 6D-LDDMM,
where the inner and outer cortical surfaces (both hemispheres), fifty-two curves (twenty-six
curve per hemisphere), and T1-weighted intensity image are considered as the mapping
objects. The intialization process and 6D-LDDMM each takes 15 h on average.
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Results
Fig. 2 shows the mapping results of 6D-LDDMM when the momenta were initialized as
zero (panel (c)) or assigned the initial values obtained using the procedure in Whole brain
mapping procedure section. This demonstrates the importance of the initialization procedure
in 6D-LDDMM. As a mapping example, Fig. 3 illustrates the deformation field and
deformed template image obtained using 6D-LDDMM. These two figures indicate that the
large deformation in the cortical and subcortical regions from the template brain to the target
brain can be well characterized by 6D-LDDMM. To evaluate the accuracy of the 6D-
LDDMM whole brain mapping, two experiments were designed. In the first experiment, we
chose 40 subjects aged 20 years and above. We compared the mapping accuracy of 6D-
LDDMM with that of traditional image-based whole brain mapping approaches, including
affine (Jenkinson and Smith, 2001) and LDDMM-image (Beg et al., 2005) in terms of gyral/
sulcal curve variation, sulcal regional alignment, and volume segmentation. In the second
experiment, we compared 6D-LDDMM with HAMMER (Shen and Davatzikos, 2002) and
combined volumetric and surface mapping (CVS) (Postelnicu et al., 2009) in terms of the
brain segmentation accuracy using a public dataset.

Comparisons of affine, LDDMM-image and 6D-LDDMM
In the first experiment, 40 subjects comprising of ten young adults (5 males and 5 females,
age: 23.4±2.55 years), ten middle-aged adults (5 males and 5 females, age: 49.3±1.89 years),
ten elderly (5 males and 5 females, age: 73.9±2.02 years), and ten patients with Alzheimer's
disease (5 males and 5 females, age: 76.4±2.55 years) were randomly selected from the
Open Access Series of Imaging Studies (OASIS) (Marcus et al., 2007). The template was
constructed using an MRI scan collected from a healthy subject (female, age: 54 years)
otherwise not included in the study. Following the procedure described in Whole brain
mapping procedure section, the whole brain images of the 40 subjects were aligned to the
template image. We empirically determined λγi=1, i=1,…,52, λSi=10, i=1, …,4, and λI=0 for
the initialization stage and λγi=1, i=1,…,52, λSi=100, i=1,…,4, and λI=106 for the 6D-
LDDMM whole brain mapping. The parameters were determined in the way that
λIEI≈λγiEγi≈λSiESi. Additionally, all 40 images were also aligned to the template image
using the LDDMM-image approach when λγi=λSi were set to zero. Fig. 4 shows an example
of the mapping results using the affine, LDDMM-image, and 6D-LDDMM approaches.
Additionally, we show the average images over all subjects through the affine, LDDMM-
image, and 6D-LDDMM transformations in Fig. 5. Visually, 6D-LDDMM provided the best
alignment in both cortical and ventricular regions among the three algorithms and thus
generated clearer average images. We quantitatively evaluated the accuracy of each
approach in terms of the alignment accuracy of gyral/sulcal curves, sulcal regions, and
volume segmentation.

Gyral and sulcal curves
Fig. 6(a–c) illustrates the gyral/sulcal curve alignment after affine, LDDMM-image, and 6D-
LDDMM registration. To evaluate the anatomical variation of a specific sulcal/gyral curve
among subjects, which cannot be characterized through brain registration, we calculated a
curve variation error (Pantazisa et al., 2010; Zhong et al., 2010) as

where J=40 is the number of subjects in the study. d(γi, γj) is the Hausdorff distance between
curves i and j, computed as
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where N1 and N2 are the number of points on γi and γj, respectively (Dubuisson and Jain,
1994). |x−y| denotes the Euclidean distance between points x and y. Lower value of the
curve variation error indicates better alignment of this curve across all subjects. Fig. 6(d)
shows the curve variation errors after the affine, LDDMM-image, and 6D-LDDMM
registration, suggesting that 6D-LDDMM showed the best alignment for all twenty-six
gyral/sulcal curves when compared with affine and LDDMM-image. We noted that since
our approach uses explicitly labeled gyri and sulci, we can expect better performance than
either affine or LDDMM-image in terms of alignment of these features. Overall, the
variation errors averaged across the twenty-six curves are 19.13 mm2 for affine, 15.73 mm2

for LDDMM-image, and 7.14 mm2 for 6D-LDDMM. Student's t-test revealed statistically
significantly lower curve variations given by 6D-LDDMM than by affine and LDDMM-
image (p<0.0001).

Sulcal regions
To evaluate the mapping accuracy in the cortical region, independent of the features used in
6D-LDDMM, seventeen sulcal regions (Table 2) were manually delineated from each
hemispherical inner surface based on the protocol given in Zhong et al. (2010) and available
at http://www.bioeng.nus.edu.sg/cfa/mapping/sulcalprotocol.html. The intra-reliability of the
manual delineation was above 0.9 for individual sulcal regions (Zhong et al., 2010). These
sulcal regions (Fig. 7(a–c)) were chosen because they are distributed broadly over the
cortical surface and have been used for quantifying cortical mapping accuracy in previous
studies (Zhong et al., 2010; Essen, 2005). We computed surface alignment consistency
(SAC) (Essen, 2005) as

where J=40 is the number of subjects involved in the study. Nv is the total number of
vertices that contains the vertices corresponding to this sulcal region of all subjects on the

template surface. A consistency probability,  , denotes the proportion of subjects
who agree that vertex, x, belongs to this sulcal region. SAC is defined as an average of p(x)

over Nv vertices. For a short notation, we assemble all vertices with  as ni. SAC is
ranged from 0 to 1, i.e., the higher the value, the better the sulcal alignment. Fig. 7 shows
SAC of each individual sulcal region for affine (blue), LDDMM-image (green), and 6D-
LDDMM (red). The mean and standard deviation of SAC over seventeen sulcal regions
were 0.19 (0.07), 0.22 (0.08) and 0.27 (0.08) for affine, LDDMM-image and 6D-LDDMM,
respectively. Student's t-test revealed that the mean SAC value obtained from 6D-LDDMM
was significantly higher than that from LDDMM-image (p<0.05).

Volume segmentation
To evaluate the performance of 6D-LDDMM in terms of cortical and subcortical
segmentation, we manually labeled the 41 brain image volumes into the cortical gray matter,
white matter, lateral ventricles, and six subcortical structures (thalamus, caudate, putamen,
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pallidum, hippocampus, and amygdala). Fig. 8(a–d) shows an example of the template brain
labels after applying affine, LDDMM-image, 6D-LDDMM registration compared to that of
the target brain. To quantify the alignment accuracy in each structure, we computed Jaccard
overlap ratio that describes the overlap between the labels of registered images (A and B) as

 . Its value ranges from zero for disjoint sets to unity for identical sets. The mean and
standard deviation of Jaccard overlap ratio computed across all subjects are listed in Table 3
and shown in Fig. 8(e). Both LDDMM-image and 6D-LDDMM achieved higher accuracy
compared to the affine approach. When we compared 6D-LDDMM with LDDMM-image,
two-sample t-test revealed that the Jaccard overlap ratios of white matter and cortex in both
hemispheres obtained from 6D-LDDMM were significantly higher than those from
LDDMM-image (p<0.0001), while those of ventricle and main subcortical structures
showed no significant difference between two methods.

Comparisons of 6D-LDDMM, CVS, and HAMMER
In the second experiment, we compared the 6D-LDDMM whole brain mapping with those
of combined volumetric and surface registration (CVS) (Postelnicu et al., 2009) and
HAMMER (Shen and Davatzikos, 2002) in terms of segmentation accuracy in the cortical
and subcortical regions. CVS and HAMMER were chosen for the comparison because they
provide the state-of-art mapping accuracy among the most widely used and best performing
algorithms for whole brain registration. To do so, we obtained eight labeled brain T1-
weighted images from the Internet Brain Segmentation Repository (IBSR) database at the
Center for Morphometric Analysis at Massachusetts General Hospital. Each brain dataset
consists of a T1-weighted image and its manual segmentation of individual structures,
including the bilateral white matter, cortical gray matter, lateral ventricles, thalamus,
caudate, putamen, pallidum, hippocampus, and amygdala. We repeated the same mapping
analysis as described in Whole brain mapping procedure section for this dataset. Table 4
lists the mean and standard deviation of Jaccard overlap ratio computed across all subjects.

Note that the Jaccard overlap ratio for HAMMER and CVS were directly taken from
Postelnicu et al. (2009), which we believe is a fair comparison for two reasons. First, the
same image dataset, including raw T1-weighted images and their manual labels, was used in
the three mapping algorithms. Second, the results of CVS and HAMMER were provided by
the researchers who knew them best. Student's t-test revealed that the mapping accuracy of
6D-LDDMMis significantly higher than that of HAMMER and CVS (p<0.0001) for all the
tested structures except the bilateral cortical gray matter. The performance of 6D-LDDMM
for the cortical gray matter is still significantly higher than that of HAMMER (p<0.0001)
but equivalent to that of CVS (left: p=0.92; right: p=0.90).

Conclusion
We present the 6-dimensional diffeomophic metric mapping algorithm that integrates
multiple brain anatomical manifolds, including gyral/sulcal curves, cortical surfaces, and
intensity image volumes, into a unified framework for whole brain registration. It seeks an
optimal diffeomorphic transformation to simultaneously carry these anatomical manifolds
from one subject native space to another. We further design the initialization procedure to
facilitate the 6D-LDDMM optimization so that large deformation in both cortical and
subcortical regions can be found.

Even though a variety of LDDMM algorithms have been developed for aligning intensity
images (Beg et al., 2005) or point sets (e.g., landmarks, curves, and surfaces) (Qiu and
Miller, 2007; Glaunès et al., 2004; Vaillant and Glaunès, 2005; Glaunès et al., 2008; Zhong
and Qiu, 2010), for the first time, the diffeomorphic metric in the shape space of both
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intensity image volumes and point sets of curves and surfaces is derived in a unified manner.
There are several differences between the 6D-LDDMM and LDDMM-image algorithms for
whole brain registration. First, 6D-LDDMM seeks the deformation simultaneously driven by
gyral/sulcal curves, cortical surfaces, and image intensity, while LDDMM-image seeks the
deformation only based on image intensity (Beg et al., 2005). Second, we derive the
variational problem for simultaneously mapping 6-dimensional brain manifolds with respect
to the time-dependent momentum, while the variational problem associated with LDDMM-
image is defined with respect to the time-dependent velocity field. Since 6D-LDDMM
incorporates images and point sets (curves and surfaces) that are not on the image regular
grid, it is difficult to directly adopt the numerical implementation of LDDMM-image, such
as large scale kernel convolution in a regular grid using FFT (Arrate, 2010; Durrleman,
2010). We thus introduce a class of computationally friendly kernels that facilities the kernel
convolution in an irregular grid using FFT. This numerical scheme described in the paper
can also be applied to large-scale point set LDDMM registration, such as the one in Zhong
and Qiu (2010). Compared to LDDMM-image, 6D-LDDMM significantly improves
alignment in gyral/sulcal curves, sulcal regions, as well as cortical volume segmentation but
produces equivalent mapping accuracy in the subcortical and ventricular regions. Since the
first experiment in this study used the same dataset and evaluation measures as those in
multi-manifold LDDMM (MM-LDDMM) for cortical surface registration (Zhong et al.,
2010), we can also demonstrate that incorporating additional image manifold in 6D-
LDDMM does not influence the mapping accuracy of cortical surfaces (see Figs. 6 and 7 in
this paper and Figs. 5 and 6 in Zhong et al. (2010)).

We use the IBSR dataset with manually segmented labels to quantify the mapping accuracy
of 6D-LDDMMagainst two other well-known registration methods, CVS and HAMMER
(Postelnicu et al., 2009; Shen and Davatzikos, 2002). In general, our registration framework
outperforms these two methods in terms of cortical and subcortical segmentation accuracy.
This is due to several methodological differences among the three mapping algorithms. CVS
is an iterative approach that first aligns the cortical surfaces using spherical mapping (Fischl
et al., 1999a) and then registers the image volume using the image matching (Fischl et al.,
2004). The volume registration without constraints of the cortical geometry may further
modify the good alignment of the cortical surface that is achieved in the first step.
Conversely, HAMMER warps the whole brain using attributes that explicitly describe image
intensity and implicitly incorporate cortical geometry via intensity distribution functions of
neighborhood voxels. It gives one consistent deformation map for both cortical and
subcortical regions as 6D-LDDMM does. Relatively poor performance of HAMMER
against the other two may be due to this implicit representation of the cortical feature. This
is also an advantage of HAMMER over 6D-LDDMM and CVS since it does not require
cortical surface or gyral/sulcal curves reconstruction.

In conclusion, 6D-LDDMM is a robust whole brain mapping approach. It is a unified
framework that allows simultaneous integration of multiple brain anatomical manifolds for
whole brain mapping. Future work on incorporating the information of the white matter
tracts into 6D-LDDMM will provide a nice brain mapping tool for aligning both detailed
gray and white matter structures.
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Fig. 1.
Schematic diagram of the whole brain mapping procedure using the 6D-LDDMM approach.
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Fig. 2.
Panel (a) shows the coronal slice of the target image with the inner surface contour in red.
Panel (b) shows the template image (corresponding to the region in the white box of panel
(a)) with its inner surface in blue and the target inner surface in red. Panels (c, d) illustrate
the mapping results of 6D-LDDMM when the momentum was initialized as zero (panel (c))
and assigned the value obtained from the procedure given in Fig. 1 (panel (d)). The
deformed template inner surface is colored in cyan on panels (c, d).
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Fig. 3.
A mapping example of 6D-LDDMM. Panels (a, d) show the template and target images,
respectively. Panel (b) shows the deformation field generated by 6D-LDDMM. The
deformation in the in-paper dimension is color coded. Panel (c) shows the deformed
template image.
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Fig. 4.
An example of affine, LDDMM-image, 6D-LDDMM whole brain mapping. From left to
right columns, panels respectively show the template image after the affine, LDDMM-
image, 6D-LDDMM registration, and the target image. Rows from top to bottom show the
brain image in the sagittal, coronal, and axial views, respectively. The target inner (cyan)
and outer (red) surfaces are superimposed with the image on each panel. Yellow arrows
point the location where the cortical regions of the deformed template are misaligned with
the target cortical surfaces.
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Fig. 5.
Columns show average images over all subjects through the affine, LDDMM-image, 6D-
LDDMM transformations, respectively. The top and bottom rows illustrate the average
images in the coronal and axial views, respectively.
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Fig. 6.
Rows (a–c) show gyral/sulcal curves of the 40 subjects after the affine, LDDMM-image,
6D-LDDMM whole brain mapping, respectively. Panels from left to right in rows (a–c)
respectively illustrate the left twenty-six gyral/sulcal curves in the medial view, the fifty-two
bilateral gyral/sulcal curves in the superior view, and the right twenty-six gyral/sulcal curves
in the medial view. Row (d) shows the curve variation errors of each curve after the affine
(blue), LDDMM-image (green), and 6D-LDDMM (red) registration. The index of the curves
is listed in Table 1.
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Fig. 7.
Figure shows surface alignment consistency (SAC) for each sulcal region listed in Table 2
after affine (blue), LDDMM-image (green), and 6D-LDDMM (red) registration.
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Fig. 8.
Panels (a–c) illustrate an example of the template segmentation after affine (first column),
LDDMM-image (second column), and 6D-LDDMM (third column) registration when
compared with that of the target image (panel (d)). The top row shows the template image
after the affine, LDDMM-image, and 6D-LDDMM registration as well as the target image
from left to right, respectively, while the middle and bottom rows show the corresponding
labeled images and deformed inner surfaces, respectively. Panel (e) illustrates the mean
Jaccard overlap ratio of each segmented structure for affine (blue), LDDMM-image (green),
and 6D-LDDMM (red).
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Table 1

Sulcal and gyral curves and their abbreviations.

Curve ID Abbreviation Name

1 CeS Central sulcus

2 SF Sylvian fissure

3 CoS Collateral sulcus

4 CC Superior callosal sulcus

5 CaS Calcarine sulcus

6 POS Parieto-occipital sulcus

7 SFS Superior frontal sulcus

8 IFS Inferior frontal sulcus

9 PoCeS Postcentral sulcus

10 IPS Intraparietal sulcus

11 aSTS Anterior segment of the superior temporal sulcus

12 PreCeS Precentral sulcus

13 ITS Inferior temporal sulcus

14 OS Olfactory sulcus

15 SFG Superior frontal gyrus

16 PreCeG Precentral gyrus

17 PoCeG Postcentral gyrus

18 IPG Intraparietal gyrus

19 PoPreCu Posterior border of precuneus

20 ParaCeG Paracentral gyrus

21 LOG Lateral occipital gyrus

22 ACG Anterior border of cuneus gyrus

23 CG Cuneus gyrus

24 LG Lingual gyrus

25 STG Superior temporal gyrus

26 MTG Middle temporal gyrus
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Table 2

Sulcal regions and their abbreviations.

Sulcal region ID Abbreviation Name

1 CaSd Dorsal bank of calcarine sulcus

2 CaSv Ventral bank of calcarine sulcus

3 CeS Central sulcus

4 CiS Cingulate sulcus

5 CoS Collateral sulcus

6 IFS Inferior frontal sulcus

7 IPS Intraparietal sulcus

8 IPreCeS Inferior precentral sulcus

9 ITS Inferior temporal sulcus

10 LOS Lateral occipital sulcus

11 OTS Occipital temporal sulcus

12 POS Parietal occipital sulcus

13 PoCeS Postcentral sulcus

14 SFS Superior frontal sulcus

15 SF Sylvian fissure

16 SPreCeS Superior precentral sulcus

17 STS Superior temporal sulcus
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Table 3

Mean and standard deviation of Jaccard overlap ratio computed across subjects for comparisons of affine,
LDDMM-image, and 6D-LDDMM. Bold typesetting indicates that Jaccard overlap ratio for 6D-LDDMM is
statistically significantly higher than that of affine and LDDMM-image (p<0.0001).

Affine LDDMM-image 6D-LDDMM

Left-white matter 0.4638 (0.04) 0.7325 (0.02) 0.7948 (0.02)

Left-cortex 0.3414 (0.02) 0.6490 (0.03) 0.7659 (0.02)

Left-lateral ventricles 0.3691 (0.13) 0.8048 (0.05) 0.7983 (0.05)

Left-thalamus 0.5660 (0.13) 0.6982 (0.06) 0.6915 (0.06)

Left-caudate 0.3645 (0.20) 0.6539 (0.06) 0.6789 (0.05)

Left-putamen 0.4870 (0.10) 0.7073 (0.04) 0.7104 (0.05)

Left-pallidum 0.4161 (0.12) 0.6409 (0.06) 0.6372 (0.08)

Left-hippocampus 0.4401 (0.10) 0.5509 (0.11) 0.5516 (0.10)

Left-amygdala 0.3908 (0.10) 0.5886 (0.07) 0.5982 (0.08)

Right-white matter 0.4701 (0.03) 0.7331 (0.02) 0.7985 (0.01)

Right-cortex 0.3541 (0.02) 0.6471 (0.03) 0.7753 (0.02)

Right-lateral ventricles 0.3744 (0.12) 0.7898 (0.05) 0.7854 (0.06)

Right-thalamus 0.6177 (0.10) 0.7351 (0.04) 0.7331 (0.04)

Right-caudate 0.3553 (0.19) 0.6474 (0.06) 0.6638 (0.06)

Right-putamen 0.5226 (0.09) 0.7130 (0.03) 0.7032 (0.04)

Right-pallidum 0.4477 (0.12) 0.6352 (0.07) 0.6314 (0.08)

Right-hippocampus 0.4028 (0.10) 0.5730 (0.11) 0.5614 (0.11)

Right-amygdala 0.3929 (0.09) 0.5583 (0.09) 0.5647 (0.08)
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Table 4

Mean and standard deviation of Jaccard overlap ratio computed across subjects for comparisons of
HAMMER, CVS, and 6D-LDDMM. Bold typesetting indicates that Jaccard overlap ratio for 6D-LDDMM is
statistically significantly higher than that of HAMMER and CVS (p<0.0001).

HAMMER CVS 6D-LDDMM

Left-white matter 0.5722 (0.04) 0.6860 (0.02) 0.7579 (0.01)

Left-cortex 0.5544 (0.05) 0.7701 (0.01) 0.7661 (0.02)

Left-lateral ventricles 0.6533 (0.06) 0.6792 (0.02) 0.7891 (0.03)

Left-thalamus 0.6328 (0.07) 0.5976 (0.03) 0.7310 (0.03)

Left-caudate 0.5566 (0.04) 0.5331 (0.03) 0.6840 (0.04)

Left-putamen 0.5114 (0.05) 0.4648 (0.04) 0.7000 (0.03)

Left-pallidum 0.4091 (0.06) 0.2245 (0.07) 0.6162 (0.06)

Left-hippocampus 0.4866 (0.05) 0.4282 (0.02) 0.5732 (0.03)

Left-amygdala 0.4716 (0.05) 0.4113 (0.02) 0.5175 (0.11)

Right-white matter 0.5731 (0.03) 0.6937 (0.01) 0.7557 (0.02)

Right-cortex 0.5444 (0.05) 0.7620 (0.01) 0.7584 (0.02)

Right-lateral ventricles 0.6530 (0.06) 0.6648 (0.02) 0.7753 (0.04)

Right-thalamus 0.6438 (0.07) 0.6036 (0.02) 0.7468 (0.03)

Right-caudate 0.5436 (0.04) 0.5327 (0.02) 0.6514 (0.05)

Right-putamen 0.5269 (0.04) 0.4976 (0.04) 0.7230 (0.03)

Right-pallidum 0.4095 (0.06) 0.2437 (0.07) 0.5902 (0.05)

Right-hippocampus 0.4847 (0.05) 0.4630 (0.02) 0.5675 (0.03)

Right-amygdala 0.4395 (0.05) 0.4171 (0.02) 0.5418 (0.10)
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