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Abstract

In group-living organisms, consensual decision of site selection results from the interplay between individual responses to
site characteristics and to group-members. Individuals independently gather personal information by exploring their
environment. Through social interaction, the presence of others provides public information that could be used by
individuals and modulates the individual probability of joining/leaving a site. The way that individual’s information
processing and the network of interactions influence the dynamics of public information (depending on population size)
that in turn affect discrimination in site quality is a central question. Using binary choice between sheltering sites of different
quality, we demonstrate that cockroaches in group dramatically outperform the problem-solving ability of single individual.
Such use of public information allows animals to discriminate between alternatives whereas isolated individuals are
ineffective (i.e. the personal discrimination efficiency is weak). Our theoretical results, obtained from a mathematical model
based on behavioral rules derived from experiments, highlight that the collective discrimination emerges from competing
amplification processes relying on the modulation of the individual sheltering time without shelters comparison and
communication modulation. Finally, we well demonstrated here the adaptive value of such decision algorithm. Without any
behavioral change, the system is able to shift to a more effective strategy when alternatives are present: the modification of
the spatio-temporal distributions of individuals leading to the collective selection of the best resource. This collective
discrimination implying such parsimonious and widespread mechanism must be shared by many group living-species.
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Introduction

One of the aims of collective behavior study [1] is to understand

the role of various factors including the presence of group-

members as a major influence in regulating the individual

decision-making process. Earlier work has shown that consensual

decision results from the interplay between individual responses to

site characteristics and to group-members [1–3]. To go further, it

becomes essential to determine the impact of conspecifics in the

accuracy of individual’s action. In other words, how each

individual could increases its own chances of making a correct

decision between several alternatives. Indeed, when choosing

habitat in patchy environment, group-living species are confronted

with a choice between many sites offering the same habitat but

differing in their intrinsic quality. There are different ways to make

choice: it could refer to high-level of cognitive skills (e.g. distant

perception of the two patches, memory and direct comparison

between sites). Moreover, social information can provide a more

accurate estimate of habitat quality (i.e. improve the correctness of

its personal information) [4,5]. The presence of conspecifics

provides a local social cue [6,7] that can be used by individuals in

their ‘shared information’ strategy (i.e. social attraction) [8–10].

This source of information is known as public information [11,12]

and is acquired by witnessing the behavioral decisions of other

individuals. Here, we study the case where the decision is to stay or

not in the patch, individual only uses personal and public

information, which are local in time (no memory) and space (no

distant perception) (Canonge 2009). If social information only

informs about the location of a resource, public information also

brings knowledge about its quality [12]. Moreover, the way

animals use public information may be influenced by population

density [13,14]. Few studies, however, focus on the gain of

individual choice accuracy with group size or population density

[5,15,16]. In this study the main issue is how population size (i.e.

the number of conspecifics or density) modulates the discrimina-

tion efficiency between two patches of different quality. This

investigation falls within the scope of habitat selection theory. We

highlight the mechanisms by which swarm intelligence [17] based

on conspecifics’ inter-attraction can increase individual fitness (for

review [1]). Here, we report an experimental and theoretical study

of cockroach behaviors (Periplaneta americana) tested in a one-meter-

diameter arena with two shelters differing in darkness. As

cockroaches have an adaptive interest in avoiding light [18,19],

a dark shelter (75 lx) constitutes a better resting site than a lighter

one (100 lx) [20]. To enlighten the specific impact of population

size, we had to examine both individual (isolated individual) and

collective responses (groups of 10, 16 and 30 cockroaches). We

defined the discrimination efficiency as the ratio between the
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number of individuals under the dark shelter and the number

under the light one. In case of isolated individual (i.e. the personal

discrimination efficiency), the number of individuals corresponds

to the number of experiments for which the individual is

respectively under the dark or the light shelter. In case of groups

(i.e. the collective discrimination efficiency), it is the number of

individuals under dark and under the light shelter. In our

experimental set-up, without any a priori information about

resources (i.e. shelters), naive individuals have the choice between

staying in a shelter and leaving it in quest of a potential better one.

This ‘cockroach-shelter’ system is well adapted for the study of

mutual benefits between individual and collective decision-making

because it provides interplay between mutually exclusive choices

and cooperation through individuals’ aggregation.

Results

The first evidence about the population size influences was

underlined by the cockroach propensity to shelter. Indeed, less

than 22% of isolated cockroaches are found under shelters after

180 min (n = 32) whereas more than 70% of the total population is

sheltered when cockroaches are in groups of 10 (n = 30), 16 (n = 30)

or 30 (n = 25) individuals (fig. 1A).

Secondly, we highlighted that the presence of conspecifics

enhances the personal discrimination efficiency between two

shelters of different darkness. Indeed, the individual trends of

settling under the better shelter, the darkest in our experimental

design, rises with the population size, as attested by the increase in

fraction of the population aggregated under this shelter (fig. 1B).

Only 12% of isolated cockroaches settle under the dark shelter,

versus 54%618% of individuals for groups of 30 cockroaches. An

individual has a weak preference for the darkest shelter although

statistically, there is no difference between the mean fractions

under each shelter (Mann Whitney test, p = 0.83, n = 32; [5]) (see

Table S1). Thanks to the interactions between group-members,

however, a population of cockroaches is more likely to respond to

environmental heterogeneities and to aggregate in the better

resting site. Indeed, individuals in groups strongly prefer to settle

under the dark shelter (for all groups comparison: Mann Whitney

test, p,0.05) (see Table S1).

This is confirmed by the increase of the darkest shelter selection

frequency related to the population size (fig. 2A, see also Text S1).

Few isolated cockroaches settled under the shelters with a weak

preference for the darkest one. On the contrary, for populations of

10 and 16 cockroaches, 53% of replicates ended with the selection of

the dark against only 27% and 20% respectively for the light shelter.

For a population of 30 cockroaches, the selection of the dark shelter

is more marked and reached 76% of replicates while the light shelter

was never selected. These results demonstrated that being in a

group enhances the capability to select the better shelter.

Based on previous studies showing the role of the interactions

between conspecifics on cluster formation and resting site selection

[3,21,22], we analyzed how the personal discrimination efficiency

between sites can be enhanced by the population size. For this, we

used a dynamical model of shelter selection process in cockroach-

es, which has been validated in other contexts [3,20,21]. This

model describes the dynamical process of collective decision in

terms of individual joining or leaving a shelter, depending on its

quality and the number of conspecifics that are already there (a full

description is given in Text S2). In this model, a cockroach is

located either under the dark, the light shelter or outside. Joining is

accounted by RD and RL as the probabilities per second (s21) of

joining the dark or the light shelter respectively, and leaving is

accordingly accounted by ,Q D and Q L. The probabilities of

joining are given by:

RD~m 1{
xD

S

� �
and RL~m 1{

xL

S

� �
ð1Þ

where xD (xL) is the number of cockroaches under the dark (light)

shelter. Parameter m represents the maximal kinetic constant of

joining a shelter. As the probability of joining a shelter is

independent of its luminosity (this is due to the lack of distant

perception), m is equal for each shelter [23]. The shelter carrying

capacity S corresponds to the number of individuals that can rest

simultaneously under the same shelter (see Text S2). Previous

studies show that the probabilities of leaving decrease (or the

sheltering time increases) with the number of individuals in the

same shelter [3,21]. These probabilities are given by:

QD~
hD

1zr
xD

S

� �n and QL~
hL

1zr
xL

S

� �n ð2Þ

Parameters r and n refer to the strength of the affinity between

conspecifics and correspond to the implementation of the social

information. When we have no social interaction, r = 0 and n = 0.

In this situation, the probability of leaving a shelter is independent

of the sheltered population. The parameter h depends on shelter

quality (i.e. light intensity) with hL.hD. The ratio between the

personal probabilities of leaving the light:dark shelter is defined as

the personal discrimination power: Q1~
QL

QD
~ hL

hD
(increasing

from 1 when no discrimination to values .1 when discrimination

between shelters). The parameter values (m, r, h, n and S) are

Figure 1. Settlement under shelters according to population
size. (1 (n = 32), 10 (n = 30), 16 (n = 30) and 30 cockroaches (n = 25)) at
t = 180 min. (A) Mean fraction of the total population under both
shelters (Kruskal-Wallis test: KW = 23.6, p,0.0001; Dunn’s Multiple
Comparisons Test: paired comparison including 1 individual p,0.01;
for other comparisons p.0.05); (B) Mean fraction of the total
population under each shelter: dark (black) and light (white) (Kruskal-
Wallis test for dark shelter: KW = 31.17, p,0.0001; Dunn’s Multiple
Comparisons Test: paired comparison including 1 individual p,0.001,
for other comparisons p.0.05). Error bars indicate S.E.M.
doi:10.1371/journal.pone.0019748.g001

Group Living Enhances Individual Discrimination

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e19748



derived from both experimental data and previous estimation

[20,22,23] (see Text S2).

We assumed that these observed aggregation (fig. 2A and 2B)

patterns result from a weak individual preference for the darkest

shelter strongly amplified through the modulation of individual

sheltering times. To test this hypothesis, we performed numerical

resolution of differential equation (see master equation eq.3) under

the assumption that the state of the system (i.e. the number of

individuals outside (i), under the dark (j) and under the light shelter

(k)), is described in terms of a probability function P(i,j,k) at the time

t (i+j+k = N, the total number of individuals). The equation (eq.3)

describes the time evolution of the probability that the system

(P(i,j,k)) occupies each one of the discrete set of states. The

equation counts the transitions leading the system to certain state

and those removing it from this state. In our case, the transitions

depend on both the probability of joining and leaving the shelters

(see Flowchart S1) and the evolution of the master equation

(
dP(i,j,k)

dt
) is :

dP(i,j,k)

dt
~(iz1)RD(iz1,J{1,k)P(iz1)

zRL(k{1)P(iz1,j,k{1)

z(jz1)QD(jz1)P(i{1,j,k)

z(kz1)P(i{1,j,kz1){iRD(j)P(i,j,k)

{iRL(k)P(i,j,k){jQD(j)P(i,j,k)

zkQL(k)P(i,j,k)

ð3Þ

At time t = 0, P(N,0,0) = 1. The accordance between theoretical

and experimental results validates our hypothesis. Indeed, both

theoretical and experimental discrimination efficiency are similar

(fig. 3). For population of at least 10 individuals, the mean fraction

of individuals settled under the dark shelter reaches a plateau value

(around 60% under the dark shelter and 25% under the light one).

Moreover, the theoretical distributions of replicates according to

the fraction settled under the dark shelter are in good accordance

with the experimental one (see fig. S1), Kolmogorov-Smirnov test

for all population size: p.0.05). Without global knowledge,

cockroaches use public information to reach a consensual decision

keeping group cohesion. Moreover, each individual increases its

own chances to make a correct decision with population size.

To go further, we theoretically tested for different population size

the influence of a modulated difference between the dark and the

light shelter quality. To do so, hD was kept constant while the personal

discrimination power Q1 varies from 1 to 2.5. These results reveal

that the bigger the population is, the smaller the ratio between shelters

quality is needed to lead the group to the selection of the best (dark)

shelter. Indeed, for large groups (.16 individuals), 100% of the

sheltered population is under the dark shelter. In a no choice setup

(one shelter) the fraction found under the light shelter decreases when

hL increases but remains closed to the fraction under the dark shelter

in a binary-choice setup (a dark vs a light shelter, fig. 4).

For isolated or small population (#5 individuals), the fraction of

settled individual under the light and the dark shelter and the

collective discrimination efficiency remain small (with or without

choice). In other words, bigger population is more accurate to

select the best shelter even in case of very small difference between

potential resting sites. These theoretical results confirmed that the

state of the system is population size dependent.

Without social interaction (r = 0 or n = 0), there is not such a

dependence on the population size: the collective discrimination

efficiency is always equal to the personal one (see fig. 4 for isolated).

Moreover, the model shows that the collective discrimination

efficiency is equal to the personal discrimination power (Q1),

therefore, a high level of discrimination is only reached if Q1 is high.

Discussion

The ability to aggregate in the darkest and most populous

shelter is adaptively crucial for cockroaches. Indeed, the benefit of

staying in a shelter increases with its darkness (e.g. light has a

negative effect on their growth [18,19]) and owing to several Allee

effects it increases with the number of surrounding congeners [24–

26]. Here we show that the discrimination efficiency between sites

and the emerging consensus for the selection of the better one

Figure 2. Shelter selection frequency. (A) Fraction of replicates ending with good selection (i.e. selection of the darkest shelter) according to
population size ( = discrimination efficiency); (B) Fraction of replicates ending with the selection of one of the two shelters according to population
size ( = ability to make a choice) (see SI 2 for statistical criteria of selection).
doi:10.1371/journal.pone.0019748.g002
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Figure 3. Theoretical and experimental discrimination efficiency. The resolution of the numerical equation gives the mean fraction of
individual settled under the dark (solid line) and the light (dashed line) shelter for population size varying between 1 and 30 individuals (hD = 0.22,
hL = 0.27). Only for values corresponding to experimental population (1, 10, 16 and 30 individuals), we draw the confidence intervals (vertical lines)
containing 95% of the mean theoretical results for groups of n experimental replicates (see statistical analysis section). The experimental results (full
squares for dark and open squares for light) fall within the confidence intervals of the theoretical data.
doi:10.1371/journal.pone.0019748.g003

Figure 4. Theoretical results. Comparison between theoretical fractions of individuals settled in a binary choice (a dark shelter (solid line) and a
light one (dotted line)) and in a no choice setup (corresponding to the light shelter (dashed line)) according to Q1. Vertical bars on x-axis represent
the experimental Q1.
doi:10.1371/journal.pone.0019748.g004
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increase with the population size (and reach a plateau value for

around 15 individuals). This phenomenon is a by-product of an

aggregation dynamics governed by the competition between

amplification processes. As cockroaches use limited local informa-

tion, without any direct comparison between shelter qualities [23],

the individual decision to stay under a shelter only relies on its

darkness and its number of settled conspecifics. Consequently, the

individual probability of correctness increases with the population

size. This increase is especially strong and the need of public

information is relevant when the quality of the sites does not differ

much (here, the difference between both quality is small). The

efficiency of this mechanism contrasts with its parsimony. The

interactions between individuals are not modulated by the shelter

quality, which only affect the individual response (resting time

under shelter) [16,27]. Moreover, the mechanisms allow for better

choice at the individual scale when the population is confronted to

a choice, but when the choice is not optimal [28,29] (replicate

ending with the selection of the light shelter) it does not prevent to

get the benefits of being gathered due to Allee effect (see fig. 2B)

[30,31]). Our results show that if public information includes patch

quality, it also indirectly integrates the influence of other patches

and population size. Indeed, low populations did not favor

settlement and shelter selection and consequently maintained an

exploration activity leading to the discovery of a new area

potentially containing high population density [32–34]. This kind

of behavior could be a good strategy at the population level:

group-members continue to explore the environment and may

discover a better sheltering site. We well demonstrated the

adaptive value of such decision algorithm. When only one

resource is present, population settled under it. But when a better

alternative is present, trough local social interactions between

conspecifics, the system shifts to a more adaptive strategy: the

selection of the best resource. As in many collective phenomena

(e.g. [16,22,35,36]), this mechanism is strongly population size

dependent. This result seems in agreement with the theoretical

predictions of Rands [37] on the decrease of the effort made by an

individual with increasing group size.

Despite the lack of long-range communication (through e.g.

vision orientation, trail following), of comparison and of any

knowledge of the spatial dispersion of the resources, cockroaches

may collectively discriminate between spatially scattered alterna-

tives and select the best one. Previous studies on swarm

intelligence and more broadly on population dynamics have

reported for several activities or species characterized by different

degrees of sociality or cognition that the competition between

amplifying communication processes enables them to solve

problems that are beyond the individual’s capacity [1,16,38,39].

In an evolutionary point of view, we hypothesized that higher-level

cognitive species are likely to use the same kind of process to select

for the optimal site [16,35]. Indeed, there is no need that the

evolution to new cognitive skills should have erased and replaced

the processes that had actually worked so far. Our theoretical

model shows that without social amplification (r = 0 or n = 0), i.e.

when individuals act independently from each other, settlement

and the selection of the best shelter can only occur with strong

personal discrimination power.

From a general perspective about the fitness of collective

decisions, it is nevertheless the demonstration that such collective

discrimination is a by-product of gregarious behavior, the most

basic and widely spread social behavior [9]. This suggests that

similar collective discrimination processes should be at work in

various taxonomic groups and for a large variety of environmental

cues (humidity, temperature, chemical landscape,…). Potentialities

of gregarious behavior, contrasting with their parsimony, are also

illustrated by the optimal responses to the resource limitations.

These systems are governed by nonlinear dynamics that, through

the individual response to different environmental parameters,

favor the difference between individual and collective behavior

(e.g. discrimination power vs collective discrimination) and can

also lead to a cascade of complex structures [2,35,36]. A better

understanding of mechanisms is required to understand how the

global complexity and functionality of the collective patterns

emerge. This knowledge should also enlighten how the natural

selection could shape individual performances in gregarious

species where the individual capacity to make the good choice

takes a part in the collective decision which in turn enhances it.

This is especially required for understanding the impact of group

size upon individual fitness [3].

Materials and Methods

Biological model
Experiments were carried out on adult males (average length:

4 cm) of the cockroach species Periplaneta americana (L.) (Dictyoptera:

Blattidae). This specie has a worldwide distribution and is closely

associated with human dwellings, food-processing industries, and

shows dense populations in urban areas. P. americana alternates

diurnal phases of aggregation inside shelters and nocturnal phases of

exploration and foraging [40,41]. During the day P. americana (like

most of the gregarious cockroach species) rests in aggregates that

include males and females of all stages/ages [40,42]. Adult males of

P. americana were reared in transparent boxes (806406100 cm)

containing shelters (cardboard cylinders: length 30 cm, diameter

5 cm). They had ad libitum access to water and food pellets (Tom &

CoTM dog food). Cockroaches were kept at a temperature of

25uC61uC and in a 12 h/12 h light/dark cycle.

Experimental Procedure [for further see 20, 23]
Two days before being tested, adult males of P. americana were

taken out of the rearing box and isolated for 48 hours in total

darkness in a smaller box (36624614 cm) containing water, food

pellets (Tom & CoTM dog food) and shelters (cardboard cylinders:

length 30 cm, diameter 5 cm). After this isolation period, individuals

were introduced into the center of a circular arena (375 lx, diameter

1 m) including only a dark (75 lx, diameter 15 cm) and a light

(100 lx, diameter 15 cm) shelter. At 180 minutes, the number of

individuals under each shelter reached a plateau value and was

counted by means of a video camera placed between lamps and

centered on the arena.

Statistic Analyses
Data from all the experiments were tested for any deviance from

normality with the Kolmogorov-Smirnov test. When normality

conditions were met we carried out parametric tests; otherwise, we

performed corresponding nonparametric tests. We applied the

Mann-Whitney test to compare the mean fraction of individuals

settled under the dark or the light shelter (see Table S1). The

deviation from a binomial distribution was used in order to highlight

an amplification process in the spatial distribution of individuals (see

fig. 2AB and Text S1). In fig. 3, for each population size (1, 10, 16 and

30 individuals), the mean numbers of individuals under the dark and

the light shelter for n experimental replicates were compared with the

means of n theoretical replicates. Based on the theoretical probability

(P(i,j,k)) that the system is in a state with j individuals under the dark

shelter (with k individuals under the light shelter), we computed the

mean value of j (k) for groups of n replications. The distribution of this

theoretical mean value is well approximated by a Gaussian function.

From this distribution we defined a confidence interval containing the

95% most probable averages, with which we compared the

Group Living Enhances Individual Discrimination

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e19748



experimental one. For Figure S1, we used the Kolmogorov-Smirnov

test to determine if the experimental distributions of the fraction of

individuals under the dark shelter for each population size differed

significantly from the theoretical ones. This test makes no assumption

about the distribution of the data. All tests were two-tailed and the

significance of all the statistical tests was fixed at a= 0.05.

Supporting Information

Figure S1 Theoretical and experimental replicate distributions.

(EPS)

Table S1 Experimental fraction under shelters.

(DOC)

Text S1 Statistical criteria for shelter selection.

(DOC)

Text S2 Mathematical model of individual decision.

(DOC)

Flowchart S1 Flowchart illustrating the transition probabilities

between the different states of the system.

(EPS)
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