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Abstract
In the past decade we have witnessed important advances in the treatment of gynecological
cancers and have recognized their potential immunogenicity. This has opened the door to explore
immune therapy not only in HPV-induced cancers but also in ovarian and endometrial cancers.
Here we will review the off target immune effects of select chemotherapy drugs commonly used
to treat gynecologic cancers and novel tools that can stimulate both the adaptive and innate
immune mechanisms such as novel pleiotropic cytokines, Toll-like receptors, and powerful
antibodies that can target inhibitory checkpoints thereby activating effector cellular immune
mechanisms and neutralizing suppressor cells. We will also review how existing drugs can be used
for combinatorial tumor therapy.

INTRODUCTION
Significant advances have been made in the therapy of gynecologic cancers in the past two
decades. Chemotherapy regimens have been optimized with respect to dose, schedule and
combinations, and novel targeted therapies have emerged that can selectively neutralize
signals that drive or maintain the oncogenic process. Although the cancer cell remains the
main target of oncologic therapy, it is becoming progressively clear that the tumor
microenvironment provides critical support to tumor growth and therefore opportunities for
therapy. Inhibition of tumor angiogenesis is an obvious example of effective biological
therapy that has produced clinical results. Importantly, complex mechanisms regulating
immune response and inflammation interface with angiogenesis at the tumor
microenvironment, and their balance can greatly affect the fate of tumors. The overall
balance of tumor inflammatory mechanisms is polarized to promote angiogenesis, tumor cell
survival and immune escape, all contributing to tumor growth. However, it is becoming
clear that many patients with gynecologic malignancies mount a spontaneous antitumor
immune response. Although ineffective to reject tumor, this can be potentially harnessed
therapeutically. Here we will review how existing drugs can capitalize on and manipulate
natural antitumor immunity and thus be used for combinatorial tumor therapy.

The use of immunomodulatory therapy is predicated on the notion that gynecologic cancers
are potentially immunogenic tumors, i.e they can be recognized and attacked by cell based
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immune mechanisms. Cervical and lower genital tract cancers induced by human
papillomavirus (HPV) are the prototype of potentially immunogenic tumors that can elicit a
spontaneous immune response. HPV xenoantigens expressed by tumor cells are readily
recognized by the immune system. Cell-mediated immune responses are important in
controlling HPV infections as well as HPV-associated neoplasms (for review, see [1]). The
prevalence of HPV-related diseases is increased in patients with impaired cell-mediated
immunity, including transplant recipients [2] and HIV-infected patients [3, 4]. Infiltrating
CD4+ (T helper cells) and CD8+ (cytotoxic) T cells have been observed in spontaneously
regressing warts [5] and, warts often disappear in patients who are on immunosuppressive
therapy when treatment is discontinued [6]. In addition, animals immunized with viral
proteins are protected from HPV infection or the development of neoplasia, and experience
regression of existing lesions [7, 8]. Nevertheless, patients with invasive cervical cancer
exhibit exhausted and tolerized T cells that recognize antigen in vitro but are unable to reject
tumors in vivo [9, 10]. The emergence of immunomodulatory therapies revives opportunities
to activate and invigorate such T cell immunity and warrants clinical testing.

Although tumor-associated antigens have not undergone rigorous scrutiny in other
gynecologic malignancies (reviewed in [11]), similar mechanisms of spontaneous antitumor
immune response have been convincingly demonstrated. Tumor-reactive T cells and
antibodies have been detected in peripheral blood of patients with advanced stage ovarian
cancer at diagnosis [12, 13], while oligoclonal tumor reactive T cells have been isolated
from tumors or ascites [14–22]. Importantly, the detection of intratumoral or intraepithelial
tumor infiltrating lymphocytes (TIL), i.e. T cells infiltrating tumor islets predicts
significantly improved progression survival and overall survival in ovarian cancer. We first
reported in an Italian cohort that patients whose tumors had intraepithelial T cells
experienced 3.8-fold longer median progression-free survival and 2.8-fold longer overall
survival as compared to patients whose tumors lacked intraepithelial T cells. Remarkably,
survival rate at five years was 38% in patients whose tumors had intraepithelial T cells
(n=102) and 4.5% in patients lacking them (n=72). The impact of intraepithelial T cells was
confirmed by multiple independent studies on ethnically diverse populations [23–29].
Similar observations were made in endometrial cancer [30–32] and other solid tumors [33].
Retrospective studies showing that the incidence of many non-virally induced solid tumor
types is in fact 4–30 fold increased in immunosuppressed transplant recipients [34–38],
provide evidence that immune recognition is probably a universal mechanism in tumors.

CHEMOTHERAPY AS AN IMMUNE MODULATOR
Although it has been traditionally thought that chemotherapy antagonizes immune
mechanisms altogether, recent evidence has challenged this view. Indeed, agents such as
cyclophosphamide, doxorubicin and paclitaxel increase the number and function of antigen-
specific T cells and thus may enhance cancer immunity [39]. It is becoming progressively
clear that conventional chemotherapy has important “off-target” immunologic effects, and in
fact, may depend on activation of immune mechanisms to achieve its full efficacy. In mouse
models of solid tumors, increased tumor inflammation following administration of
chemotherapy predicts better prognosis [40], while tumors grown in immunodeficient mice
fail to respond to chemotherapy [41], clearly highlighting a role for the immune system in
cancer clearance in the context of cytotoxic therapy. Similar events may occur in humans;
tumor-infiltrating lymphocytes predicted complete pathologic response in breast cancer
patients after neoadjuvant chemotherapy [42]. Furthermore, neoadjuvant taxol therapy was
found to increase TIL [43]. Interestingly, breast cancer patients bearing a loss-of-function
Asp299Gly polymorphism of the Toll-like receptor (TLR) 4 receptor (see below) exhibit a
higher risk ofrelapse after treatment with chemotherapyand radiation therapy [44].
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The immunomodulatory effects of chemotherapy can be broadly grouped in three
mechanisms: a) induction of immunogenic cancer cell death, which facilitates tumor antigen
presentation (in situ vaccination); b) direct activation of antigen presenting or effector
mechanisms; and c) suppression of immune inhibitory cells, thereby releasing regulatory
breaks on antitumor immune response (Figure 1). These mechanisms are quite complex and
our understanding is still in its infancy, but effects appear to dependent on drug type, dose
and schedule as well as the immune cell type. The available evidence is reviewed below.

a) In situ Vaccination from Immunogenic Tumor Cell Death
Several recent studies have demonstrated that a number of chemotherapeutic agents are able
to induce “immunogenic cell death”. In general, necrotic cell death is considered
inflammatory, while apoptotic cell death induces less inflammation. Recently, it was found
that doxorubicin, idarubicin, mitoxanthrone, oxaliplatin and other drugs induce apoptotic
cell death, which however leads to greatly increased antigen uptake by dendritic cells (DCs),
the professional antigen presenting cells, and to DC maturation, leading to in situ
immunization against tumor antigens [44, 45]. The underlying molecular mechanism is
related to the preapoptotic exposure of calreticulin on the cell surface, which mediates DC
uptake and maturation [46].

b) Activation of APCs and Effector Mechanisms
Dendritic cells are the most potent antigen-presenting cells in the immune arsenal. High
doses of immunogenic chemotherapy may be transiently pro-inflammatory, however they do
not promote DC longevity. Cyclophosphamide has interesting immunomodulatory
properties, and in combination with cisplatin demonstrated synergy with subcutaneous
interferon-gamma in a phase III study in patients with advanced ovarian cancer [47]. Since
the 1980s, it has been recognized that cyclophosphamide administered at standard dose prior
to cancer vaccines significantly enhanced immune therapy, however the mechanism of this
phenomenon remained unclear [48]. A recent study in the mouse reported that
cyclophosphamide at myelosuppressive dose induces rebound myelopoiesis and leads to the
emergence of tumor-infiltrating DCs that secrete more IL-12 and less IL-10, which are fully
capable of priming T cell responses [49]. In addition, metronomic, or low dose non-
myelotoxic administration of paclitaxel, doxorubicin, vincristine and other drugs can cause
activation and maturation of DCs, comprising increased IL-12 secretion, a critical factor
required for T cell priming. Signaling via STAT4 and Rho GTPases may account for these
effects [50].

An additional mechanism through which chemotherapy enhances immune mechanisms is by
rendering tumor cells more susceptible to killing by immune effector cells. Fas is a
membrane-bound protein belonging to the tumor necrosis factor (TNF) family of surface
receptors, which, upon ligation with Fas-ligand (FasL), induces apoptosis. FasL is expressed
by activated effector immune cells, namely CD8+ T and NK cells. A recent in vitro study
showed that treatment of cancer cells with topotecan causesupregulation of Fas expression,
and this can lead to significant T cell activation within the tumor microenvironment [51].
Cisplatin has also been shown to increase the susceptibility of tumor cells to tumor-
infiltrating lymphocytes or NK cells [52, 53].

Although cytotoxic chemotherapy drugs activate antigen presentation mechanisms and
tumor cell susceptibility to immune effector cells, their direct effects on immune effector
mechanisms remain poorly understood. High dose cytotoxic chemotherapy could deplete
activated tumor-reactive T cells. However, Nowak et al showed that relatively high doses of
gemcitabine suppressed IgG antibody production, but did not block T lymphocyte recall
responses and were not detrimental to specific anti-tumor immunity [54]. Furthermore,
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topotecan at MTD did not impair the frequency or response of virus-reactive lymphocytes in
ovarian cancer patients [55]. Finally, cisplatin and paclitaxel did not interfere with T cell
function in vitro. [56]. However, in the mouse cyclophosphamide, doxorubicin and
paclitaxel at maximally tolerated dose (MTD) dampen the efficacy of vaccine if given after
the vaccine, although they increase tumor-reactive T cells when given prior to vaccine [39].
Low dose metronomic chemotherapy may be a better approach for combinations with
immunotherapy. In a mouse model, metronomic cyclophosphamide provided significantly
greater synergism with vaccine than MTD cyclophosphamide. Both metronomic and MTD
cyclophosphamide caused deletion of proliferating tumor-specific CTL in blood, but the
metronomic dosing schedule caused deletion with slower kinetics and did not delete
CD43low memory cells, which maintained potent capacity to respond to repeat tumor
challenge [57].

c) Suppression of Inhibitory Cells
T regulatory (Treg) cells are characterized as CD25+CD4+Foxp3+ T cells which function to
suppress immune responses and maintain peripheral tolerance. We have shown significantly
increased proportions of TGF-β secreting Treg in patients with ovarian cancer [58], capable
of suppressing tumor-specific T cell immunity and contributing to growth of human tumors
in vivo [59]. Increased frequency of Treg in ovarian tumors predicts reduced survival [23,
59].

Intravenous cyclophosphamide has been used in humans to augment cancer vaccines [60,
61]. In addition, intravenous cyclophosphamide, doxorubicin and paclitaxel at maximally
tolerated dose (MTD) were shown to help break tolerance to “self” cancer antigens and
enhanced cancer vaccine efficacy [39]. The exact molecular function of these drugs on
particular immune cells subsets has recently begun to be clarified. In mouse models,
cyclophosphamide enhanced tumor immunotherapy by elimination of tumor-induced
suppressor T cells [62] independently of cytotoxic reduction in tumor burden [63], and
enhanced the magnitude of secondary but not primary cytotoxic lymphocyte responses
induced by cancer vaccines [64, 65]. In the human, oral administration of metronomic
cyclophosphamide was shown to induce a profound and selective reduction of circulating
CD4+CD25+ regulatory T cells and restored T and NK effector functions in end-stage cancer
patients [66]. Cyclophosphamide may have additional effects contributing to restoration of
the immune response. For example, it can enhance IFN-γ production by splenocytes in a
mouse model [67]. Conventional paclitaxel therapy also caused a significant decline in both
numbers and activity of Treg, enhancing CD4+ and CD8+ activity systemically in patients
with non-small cell lung cancer [68].

Myeloid-derived suppressor cells (MDSCs) is a recently described cell population
characterized phenotypically as CD11b+Gr-1+ in the mouse. In the human, CD11b+Gr+

MDSC have not been clearly identified, but HLA-DRneg monocytes have functional features
of suppressor cells and may be MDSC. A high frequency of HLA-DRneg monocytes
secreting IL-10 have been described in ovarian cancer ascites in the human [69]. The main
mechanism by which MDSC suppress T effector function is through the production of L-
arginase, which reduces the availability of L-arginine, an essential amino acid fundamental
for the function of T lymphocytes [70]. Importantly, gemcitabine used at conventional doses
was found to significantly reduce the number of MDSCs in the spleens of treated mice,
whereas other leukocytes were not affected [71].

In summary, chemotherapy drugs commonly used in gynecologic malignancies have
specific immunomodulatory properties and could be used rationally to harness preexisting or
induce a de novo antitumor immune response. It is thus expected that rational combination
of these drugs with other immunomodulatory drugs may produce important clinical results,
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especially in patients with gynecologic malignancies who show pre-existing antitumor
immune response. Below we will review some of the bona fide immunomodulatory tools
already in the clinic that are available for clinical testing in immuno-chemotherapy
combinations.

NON-SPECIFIC IMMUNE ACTIVATION
Multifaceted, pleiotropic immune activation can be achieved with cytokines and Toll-like
receptor agonist therapy and is suitable for combination with immunomodulatory
chemotherapy. Below we summarize experience accumulated to date in gynecologic cancers
with older, more traditional cytokines, and will review newer cytokines and TLR agonists.

a) Interferons
Interferons were first described as antiviral cytokines, but have since been shown to be
secreted in response to a vast number of stimulatory factors other than viruses. They are
divided into two broad categories; type I and type II interferons. Type I interferons are
subdivided into two classes, known as alpha and beta. Interestingly, 12 forms of IFN-α have
been identified, while only one form of IFN-β has been isolated. Signaling through their
corresponding receptors on target cells is mediated by a series of Jak/STAT proteins and
results in several antiviral activities. Additionally, they have potent effects on cell
proliferation. Mouse models have demonstrated that gene therapy with IFN-β can greatly
enhance tumor cell death in the context of several different malignancies [72]. Many clinical
trials have demonstrated the efficacy of type I interferon therapy in the treatment of
hematologic malignancies [73–75], melanoma [76–80] and renal cell carcinoma [81–83].
Phase I/II clinical studies have examined the therapeutic value of type I IFNs in ovarian
cancer. Intraperitoneal recombinant IFN-α alone or combined with cisplatin as salvage
therapy for persistent ovarian cancer after primary chemotherapy has shown clinical efficacy
in small volume disease [84, 85], but there was no significant effect in a cohort of patients
with recurrent, platinum-resistant disease [86]. Although encouraging, these results did not
support additional clinical development of type I interferon in ovarian cancer.

One of the limitations of interferon therapy relates to the high intratumoral cytokine levels
required to induce antitumor responses, which cannot be achieved without eliciting systemic
toxicity and cannot be sustained owing to the short half-life of recombinant proteins.
Cytokine gene therapy using recombinant viral vectors can achieve much higher and
sustained cytokine levels at the tumor site than those resulting from systemic or regional
administration of recombinant cytokine proteins without engendering systemic toxicity [87].
A trial of intrapleural adenovirus delivering human IFN-β was recently completed at the
University of Pennsylvania. Toxicity was minimal. One patient with recurrent, platinum-
resistant low-grade ovarian carcinoma achieved complete objective and cytologic response
of both pleural and intraperitoneal disease following a single intrapleural injection of
adenovirus vector in this trial [88]. Disease stability or objective responses were also
observed in patients with malignant pleural mesothelioma enrolled in the study [89]. These
data present promising evidence that IFN-β can serve as a potent anticancer agent, and its
use in combination with other forms of chemo and immunotherapy certainly warrants
further consideration.

Structurally unrelated to type I interferons, IFN-γ is secreted by activated effector T cells
and NK cells in response to target recognition. IFN-γ has been shown to have direct anti-
proliferative activity on ovarian cancer cells in vitro, which proved to be synergistic with
cisplatin and doxorubicin [90–92]. In vitro and in vivo, IFN-γ upregulates HLA class I and
class II molecules and antigen presentation in ovarian tumor cells [93], a requisite for
recognition by T cells. In fact, HLA class I expression by the tumor correlates with the
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intensity of T cell infiltration [94], a predictor of longer survival. Furthermore, IFN-γ has
antiangiogenic effects [95].

Encouraging results have been reported with recombinant human (rh)IFN-γ either as
intraperitoneal monotherapy or in combinations in early phase trials [96–99]. Theoretically,
the effects are likely to be greatest in women who are also receiving chemotherapy because
of IFN-γ’s non-specific immunomodulatory effects [100]. Confirming expectations, a three-
fold prolongation of progression-free survival was observed in a phase-III multi-center study
from Europe with subcutaneous administration of rhIFN-γ combined with MTD cisplatin
and cyclophosphamide chemotherapy, with minimal added toxicity [47]. However, in a
subsequent randomized phase-III trial conducted in the U.S., addition of subcutaneous
rhIFN-γ to carboplatin and paclitaxel did not improve survival [101]. Although one cannot
exclude that racial and other demographic differences may account for opposite results, this
data may indicate that the choice of chemotherapy drugs is in fact critical in combinatorial
approaches with immune therapy. Indeed, whereas cyclophosphamide has potent
immunomodulatory effects on many cell subsets including suppressing T regulatory (Treg)
cells (see below), high dose steroids, which are necessarily given with paclitaxel to prevent
acute hypersensitivity reactions, are immunosuppressive and induce Treg in the setting of
antigen presentation.

b) Interleukins
Interleukin-2 (IL-2) promotes expansion and enhances the cytotoxicity of effector immune
cells [102]. In addition, IL-2 can restore T cell function following suppression by negative
regulatory receptors such as PD-1 (see below). IL-2 represents the most widely investigated
cytokine for use in cancer therapy, having shown clinical efficacy in malignant melanoma
and renal cell carcinoma [103, 104], for which it is now FDA approved. Additionally, it has
been used to enhance the efficacy of immunotherapy including vaccines and adoptive T-cell
therapy [105]. However, its use has several limitations. In monotherapy and in the context of
adoptive immunotherapy, IL-2 is used at MTD, which induces a systemic inflammatory
response, with significant morbidity including multiple organ toxicities, most significantly
the heart, lungs, kidneys, and central nervous system. Other manifestation of IL-2 toxicity is
capillary leak syndrome, resulting in a hypovolemic state and fluid accumulation in the
extravascular space [106].

Because ovarian cancer patients exhibit spontaneous antitumor immune response, IL-2
therapy may be a rational approach to activate preexisting immunity or enhance
immunomodulatory therapy. Intraperitoneal IL-2 was used in a phase I/II study in 41
patients with laparotomy-confirmed persistent or recurrent ovarian cancer. Weekly IL-2
infusion was relatively well tolerated and demonstrated evidence of long-term efficacy in a
modest number of patients. Twenty-percent of patients had a negative third look, i.e.
exhibited pathologic evidence of complete response and no residual disease at repeat
abdominal exploration [107]. Reflecting pre-therapy T cell activity, low expression of the
CD3-zeta chain in peripheral blood T cells prior to therapy, a biomarker of T cell functional
suppression by tumor-derived factors, predicted poor of response to IL-2 therapy [108].
Importantly, IL-2 is essential for the peripheral homeostasis of CD4+CD25+Foxp3+ Treg
cells, and it is now known that IL-2 is also an important activator of Treg suppressive
activity in vivo [109]. After IL-2 cessation, the number of Treg cells more efficiently
dropped in patients who experienced a clinical response than in non-responders [110].
Together, this data indicate that patients with pre-existing tumor-reactive, functional T cells
and low prevalence of Treg are those likely to benefit from IL-2 monotherapy. In another
phase II study, 44 patients with EOC responding to primary chemotherapy were treated with
subcutaneous low dose IL-2 and oral retinoic acid for one year and with intermittent
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schedules for up to five years. Patients experienced significantly improved progression-free
and overall survival relative to 82 well-matched controls treated with standard therapy [111].

Alternate cytokines that selectively support activation of effector cells without promoting
Treg cells may prove even more effective. IL-7, IL-15, IL-18 and IL-21 provide possible
alternatives to IL-2, however their function and clinical use are still under investigation. The
function of IL-7 has not been completely appreciated until recently. It serves an essential
role not only in lymphopoeisis, but also T cell activity and maintenance and can promote
antitumor immunity [112, 113]. A recent study using a mouse model of lung cancer
examined the effects of IL-7 administration and found significant reduction in tumor burden,
with a correlating increase in CD4+ and CD8+ T cells [114, 115]. IL-15 has similar functions
to IL-2 in its effects of T cells, but also potentiates NK cell maturation and activity [116].
IL-21 is a promising cytokine as it enhances the cytolytic activity of CD8+ T cells and NK
cells, but also modulates the activity of CD4 T cells, B cells and suppresses Treg cells [117].
A recent phase II trial demonstrated that administration of IL-21 was associated with
antitumor activity in patients with unresectable metastatic melanoma [118].

IL-18 is a novel cytokine that has been shown to have very potent immunostimulatory
effects, including induction if IFN-γ, TNF-α, IL-1α, and GM-CSF, augmentation of NK cell
cytotoxicity, activation of effector T cells, and promotion of Th1 responses, which are
critical for tumor rejection. In a recent study, rhIL-18 was found to expand human effector T
cells and reduce human Treg in a mouse model transplanted with human peripheral blood
lymphocytes [119]. Clearly this biology points to a strong potential for the use of IL-18 in
cancer immunotherapy. The immunostimulatory activity of IL-18 in vivo has been
demonstrated in non-human primates [120] and humans [121]. In phase I clinical evaluation,
recombinant human (rh)IL-18 was safely administered as monotherapy to 28 patients with
solid tumors, with minimal dose-limiting toxicities and two partial tumor responses [121].
Toxicity has generally been mild to moderate even with repeat administration and a
maximum tolerated dose has not been reached to date [122]. IL-18 enhanced activation of
peripheral blood CD8+ T cells, NK cells and monocytes and induced a transient increase in
the frequency and expression level of Fas ligand (FasL) in peripheral blood CD8+ T cells
and NK cells [122]. The relatively minor toxicity of rhIL-18, compared with other
immunostimulatory cytokines that have undergone clinical development, is remarkable and
renders IL-18 a well suited drug for combinatorial approaches with chemotherapy. In mice
with established ovarian carcinoma, administration of IL-18 alone was shown to have
modest effects on tumor immunity, but when combined with pegylated liposomal
doxorubicin chemotherapy its effects were greatly enhanced (Coukos et al, unpublished
data). Clearly the use of IL-18 therapy with other immunogenic chemotherapy warrants
further investigation. A phase I study is currently under way to test this hypothesis.

c) Toll-like Receptor Agonists
One of the most basic mechanisms for activation of the immune system is through the Toll-
like receptors (TLRs). TLRs belong to the type I transmembrane receptor family. Their
expression is ubiquitous, from epithelial to immune cells. The TLR-family members are
pattern-recognition receptors that collectively recognize lipid, carbohydrate, peptide and
nucleic-acid structures that are broadly expressed by different groups of microorganisms.
Some TLRs are expressed at the cell surface, whereas others are expressed on the membrane
of endocytic vesicles or other intracellular organelles. There are at least 10 known TLRs in
humans grouped in six major families, based on their phylogenetic background [123]. Each
family is attributed to a general class of PAMPs. TLRs 3, 7, 8 and 9 are located mainly in
endosomes; double-stranded RNA are ligands for TLR3 [124], while TLRs 7 and 8
recognize single-stranded viral RNA [125]. The other TLRs are located on the cell surface
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[126]; TLRs 1, 2, 5, 6 and 10 respond to bacterial, fungal and viral PAMPs [127–129].
Lipopolysaccharides are TLR4 ligands [130].

TLR engagement alerts the immune system and leads to the activation of innate immune
cells. Two major signaling pathways are generally activated in response to a TLR ligand
[131]. One pathway involves the MyD88-independent production of type I interferons. The
second uses MyD88 to activate nuclear factor-kappa B (NF-κB), JUN kinase (JNK) and p38,
finally resulting in the production of proinflammatory cytokines such as TNF-α, IL-12 and
IL-1 and induction of innate effector mechanisms [132, 133]. Additionally, TLR triggering
induces DC maturation, which leads to the upregulation of costimulatory molecules such as
CD40, CD80 and CD86, and secretion of immune modulatory cytokines and chemokines. In
addition, TLRs can directly stimulate the proliferation of CD4+ and CD8+ T cells as well as
reverse the suppressive function of Treg cells [126][134][135]. Adding TLR 3, 4, 7 or 9
ligands was shown to activate CD8+ cytotoxic T cells with increased IFN-γ production and
promote a stimulatory cytokine milieu at the tumor microenvironment [136, 137]. Optimal
antitumor immunity requires robust enhancement of the effector T cell response induced by
tumor antigenic peptides and control or elimination of Treg suppressive function. Thus, the
combination of peptide-based vaccines with TLR agonists, in particular a TLR8 agonist,
may greatly improve the therapeutic potential of cancer vaccines.

Several clinical trials have demonstrated that administration of agonists for TLRs 3,4,7 and
9 can enhance activity of cancer vaccines in the context of non-small cell lung cancer [138],
non-Hodgkins lymphoma [139, 140], glioblastoma [141], and superficial basal cell
carcinoma [142]. Multiple TLR agonists have also been explored in melanoma. TLR 7 or 9
agonists were used in combination with melanoma antigen vaccine in advanced melanoma
[31, 143, 144]. In addition, the TLR ligand Ribomunyl has been used in conjunction with a
dendrtic cell vaccine in a phase I/II trial, which reported a median survival of 10.5 months in
patients with advanced melanoma [145].

The use of TLR agonists in the clinic requires careful preclinical evaluation. For example, in
the absence of specific cell-mediate antitumor immunity, non-specific activation of
inflammation could in fact promote tumor growth rather than reducing it, because of the
potent tumor-promoting effects of inflammation [146]. Thus, combinations with active
immunization or adoptive immunotherapy seem ideal, as these approaches greatly benefit
from concomitant activation of innate immune response. If combination with chemotherapy
is designed, it seems rational to combine TLR agonists with chemotherapy drugs that can
activate cellular immune mechanisms. Finally, the choice of TLR agonists may matter.
Whereas TLR 3 and 9 agonists induce apoptosis of TLR-expressing tumor cells [147]. TLR4
agonists were shown to promote tumor cell survival, tumor growth and paclitaxel resistance
in a proportion of ovarian cancer cells [148, 149].

ACTIVATION OF CELLULAR IMMUNITY
Generation of a successful antitumor adaptive immune response requires first and foremost
the primary signal provided by the binding of T cell receptor to cognate tumor antigen.
However, multiple secondary signals can activate or suppress this response. Characterization
of these pathways in tumors and the development of specific agonistic or antagonistic
antibodies or ligands has created new opportunities for powerful stimulation of antitumor
immune response (Figure 2).

a) DC Activation via CD40
The CD40 receptor is a member of the TNF receptor family expressed by antigen presenting
cells and B cells. Its ligand, CD40L, is transiently upregulated on activated T cells, activated
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B cells and platelets; and under inflammatory conditions is also induced on monocytes and
other innate immune cells. CD40 is a potent stimulator of antigen presenting cells and
cellular immunity, and CD40/CD40L interaction is critical in the development of protective
anti-tumor immunity. Mice deficient in CD40 fail to mount a protective anti-tumor immune
response following vaccination. In addition, neutralizing anti-CD40L monoclonal antibody
can abrogate the therapeutic value of potent tumor vaccines [150]. Vice versa, a CD40
agonistic antibody was shown to be able to overcome peripheral tolerance and generate
antitumor immunity able to reject tumors [151]. The main mechanism of immune
stimulation by CD40 ligands is activation of DCs resulting in increased survival,
upregulation of costimulatory molecules, and secretion of critical cytokines for T cell
priming such as IL-12. This promotes antigen presentation, priming and cross-priming of
CD4+ and CD8+ effector T cells [152]. However, agonistic anti-CD40 antibody alone can
have adverse effects on antitumor immunity as in the mouse it can ultimately impair the
development of tumor-specific T cells [153] or accelerate the deletion of tumor-specific
cytotoxic lymphocytes in the absence of antigen vaccination [154]. CD40 ligation could thus
be best used in combinatorial approaches including vaccines and TLR agonists [152, 155].
Based on the imunomodulatory effects of select chemotherapy agents, the combination of
CD40 ligands with chemotherapy is also a rational approach that warrants thorough
investigation. For example, in mice with established solid tumors, the administration of
gemcitabine with CD40L triggered potent antitumor immune response that eliminated tumor
burden, and these mice became also resistant to repeated tumor challenge [156].

Interestingly, the CD40 receptor is expressed on a variety of tumors including melanoma,
lung, bladder and prostate cancers [152], but also cervix [157] and the majority of ovarian
cancers [158–162]. Because tumor cells also express the CD40L, it is likely that low-level
constitutive engagement of CD40 facilitates malignant cell growth. However, transient
potent activation of CD40 on carcinomas with ligand results in direct anti-proliferative
effects and apoptosis. CD40 agonists promoted apoptosis and resulted in growth inhibition
of ovarian carcinoma lines expressing CD40. CD40 ligation also induced NF-κB activation,
and TNF-α, IL-6 and IL-8 production in most EOC cell lines [158, 163]. In vivo,
administration of rhuCD40L inhibited the growth of several ovarian adenocarcinoma
xenografts in severe combined immunodeficient mice through a direct effect causing
apoptosis, fibrosis and tumor destruction. The antitumor effect of rhuCD40L was further
increased by cisplatin [164]. Interestingly, rIFN-γ enhanced expression of CD40 on tumor
cells and the efficacy of on EOC cell lines [159]. Thus, CD40 agonists can have a direct
cytotoxic effects on tumors, even in the absence of any additional immune responses and
cells.

Early clinical experience with monoclonal IgG agonistic antibodies is encouraging. In a
recent phase I study, patients with advanced solid tumors received single doses of CD40
agonistic antibody CP-870,893 intravenously. CP-870,893 was well tolerated; the most
common adverse event being cytokine release syndrome including chills, rigors, and fever;
14% of all patients and 27% of melanoma patients had objective partial responses [165].

b) Activation of T Effector Cells via Blockade of Inhibitory Checkpoints
T-cell activation is triggered through the T-cell receptor by recognition of the cognate
antigen complexed with MHC. T cell activation is regulateD by complex signals
downstream of the diverse family of CD28 family immune receptors, which includes
costimulatory (CD28 and ICOS) and inhibitory receptors (CTLA-4, PD-1 and BTLA).
CD28 and CTLA-4 share the same ligands, B7-1 (CD80) and B7-2 (CD86), whereas PD-1
interacts with PD ligand 1 (PD-L1), also named B7-H1, and PD-L2, also named B7-DC.
Simultaneous recognition of the cognate MHC-peptide complex by the TCR (signal 1) and
CD80 or CD86 by CD28 (signal 2) results in T cell activation, proliferation, and
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differentiation, as well as effector cytokine production. PD-1 and CTLA-4 are induced on T
cells following a TCR signal, and result in cell cycle arrest and termination of T cell
activation. The importance of the PD-1 and CTLA-4 pathways in the physiologic regulation
of T cell activation is demonstrated by the autoimmune diseases occurring in CTLA-4 and
PD-1 knockout mice [166] and further illustrated by the inflammatory side effects that can
result from a therapeutic blockade of CTLA-4 in vivo, both in animal models and in humans
[167–170]. The use of blocking CTLA-4or PD-1mAbs can sustain the activation and
proliferation of tumor-specificT cells, preventing anergy or exhaustion and thereby allowing
the development of an effectivetumor-specific immune response.

b.1) CTLA-4 Blockade—CTLA-4 is the best characterized among the inhibitory B7
receptors; like CD28, CTLA-4 also binds CD80 and 86 expressed by APCs, but provides
inhibitory signals to theT cell, serving as a negative feedback loop. In animal models,
CTLA-4 proved critical in the normal functioning immune system; CTLA-4 knockout mice
developed uncontrolled lymphoproliferation with early lethalities. Furtermore,
administration of CTLA-4 blockade significantly enhanced antitumor immunity in a variety
of mouse models and with various therapeutic combinations including vaccine, TLR agonist,
chemotherapy and radiation therapy. The mechanism by which CTLA-4 blockade induces
tumor regression is not fully understood. Although Treg constitutively express CTLA-4,
CTLA-4 blockade had no effect on the number or function of Treg in cancer patients [171].
It seems that CTLA-4 blockade activates directly CD4 and CD8+ T effector cells by
removing an inhibotory checkpoint on proliferation and function [172], and combination of
direct enhancement of Teff cell function and inhibition of T reg activity is essential for
mediating the full therapeutic effects of anti-CTLA-4 antibodies during cancer
immunotherapy [173].

Based on these data, several clinical studies have been undertaken to assess the efficacy of a
CTLA-4 antagonist antibodies in the setting of human cancer. The majority of clinical data
to date have emerged from studies inpatients with melanoma (reviewed in [174]). Phase II
studies with ipilimumab monotherapy showed objective responses at a dose of 3 to 9 mg/kg
every3 weeks, with 10 mg/kg showing the best risk-benefit profile. Ipilimumab (3 mg/kg
every 4 weeks × 4) administeredin combination with chemotherapy (dacarbazine) resulted in
enhanced objective response rates without added toxicity. Ipilumimab has also been
combined successfully with IL-2 (720,000 U/kg every8 hours × 15 (ORrate of 22% - three
CRs) or melanoma vaccine (OR rateof 13% - two complete responses). In addition,
tremelimumab has also produced OR and CRs in melanoma patients. To date, CTLA-4
antibody has not shown superiority over standard chemotherapy trial in treatment-naive
melanoma patients in a phase III randomized clinical, which was discontinued after interim
analysis. In melanoma patients, the most common grade 3 to 4 adverse events were colitis/
enterocolitis (increased frequency of diarrhea/stools), dermatitis, andhypophysitis.

Eleven patients with ovarian carcinoma, previously vaccinated with GM-CSF modified,
irradiated autologous tumor cells (GVAX), received ipilumimab (1 month to 3 years
following GVAX). Significant antitumor effects were observed in a minority of the patients.
One patient achieved a dramatic fall in CA-125 levels several months after an initial dose of
ipilumimab; although the response was not maintained, a second infusion resulted in a more
rapid decline in CA-125 values. Nine additional infusions of the anti-CTLA-4 antibody
spaced at 3- to 5-month intervals over nearly 4 years have maintained profound disease
control, with grade 1 rash as the only adverse event. An objective radiographic response was
noted in parallel with the reduction in CA125 Moreover, this patient’s course was initially
characterized by a remarkable periodicity to the rise and fall of CA-125 levels, but this
gradually dampened as a function of time and/or prolonged therapy, demonstrating a lack of
acquired resistance to ipilimumab commonly observed with cytotoxic chemotherapy [169].
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In contrast to the melanoma cohort, a single dose of 3 mg/kg Ipilumimab triggered two cases
of grade 3 gastrointestinal inflammation among the 9 ovarian carcinoma patients, consistent
of significant diarrhea. Endoscopic biopsies revealed mucosal damage associated with
abundant granulocytes, macrophages, CD4+ and CD8+ T cells, and FoxP3+ Treg. The
remaining seven patients showed only minor inflammatory toxicities including papular rash,
or urticarial-like reactions at sites of prior vaccination [169]. Tumor regression in these
patients correlated with the CD8+/Treg ratio, suggesting that other forms of therapy that
target Treg depletion may provide a highly effective form of treatment when combined with
the tumor vaccine and CTLA-4 antibody arsenal [169].

b.2) PD-1 Blockade—Programmed death receptor-1 is a negative regulator of cell
activation, primarily expressed on both B and T lymphocytes, which binds PD-L1 and PD-
L2 ligands. PD-L2 is restricted to professional antigen presenting cells, while PD-L1 is
expressed on many tissues, and plays a pivotal role in maintaining peripheral tolerance.
Importantly, cancer cells have adopted expression of PD-L1 into their immunosuppressive
arsenal [175]; a variety of epithelial cancers express PD-L1 [176–178]. It has also recently
been shown that ovarian carcinoma cells as well as tumor-infiltrating tolerogenic DCs and
myeloid derived suppressor cells express PD-L1 [179, 180], and indeed expression levels
correlate with disease course.1 Although PD-1 signaling can occur at very low levels of
receptor expression, elevated levels of PD-1 have recently been attributed functional
significance; during conditions of chronic antigen persistence (such as in chronic viral
infections), antigen specific effector T cells expressing high levels of PD-1 were
demonstrated to be functionally exhausted, i.e. unable to proliferate, secrete IL-2 or kill
target cells [181]. It has been recently shown that tumor infiltrating lymphocytes in
metastatic melanoma and other tumors expresses higher levels of PD-1 than CD4+ and
CD8+ cells in the peripheral blood of healthy patients and exhibit phenotypic and functional
characteristics of exhausted T cells with impaired effector function. These findings suggest
that the tumor microenvironment can lead to up-regulation of PD-1 on tumor-reactive T
cells and contribute to impaired antitumor immune responses [182]. Indeed, constitutive or
inducible expression of PD-L1by tumors conferred resistance to immunotherapy in mice
related to failure of antigen-specific CD8+ CTLs to destroy tumor cells but without
impairment of CTL function [183].

Following evidence that PD-1 blockade through gene therapy approaches in the tumor
microenvironment activates antitumor immunity [184], antibodies blocking PD-L1 or PD-1
were found to profoundly enhance the efficacy of immune therapy [183, 185]. Anti-PD-1
antibody has been combined with cell-based vaccines and demonstrated increased
infiltration, potency and duration of activity of CD8 T cells in the tumor microenvironment
in the setting of B16 melanoma and CT26 colon carcinoma in mice.

Despite their similarities, the regulatory roles of CTLA-4 and PD-1 may differ substantially
in cancer patients. First, Even though PD-1 and CTLA-4 ligation efficiently block T-cell
responses, the homeostatic function of the two inhibitory receptors differs. For example,
CTLA-4 ligation does not inhibit PI3-kinase signaling, while PD-1 engagement blocks the
induction of PI3K activity. PD-1-mediated signaling blocks T-cell activation more
effectively than CTLA-4-mediated signaling. In addition, PD-1 signaling may be related to
T cell apoptosis. Second, whereas the ligands for CTLA-4, CD80 and CD86, are primarily
expressed by mature antigen presenting cells, PD-L1 (on tumor cells or myeloid cells) and
PD-1 (on effector T cells) are significantly upregulated in the tumor microenvironment.
Thus, the effects of PD-1 blockade may be more pronounced in the tumor than in periphery.
Indeed, a phase I study using PD-1 blocking antibody showed the antibody to be safe and
well tolerated in patients with hematologic malignancies. No single maximum tolerated dose
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was defined in this study. Clinical benefit was observed in 33% of the patients with one
complete remission [186].

c) Depletion of T Regulatory Cells
As mentioned previously, CD4+CD25+Foxp3+ T regulatory cells are responsible for
maintaining peripheral tolerance by inhibiting T cell activity therefore forming an obstacle
for cancer immunotherapy. Depletion of Treg in vivo enhances tumor immunity in
numerous animal models [187–189]. In clinical trials, a number of Treg-depleting strategies
have been investigated [39, 105, 190–192]. An example is the use of cyclophosphamide in
combination with vaccines [61, 193]. Other strategies for Treg depletion is through targeting
the IL-2 receptor alpha chain, also known as CD25. In mouse models, the use of anti-CD25
monoclonal antibody before vaccination led to complete tumor rejection and establishment
of long-lasting tumor immunity with essentially no autoimmune complications [194, 195].
Preclinical studies have shown that administration of anti-CD25 antibody linked to a potent
pro-inflammatory toxin can selectively reduce Treg concentrations in vitro while
maintaining other T cell populations [196]. This same molecule was used in patients with
metastatic melanoma and showed consistent reduction in CD4+CD25+ Treg cells [197].
However, the effect was transient, with a half-life of the immunotoxin of only 2 hours.
Another clinical appproach of targeting CD25 is through Denileukin diftitox, a fusion
protein of IL-2 and diphtheria toxin that targets CD25-expressing cells used in patients with
melanoma, ovarian cancer and renal cell carcinoma [198–201]. Although effective in short-
term infusions, these conjugates are quite immunogenic and induce neutralizing antibodies,
which hamper their long-term application.

Another agent is Daclizumab (Roche), which is an FDA-approved humanized IgG1-kappa
mAb that binds specifically to CD25 [202]. Daclizumab inhibits T cell proliferation to recall
antigens, but does not inhibit IL-15 effects. It has been used in autoimmune disorders [203,
204], acute graft-versus-host disease [205], and in cancer patients with CD25+ T cell
malignancies [206]. The advantage of Daclizumab is that it extremely well tolerated, and has
a half-life of 20 days [207]. Furthermore, It is significantly less immunogenic than
immunotoxins and can be given for longer periods of time. In a recent study, Daclizumab
was used in a single dose of 1 mg/m2 prior to hTERT peptide vaccine for metastatic breast
cancer. Total CD4+CD25+ and CD4+CD25+FoxP3+ cells remained suppressed for several
weeks during vaccination. There have been no significant toxicities. Importantly,
administration of CD25 antibody was compatible with effective vaccination (Robert
Vonderheide, unpublished observations).

CONCLUSIONS
In the past decade we have witnessed important advances. First, gynecologic cancers were
proposed as potentially immunogenic tumors, a characterization formerly reserved only for
melanoma and renal cell cancer. This has opened the door to explore immune therapy not
only in HPV-induced cancers but also in ovarian and endometrial cancers. Second, the a
priori notion that chemotherapy drugs antagonize immune mechanisms altogether was
challenged by evidence that select chemotherapy drugs commonly used to treat gynecologic
cancers have important immunomodulatory effects. This has opened the door to explore
interactions of these drugs with natural antitumor immunity. Third, over the past decade
several mechanisms of tumor immune escape, accounting for failure of immunotherapy,
have been deciphered, and the importance of combinatorial immunotherapy targeting both
adaptive and innate, effector and suppressor mechanisms has been proven. Fourth, this
decade has produced novel and potent bona fide stimulants of innate and adaptive immunity,
such as novel pleiotropic cytokines and Toll-like receptors, as well as powerful antibodies
activating cellular immune mechanisms. Finally, the development of several syngeneic
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mouse models of ovarian and other gynecologic cancers in immunocompetent animals is an
important step forward in the preclinical development of these agents. The next decade will
be the time to test and optimize these combinations to maximize efficacy and decrease
toxicity. Rational combinations of agents will require understanding of their precise
mechanism of action in order to select combinations yielding positive interactions. Careful
preclinical evaluation in well-characterized animal models will be necessary to screen
combinations before undertaking clinical studies.
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