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Abstract
Observations consisting of measurements on relationships for pairs of objects arise in many
settings, such as protein interaction and gene regulatory networks, collections of author-recipient
email, and social networks. Analyzing such data with probabilisic models can be delicate because
the simple exchangeability assumptions underlying many boilerplate models no longer hold. In
this paper, we describe a latent variable model of such data called the mixed membership
stochastic blockmodel. This model extends blockmodels for relational data to ones which capture
mixed membership latent relational structure, thus providing an object-specific low-dimensional
representation. We develop a general variational inference algorithm for fast approximate
posterior inference. We explore applications to social and protein interaction networks.
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1 Introduction
Modeling relational information among objects, such as pairwise relations represented as
graphs, is becoming an important problem in modern data analysis and machine learning.
Many data sets contain interrelated observations. For example, scientific literature connects
papers by citation, the Web connects pages by links, and protein-protein interaction data
connects proteins by physical interaction records. In these settings, we often wish to infer
hidden attributes of the objects from the observed measurements on pairwise properties. For
example, we might want to compute a clustering of the web-pages, predict the functions of a
protein, or assess the degree of relevance of a scientific abstract to a scholar's query.

Unlike traditional attribute data collected over individual objects, relational data violate the
classical independence or exchangeability assumptions that are typically made in machine
learning and statistics. In fact, the observations are interdependent by their very nature, and
this interdependence necessitates developing special-purpose statistical machinery for
analysis.
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There is a history of research devoted to this end. One problem that has been heavily studied
is that of clustering the objects to uncover a group structure based on the observed patterns
of interactions. Standard model-based clustering methods, e.g., mixture models, are not
immediately applicable to relational data because they assume that the objects are
conditionally independent given their cluster assignments. The latent stochastic blockmodel
(Snijders and Nowicki, 1997) represents an adaptation of mixture modeling to dyadic data.
In that model, each object belongs to a cluster and the relationships between objects are
governed by the corresponding pair of clusters. Via posterior inference on such a model one
can identify latent roles that objects possibly play, which govern their relationships with
each other. This model originates from the stochastic blockmodel, where the roles of objects
are known in advance (Wang and Wong, 1987). A recent extension of this model relaxed the
finite-cardinality assumption on the latent clusters, via a nonparametric hierarchical
Bayesian formalism based on the Dirichlet process prior (Kemp et al., 2004, 2006).

The latent stochastic blockmodel suffers from a limitation that each object can only belong
to one cluster, or in other words, play a single latent role. In real life, it is not uncommon to
encounter more intriguing data on entities that are multi-facet. For example, when a protein
or a social actor interacts with different partners, different functional or social contexts may
apply and thus the protein or the actor may be acting according to different latent roles they
can possible play. In this paper, we relax the assumption of single-latent-role for actors, and
develop a mixed membership model for relational data. Mixed membership models, such as
latent Dirichlet allocation (Blei et al., 2003), have emerged in recent years as a flexible
modeling tool for data where the single cluster assumption is violated by the heterogeneity
within of a data point. They have been successfully applied in many domains, such as
document analysis (Minka and Lafferty, 2002; Blei et al., 2003; Buntine and Jakulin, 2006),
surveys (Berkman et al., 1989; Erosheva, 2002), image processing (Li and Perona, 2005),
transcriptional regulation (Airoldi et al., 2006b), and population genetics (Pritchard et al.,
2000).

The mixed membership model associates each unit of observation with multiple clusters
rather than a single cluster, via a membership probability-like vector. The concurrent
membership of a data in different clusters can capture its different aspects, such as different
underlying topics for words constituting each document. The mixed membership formalism
is a particularly natural idea for relational data, where the objects can bear multiple latent
roles or cluster-memberships that influence their relationships to others. As we will
demonstrate, a mixed membership approach to relational data lets us describe the interaction
between objects playing multiple roles. For example, some of a protein's interactions may be
governed by one function; other interactions may be governed by another function.

Existing mixed membership models are not appropriate for relational data because they
assume that the data are conditionally independent given their latent membership vectors. In
relational data, where each object is described by its relationships to others, we would like to
assume that the ensemble of mixed membership vectors help govern the relationships of
each object. The conditional independence assumptions of modern mixed membership
models do not apply.

In this paper, we develop mixed membership models for relational data, develop a fast
variational inference algorithm for inference and estimation, and demonstrate the application
of our technique to large scale protein interaction networks and social networks. Our model
captures the multiple roles that objects exhibit in interaction with others, and the
relationships between those roles in determining the observed interaction matrix.
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Mixed membership and the latent block structure can be reliably recovered from relational
data (Section 4.1). The application to a friendship network among students tests the model
on a real data set where a well-defined latent block structure exists (Section 4.2). The
application to a protein interaction network tests to what extent our model can reduce the
dimensionality of the data, while revealing substantive information about the functionality
of proteins that can be used to inform subsequent analyses (Section 4.3).

2 The mixed membership stochastic blockmodel
In this section, we describe the modeling assumptions behind our proposed mixed
membership model of relational data. We represent observed relational data as a graph

, where R(p, q) maps pairs of nodes to values, i.e., edge weights. In this work, we
consider binary matrices, where R(p, q) ∈ {0, 1}. Thus, the data can be thought of as a
directed graph.

As a running example, we will reanalyze the monk data of Sampson (1968). Sampson
measured a collection of sociometric relations among a group of monks by repeatedly asking
questions such as “Do you like X?” or “Do you trust X?” to determine asymmetric social
relationships within the group. The questionnaire was repeated at four subsequent epochs.
Information about these repeated, asymmetric relations can be collapsed into a square binary
table that encodes the directed connections between monks (Breiger et al., 1975). In
analyzing this data, the goal is to determine the underlying social groups within the
monastary.

In the context of the monastery example, we assume K latent groups over actors, and the
observed network is generated according to latent distributions of group-membership for
each monk and a matrix of group-group interaction strength. The latent per-monk
distributions are specified by simplicial vectors. Each monk is associated with a randomly
drawn vector, say  for monk i, where πi,g denotes the probability of monk i belonging to
group g. That is, each monk can simultaneously belong to multiple groups with different
degrees of affiliation strength. The probabilities of interactions between different groups are
defined by a matrix of Bernoulli rates B(K×K), where B(g, h) represents the probability of
having a link between a monk from group g and a monk from group h.

For each network node (i.e., monk), the indicator vector  denotes the group
membership of node p when it is approached by node q and  denotes the group
membership of node q when it is approached by node p 1. N denotes the number of nodes in
the graph, and recall that K denotes the number of distinct groups a node can belong to. Now
putting everything together, we have a mixed membership stochastic blockmodel (MMSB),
which posits that a graph  is drawn from the following procedure.

• For each node :

– Draw a K dimensional mixed membership vector  ∼ Dirichlet .

• For each pair of nodes :

– Draw membership indicator for the initiator,  ∼ Multinomial .

– Draw membership indicator for the receiver,  ∼ Multinomial .

1An indicator vector is used to denote membership in one of the K groups. Such a membership-indicator vector is specified as a K-
dimensional vector of which only one element equals to one, whose index corresponds to the group to be indicated, and all other
elements equal to zero.
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– Sample the value of their interaction, R(p, q) ∼ Bernoulli .

This process is illustrated as a graphical model in Figure 1. Note that the group membership
of each node is context dependent. That is, each node may assume different membership
when interacting to or being interacted by different peers. Statistically, each node is an
admixture of group-specific interactions. The two sets of latent group indicators are denoted
by  and . Also note that the pairs of group
memberships that underlie interactions, for example,  for R(p, q), need not be
equal; this fact is useful for characterizing asymmetric interaction networks. Equality may
be enforced when modeling symmetric interactions.

Under the MMSB, the joint probability of the data R and the latent variables 
can be written in the following factored form,

(1)

This model easily generalizes to two important cases. (Appendix A develops this intuition
more formally.) First, multiple networks among the same actors can be generated by the
same latent vectors. This might be useful, for example, for analyzing simultaneously the
relational measurements about esteem and disesteem, liking and disliking, positive influence
and negative influence, praise and blame, e.g., see Sampson (1968), or those about the
collection of 17 relations measured by Bradley (1987). Second, in the MMSB the data
generating distribution is a Bernoulli, but B can be a matrix that parameterizes any kind of
distribution. For example, technologies for measuring interactions between pairs of proteins
such as mass spectrometry (Ho et al., 2002) and tandem affinity purification (Gavin et al.,
2002) return a probabilistic assessment about the presence of interactions, thus setting the
range of R(p, q) to [0, 1]. This is not the case for the manually curated collection of
interactions we analyze in Section 4.3.

The central computational problem for this model is computing the posterior distribution of
per-node mixed membership vectors and per-pair roles that generated the data. The
membership vectors in particular provide a low dimensional representation of the underlying
objects in the matrix of observations, which can be used in the data analysis task at hand. A
related problem is parameter estimation, which is to find maximum likelihood estimates of
the Dirichlet parameters  and Bernoulli rates B.

For both of these tasks, we need to compute the probability of the observed data. This
amounts to marginalizing out the latent variables from Equation 1. This is intractable for
even small graphs. In Section 3, we develop a fast variational algorithm to approximate this
marginal likelihood for parameter estimation and posterior inference.

2.1 Modeling sparsity
Many real-world networks are sparse, meaning that most pairs of nodes do not have edges
connecting them. For many pairs, the absence of an interaction is a result of the rarity of any
interaction, rather than an indication that the underlying latent groups of the objects do not
tend to interact. In the MMSB, however, all observations (both interactions and non-
interactions) contribute equally to our inferences about group memberships and group to
group interaction patterns. It is thus useful, in practical applications, to account for sparsity.
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We introduce a sparsity parameter ρ ∈ [0, 1] to calibrate the importance of non-interaction.
This models how often a non-interaction is due to sparsity rather than carrying information
about the group memberships of the nodes. Specifically, instead of drawing an edge directly

from the Bernoulli specified above, we downweight it to . The

probability of having no interaction is thus . (This is
equivalent to re-parameterizing the interaction matrix B.) In posterior inference and
parameter estimation, a large value of ρ will cause the interactions in the matrix to be
weighted more than non-interactions in determining the estimates of .

2.2 A case study of the Monastery network via MMSB: crisis in a Cloister
Before turning to the details of posterior inference and parameter estimation, we illustrate
the MMSB with an analysis of the monk data described above. In more detail, Sampson
(1968) surveyed 18 novice monks in a monastery and asked them to rank the other novices
in terms of four sociometric relations: like/dislike, esteem, personal influence, and alignment
with the monastic credo. We consider Breiger's collation of Sampson's data (Breiger et al.,
1975). The original graph of monk-monk interaction is illustrated in Figure 2 (left).

Sampson spent several months in a monastery in New England, where novices (the monks)
were preparing to join a monastic order. Sampson's original analysis was rooted in direct
anthropological observations. He strongly suggested the existence of tight factions among
the novices: the loyal opposition (whose members joined the monastery first), the young
turks (who joined later on), the outcasts (who were not accepted in the two main factions),
and the waverers (who did not take sides). The events that took place during Sampson's stay
at the monastery supported his observations—members of the young turks resigned after
their leaders were expelled over religious differences (John Bosco and Gregory). We shall
refer to the labels assigned by Sampson to the novices in the analysis below. For more
analyses, we refer to Fienberg et al. (1985), Davis and Carley (2006) and Handcock et al.
(2007).

Using the techniques outlined below in Section 3, we fit the monks to MMSB models for
different numbers of groups, providing model estimates {α̂, B̂} and posterior mixed
membership vectors  for each monk. Here, we use the following approximation to BIC to
choose the number of groups in the MMSB:

which selects three groups, where  is the number of hyper-parameters in the model, and
|R| is the number of positive relations observed (Volinsky and Raftery, 2000; Handcock et
al., 2007). Note that this is the same number of groups that Sampson identified. We illustrate
the fit of model fit via the predicted network in Figure 2 (Right).

The MMSB can provide interesting descriptive statistics about the actors in the observed
graph. In Figure 3 we illustrate the the posterior means of the mixed membership scores,

, for the 18 monks in the monastery. Note that the monks cluster according to
Sampson's classification, with Young Turks, Loyal Opposition, and Outcasts dominating
each corner respectively. We can see the central role played by John Bosco and Gregory,
who exhibit relations in all three groups, as well as the uncertain affiliations of Ramuald and
Victor; Amand's uncertain affiliation, however, is not captured.
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Later, we considered six graphs encoding specific relations—positive and negative
influence, positive and negative praise, esteem and disesteem—and we performed
independent analyses using MMSB. This allowed us to look for signal about the mixed
membership of monks to factions that may have been lost in the data set prepared by Breiger
et al. (1975) because of averaging. Figure 4 shows the projections in the simplex of the
posterior mixed membership vectors for each of the six relations above. For instance, we can
see how Victor, Amand, and Ramuald—the three waverers—display mixed membership in
terms of positive and negative influence, positive praise, and disesteem. The mixed
membership of Amand, in particular, is expressed in terms of these relations, but not in
terms of negative praise or esteem. This finding is supported Sampson's anthropological
observations, and it suggests that relevant substantive information has been lost when the
graphs corresponding to multiple sociometric relations have been collapsed into a single
social network (Breiger et al., 1975). Methods for the analysis of multiple sociometric
relations are thus to be preferred. In Appendices A and B extend the mixed membership
stochastic blockmodel to deal with the case of multivariate relations, and we solve
estimation and inference in the general case.

3 Parameter Estimation and Posterior Inference
In this section, we tackle the two computational problems for the MMSB: posterior
inference of the pernode mixed membership vectors and per-pair roles, and parameter
estimation of the Dirichlet parameters and Bernoulli rate matrix. We use empirical Bayes to

estimate the parameters , and employ a mean-field approximation scheme (Jordan et
al., 1999) for posterior inference.

3.1 Posterior inference
In posterior inference, we would like to compute the posterior distribution of the latent
variables given a collection of observations. As for other mixed membership models, this is
intractable to compute. The normalizing constant of the posterior is the marginal probability
of the data, which requires an intractable integral over the simplicial vectors ,

(2)

A number of approxiate inference algorithms for mixed membership models have appeared
in recent years, including mean-field variational methods (Blei et al., 2003; Teh et al., 2007),
expectation propagation (Minka and Lafferty, 2002), and Monte Carlo Markov chain
sampling (MCMC) (Erosheva and Fienberg, 2005; Griffiths and Steyvers, 2004).

We appeal to mean-field variational methods to approximate the posterior of interest. Mean-
field variational methods provide a practical deterministic alternative to MCMC. MCMC is
not practical for the MMSB due to the large number of latent variables needed to be
sampled. The main idea behind variational methods is to posit a simple distribution of the
latent variables with free parameters. These parameters are fit to be close in Kullback-
Leibler divergence to the true posterior of interest. Good reviews of variational methods
method can be found in a number of papers (Jordan et al., 1999; Wainwright and Jordan,
2003; Xing et al., 2003; Bishop et al., 2003)

The log of the marginal probability in Equation 2 can be bound with Jensen's inequality as
follows,
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(3)

by introducing a distribution of the latent variables q that depends on a set of free parameters
We specify q as the mean-field fully-factorized family,

(4)

where q1 is a Dirichlet, q2 is a multinomial, and  are the set of free
variational parameters that can be set to tighten the bound.

Tightening the bound with respect to the variational parameters is equivalent to minimizing
the KL divergence between q and the true posterior. When all the nodes in the graphical
model are conjugate pairs or mixtures of conjugate pairs, we can directly write down a
coordinate ascent algorithm for this optimization (Xing et al., 2003; Bishop et al., 2003).
The update for the variational multinomial parameters is

(5)

(6)

for g, h = 1, …, K. The update for the variational Dirichlet parameters γp,k is

(7)

for all nodes p = 1,…, N and k = 1,…, K. An analytical expression for  is derived
in Appendix B.3. The complete coordinate ascent algorithm to perform variational inference
is described in Figure 5.

To improve convergence in the relational data setting, we introduce a nested variational
inference scheme based on an alternative schedule of updates to the traditional ordering. In a
naïve iteration scheme for variational inference, one initializes the variational Dirichlet

parameters  and the variational multinomial parameters  to non-
informative values, and then iterates until convergence the following two steps: (i) update

 and  for all edges (p, q), and (ii) update  for all nodes . In such
algorithm, at each variational inference cycle we need to allocate NK + 2N2K scalars.

In our experiments, the naïve variational algorithm often failed to converge, or converged

only after many iterations. We attribute this behavior to the dependence between  and B,
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which is not satisfied by the naïve algorithm. Some intuition about why this may happen
follows. From a purely algorithmic perspective, the naïve variational EM algorithm
instantiates a large coordinate ascent algorithm, where the parameters can be semantically
divided into coherent blocks. Blocks are processed in a specific order, and the parameters
within each block get all updated each time.2 At every new iteration the naïve algorithm sets

all the elements of  equal to the same constant. This dampens the likelihood by

suddenly breaking the dependence between the estimates of parameters in  and in B̂t that
was being inferred from the data during the previous iteration.

Instead, the nested variational inference algorithm maintains some of this dependence that is
being inferred from the data across the various iterations. This is achieved mainly through a
different scheduling of the parameter updates in the various blocks. To a minor extent, the

dependence is maintained by always keeping the block of free parameters, ,
optimized given the other variational parameters. Note that these parameters are involved in

the updates of parameters in  and in B, thus providing us with a channel to maintain
some of the dependence among them, i.e., by keeping them at their optimal value given the
data.

Furthermore, the nested algorithm has the advantage that it trades time for space thus
allowing us to deal with large graphs; at each variational cycle we need to allocate NK + 2K
scalars only. The increased running time is partially offset by the fact that the algorithm can
be parallelized and leads to empirically observed faster convergence rates. This algorithm is
also better than MCMC variations (i.e., blocked and collapsed Gibbs samplers) in terms of
memory requirements and convergence rates—an empirical comparison between the naïve
and nested variational inference schemes in presented in Figure 7, left panel.

3.2 Parameter estimation

We compute the empirical Bayes estimates of the model hyper-parameters  with a
variational expectation-maximization (EM) algorithm. Alternatives to empirical Bayes have
been proposed to fix the hyper-parameters and reduce the computation. The results,
however, are not always satisfactory and often times cause of concern, since the inference is
sensitive to the choice of the hyper-parameters (Airoldi et al., 2006a). Empirical Bayes, on
the other hand, guides the posterior inference towards a region of the hyper-parameter space
that is supported by the data.

Variational EM uses the lower bound in Equation 3 as a surrogate for the likelihood. To find
a local optimum of the bound, we iterate between: fitting the variational distribution q to
approximate the posterior, and maximizing the corresponding lower bound for the likelihood
with respect to the parameters. The latter M-step is equivalent to finding the MLE using
expected sufficient statistics under the variational distribution. We consider the
maximization step for each parameter in turn.

A closed form solution for the approximate maximum likelihood estimate of  does not
exist (Minka, 2003). We use a linear-time Newton-Raphson method, where the gradient and
Hessian are

2Within a block, the order according to which (scalar) parameters get updated is not expected to affect convergence.
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The approximate MLE of B is

(8)

for every index pair (g, h) ∈ [1, K] × [1, K]. Finally, the approximate MLE of the sparsity
parameter ρ is

(9)

Alternatively, we can fix ρ prior to the analysis; the density of the interaction matrix is
estimated with d̂ = Σp,q R(p, q)/N2, and the sparsity parameter is set to ρ̃ = (1 − d̂). This latter
estimator attributes all the information in the non-interactions to the point mass, i.e., to latent
sources other than the block model B or the mixed membership vectors . It does
however provide a quick recipe to reduce the computational burden during exploratory
analyses.3

Several model selection strategies are available for complex hierarchical models. In our
setting, model selection translates into the determination of a plausible value of the number
of groups K. In the various analyses presented, we selected the optimal value of K with the
highest averaged held-out likelihood in a cross-validation experiment, on large networks,
and using an approximation to BIC, on small networks.

4 Experiments and Results
Here, we present experiments on simulated data, and we develop two applications to social
and protein interaction networks. The three problem settings serve different purposes.

Simulations are performed in Section 4.1 to show that both mixed membership, , and the
latent block structure, B, can be recovered from data, when they exist, and that the nested
variational inference algorithm is as fast as the naïve implementation while reaching a
higher peak in the likelihood—coeteris paribus.

The application to a friendship network among students in Section 4.2 tests the model on a
real data set where we expect a well-defined latent block structure to inform the observed
connectivity patterns in the network. In this application, the blocks are interpretable in terms
of grades. We compare our results with those that were recently published with a simple

3Note that ρ̃ = ρ̂ in the case of single membership. In fact, that implies  for some (g, h) pair, for any (p, q) pair.
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mixture of blocks (Doreian et al., 2007) and with a latent space model (Handcock et al.,
2007) on the same data.

The application to a protein interaction network in Section 4.3 tests the model on a real data
set where we expect a noisy, vague latent block structure to inform the observed
connectivity patterns in the network to some degree. In this application, the blocks are
interpretable in terms functional biological contexts. This application tests to what extent our
model can reduce the dimensionality of the data, while revealing substantive information
about the functionality of proteins that can be used to inform subsequent analyses.

4.1 Exploring Expected Model Behavior with Simulations
In developing the MMSB and the corresponding computation, our hope is the the model can
recover both the mixed membership of nodes to clusters and the latent block structure
among clusters in situations where a block structure exists and the relations are measured
with some error. To substantiate this claim, we sampled graphs of 100, 300, and 600 nodes
from blockmodels with 4, 10, and 20 clusters, respectively, using the MMSB. We used
different values of α to simulate a range of settings in terms of membership of nodes to
clusters—from almost unique (α = 0.05) to mixed (α = 0.25).

4.1.1 Recovering the Truth—The variational EM algorithm successfully recovers both
the latent block model B and the latent mixed membership vectors . In Figure 6 we show
the adjacency matrices of binary interactions where rows, i.e., nodes, are reordered
according to their most likely membership. The nine panels are organized in to a three-by-
three grid; panels in the same row correspond to the same combinations of (# nodes and #
groups), whereas panels in the same columns correspond to the same value of α that was
used to generate the data. In each panel, the estimated reordering of the nodes (i.e., the
reordering of rows and columns in the interaction matrix) reveals the block model that was
originally used to simulate the interactions. As α increases, each node is likely to belong to
more clusters. As a consequence, they express interaction patterns of clusters. This
phenomenon reflects in the reordered interaction matrices as the block structure is less
evident.

4.1.2 Nested Variational Inference—The nested variational algorithm drives the log-
likelihood to converge as fast as the naïve variational inference algorithm does, but reaches a
significantly higher plateau. In the left panel of Figure 7, we compare the running times of
the nested variational-EM algorithm versus the naïve implementation on a graph with 100
nodes and 4 clusters. We measure the number of seconds on the X axis and the log-
likelihood on the Y axis. The two curves are averages over 26 experiments, and the error
bars are at three standard deviations. Each of the 26 pairs of experiments was initialized with
the same values for the parameters. The nested algorithm, which is more efficient in terms of
space, converged faster. Furthermore, the nested variational algorithm can be parallelized
given that the updates for each interaction (i, j) are independent of one another.

4.1.3 Choosing the Number of Groups—Figure 7 (right panel) shows an example
where cross-validation is sufficient to perform model selection for the MMSB. The example
shown corresponds to a network among 300 nodes with K = 10 clusters. We measure the
number of latent clusters on the X axis and the average held-out log-likelihood,
corresponding to five-fold cross-validation experiments, on the Y axis. A peak in this curve
identifies the optimal number of clusters, to the extend of describing the data. The nested
variational EM algorithm was run till convergence, for each value of K we tested, with a
tolerance of ε = 10−5. In the example shown, our estimate for K occurs at the peak in the
average held-out log-likelihood, and equals the correct number of clusters, K* = 10
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4.2 Application to Social Network Analysis
The National Longitudinal Study of Adolescent Health is nationally representative study that
explores the how social contexts such as families, friends, peers, schools, neighborhoods,
and communities influence health and risk behaviors of adolescents, and their outcomes in
young adulthood (Harris et al., 2003; Udry, 2003). Here, we analyze a friendship network
among the students, at the same school that was considered by Handcock et al. (2007) and
discussants.

A questionnaire was administered to a sample of students who were allowed to nominate up
to 10 friends. At the school we picked, friendship nominations were collected among 71
students in grades 7 to 12. Two students did not nominate any friends so we analyzed the
network of binary, asymmetric friendship relations among the remaining 69 students. The
left panel of Figure 8 shows the raw friendship relations, and we contrast this to the
estimated networks in the central and right panels based on our model estimates.

Given the size of the network we used BIC to perform model selection, as in the monks
example of Section 2.2. The results suggest a model with K* = 6 groups. (We fix K* = 6 in
the analyses that follow.) The hyper-parameters were estimated with the nested variational
EM. They are α̂ = 0.0487, ρ̂ = 0.936, and a fairly diagonal block-to-block connectivity
matrix,

Figure 9 shows the expected posterior mixed membership scores for the 69 students in the
sample; few students display mixed membership. The rarity of mixed membership in this
context is expected. Mixed membership, instead, may signal unexpected social situations for
further investigation. For instance, it may signal a family bond such as brotherhood, or a kid
that is repeating a grade and is thus part of a broader social clique. In this data set we can
successfully attempt an interpretation of the clusters in terms of grades. Table 1 shows the
correspondence between clusters and grades in terms of students, for three alternative
models. The three models are our mixed membership stochastic blockmodel (MMSB), a
simpler stochastic block mixture model (Doreian et al., 2007) (MSB), and the latent space
cluster model (Handcock et al., 2007) (LSCM).

Concluding this example, we note how the model decouples the observed friendship patterns
into two complementary sources of variability. On the one hand, the connectivity matrix B is
a global, unconstrained set of hyper-parameters. On the other hand, the mixed membership
vectors  provide a collection of node-specific latent vectors, which inform the directed
connections in the graph in a symmetric fashion—and can be used to produce node-specific
predictions.

4.3 Application to Protein Interactions in Saccharomyces Cerevisiae
Protein-protein interactions (PPI) form the physical basis for the formation of complexes
and pathways that carry out different biological processes. A number of high-throughput
experimental approaches have been applied to determine the set of interacting proteins on a
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proteome-wide scale in yeast. These include the two-hybrid (Y2H) screens and mass
spectrometry methods. Mass spectrometry can be used to identify components of protein
complexes (Gavin et al., 2002; Ho et al., 2002).

High-throughput methods, though, may miss complexes that are not present under the given
conditions. For example, tagging may disturb complex formation and weakly associated
components may dissociate and escape detection. Statistical models that encode information
about functional processes with high precision are an essential tool for carrying out
probabilistic de-noising of biological signals from high-throughput experiments.

Our goal is to identify the proteins' diverse functional roles by analyzing their local and
global patterns of interaction via MMSB. The biochemical composition of individual
proteins make them suitable for carrying out a specific set of cellular operations, or
functions. Proteins typically carry out these functions as part of stable protein complexes
(Krogan et al., 2006). There are many situations in which proteins are believed to interact
(Alberts et al., 2002). The main intuition behind our methodology is that pairs of protein
interact because they are part of the same stable protein complex, i.e., co-location, or
because they are part of interacting protein complexes as they carry out compatible cellular
operations.

4.3.1 Gold Standards for Functional Annotations—The Munich Institute for Protein
Sequencing (MIPS) database was created in 1998 based on evidence derived from a variety
of experimental techniques, but does not include information from high-throughput data sets
(Mewes et al., 2004). It contains about 8000 protein complex associations in yeast. We
analyze a subset of this collection containing 871 proteins, the interactions amongst which
were hand-curated. The institute also provides a set of functional annotations, alternative to
the gene ontology (GO). These annotations are organized in a tree, with 15 general functions
at the first level, 72 more specific functions at an intermediate level, and 255 annotations at
the the leaf level. In Table 2 we map the 871 proteins in our collections to the main
functions of the MIPS annotation tree; proteins in our sub-collection have about 2.4
functional annotations on average.4

By mapping proteins to the 15 general functions, we obtain a 15-dimensional representation
for each protein. In Figure 10 each panel corresponds to a protein; the 15 functional
categories are ordered as in Table 2 on the X axis, whereas the presence or absence of the
corresponding functional annotation is displayed on the Y axis.

4.3.2 Brief Summary of Previous Findings—In previous work, we established the
usefulness of an admixture of latent blockmodels for analyzing protein-protein interaction
data (Airoldi et al., 2005). For example, we used the MMSB for testing functional
interaction hypotheses (by setting a null hypothesis for B), and unsupervised estimation
experiments. In the next Section, we assess whether, and how much, functionally relevant
biological signal can be captured in by the MMSB.

In summary, the results in Airoldi et al. (2005) show that the MMSB identifies protein
complexes whose member proteins are tightly interacting with one another. The identifiable
protein complexes correlate with the following four categories of Table 2: cell cycle & DNA
processing, transcription, protein synthesis, and sub-cellular activities. The high correlation
of inferred protein complexes can be leveraged for predicting the presence of absence of
functional annotations, for example, by using a logistic regression. However, there is not

4We note that the relative importance of functional categories in our sub-collection, in terms of the number of proteins involved, is
different from the relative importance of functional categories over the entire MIPS collection.
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enough signal in the data to independently predict annotations in other functional categories.
The empirical Bayes estimates of the hyper-parameters that support these conclusions in the
various types of analyses are consistent; α̂ < 1 and small; and B̂ nearly block diagonal with
two positive blocks comprising the four identifiable protein complexes. In these previous
analyses, we fixed the number of latent protein complexes to 15; the number of broad
functional categories in Table 2.

The latent protein complexes are not a-priori identifiable in our model. To resolve this, we
estimated a mapping between latent complexes and functions by minimizing the divergence
between true and predicted marginal frequencies of membership, where the truth was
evaluated on a small fraction of the interactions. We used this mapping to compare predicted
versus known functional annotations for all proteins. The best estimated mapping is shown
in the left panel of Figure 11, along with the marginal latent category membership, and it is
compared to the 15 broad functional categories Table 2, along with the known category
membership (in the MIPS database), in the right panel. Figure 12 displays a few examples of
predicted mixed membership probabilities against the true annotations, given the estimated
mapping of latent protein complexes to functional categories.

4.3.3 Measuring the Functional Content in the Posterior—In a follow-up study we
considered the gene ontology (GO) (Ashburner et al., 2000) as the source of functional
annotations to consider as ground truth in our analyses. GO is a broader and finer grained
functional annotation scheme if compared to that produced by the Munich Institute for
Protein Sequencing. Furthermore, we explored a much larger model space than in the
previous study, in order to tests to what extent MMSB can reduce the dimensionality of the
data while revealing substantive information about the functionality of proteins that can be
used to inform subsequent analyses. We fit models with a number blocks up to K = 225.
Thanks to our nested variational inference algorithm, we were able to perform five-fold
cross-validation for each value of K. We determined that a fairly parsimonious model (K* =
50) provides a good description of the observed protein interaction network. This fact is
(qualitatively) consistent with the quality of the predictions that were obtained with a
parsimonious model (K = 15) in the previous section, in a different setting. This finding
supports the hypothesis that groups of interacting proteins in the MIPS data set encode
biological signal at a scale of aggregation that is higher than that of protein complexes.5

We settled on a model with K* = 50 blocks. To evaluate the functional content of the
interactions predicted by such model, we first computed the posterior probabilities of
interactions by thresholding the posterior expectations

and we then computed the precision-recall curves corresponding to these predictions (Myers
et al., 2006). These curves are shown in Figure 13 as the light blue (−×) line and the the dark
blue (−+) line. In Figure 13 we also plotted the functional content of the original MIPS
collection. This plot confirms that the MIPS collection of interactions, our data, is one of the
most precise (the Y axis measures precision) and most extensive (the X axis measures the
amount of functional annotations predicted, a measure of recall) source of biologically
relevant interactions available to date—the yellow diamond, point # 2. The posterior means

5It has been recently suggested that stable protein complexes average five proteins in size (Krogan et al., 2006). Thus, if MMSB
captured biological signal at the protein-complex resolution, we would expect the optimal number of groups to be much higher
(Disregarding mixed membership, 871/5 ≈ 175.)
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of  and the estimates of (α, B) provide a parsimonious representation for the MIPS
collection, and lead to precise interaction estimates, in moderate amount (the light blue, –×
line). The posterior means of (Z→, Z←) provide a richer representation for the data, and
describe most of the functional content of the MIPS collection with high precision (the dark
blue, −+ line). Most importantly, notice the estimated protein interaction networks, i.e.,
pluses and crosses, corresponding to lower levels of recall feature a more precise functional
content than the original. This means that the proposed latent block structure is helpful in
summarizing the collection of interactions—by ranking them properly. (It also happens that
dense blocks of predicted interactions contain known functional predictions that were not in
the MIPS collection.) Table 3 provides more information about three instances of predicted
interaction networks displayed in Figure 13; namely, those corresponding the points
annotated with the numbers 1 (a collection of interactions predicted with the 's), 2 (the
original MIPS collection of interactions), and 3 (a collection of interactions predicted with
the 's). Specifically, the table shows a breakdown of the predicted (posterior) collections
of interactions in each example network into the gene ontology categories. A count in the
second-to-last column of Table 3 corresponds to the fact that both proteins are annotated
with the same GO functional category.6 Figure 14 investigates the correlations between the
data sets (in rows) we considered in Figure 13 and few gene ontology categories (in
columns). The intensity of the square (red is high) measures the area under the precision-
recall curve (Myers et al., 2006).

In this application, the MMSB learned information about (i) the mixed membership of
objects to latent groups, and (ii) the connectivity patterns among latent groups. These
quantities were useful in describing and summarizing the functional content of the MIPS
collection of protein interactions. This suggests the use of MMSB as a dimensionality
reduction approach that may be useful for performing model-driven denoising of new
collections of interactions, such as those measured via high-throughput experiments.

5 Discussion
Below we place our research in a larger modeling context, offer some insights into the inner
workings of the model, and briefly comment on limitations and extensions.

Modern probabilistic models for relational data analysis are rooted in the stochastic
blockmodels for psychometric and sociological analysis, pioneered by Lorrain and White
(1971) and by Holland and Leinhardt (1975). In statistics, this line of research has been
extended in various contexts over the years (Fienberg et al., 1985; Wasserman and Pattison,
1996; Snijders, 2002; Hoff et al., 2002; Doreian et al., 2004). In machine learning, the
related technique of Markov random networks (Frank and Strauss, 1986) have been used for
link prediction (Taskar et al., 2003) and the traditional blockmodels have been extended to
include nonparametric Bayesian priors (Kemp et al., 2004, 2006) and to integrate relations
and text (McCallum et al., 2007).

There is a particularly close relationship between the MMSB and the latent space models
(Hoff et al., 2002; Handcock et al., 2007). In the latent space models, the latent vectors are
drawn from Gaussian distributions and the interaction data is drawn from a Gaussian with

mean . In the MMSB, the marginal probability of an interaction takes a similar form,

, where B is the matrix of probabilities of interactions for each pair of latent groups.
Two major differences exist between these approaches. In MMSB, the distribution over the

6Note that, in GO, proteins are typically annotated to multiple functional categories.
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latent vectors is a Dirichlet and the underlying data distribution is arbitrary—we have
chosen Bernoulli. The posterior inference in latent space models (Hoff et al., 2002;
Handcock et al., 2007) is carried out via MCMC sampling, while we have developed a
scalable variational inference algorithm to analyze large network structures. (It would be
interesting to develop a variational algorithm for the latent space models as well.)

We note how the model decouples the observed friendship patterns into two complementary
sources of variability. On the one hand, the connectivity matrix B is a global, unconstrained
set of hyper-parameters. On the other hand, the mixed membership vectors  provide a
collection of node-specific latent vectors, which inform the directed connections in the graph
in a symmetric fashion. Last, the single membership indicators  provide a
collection interaction-specific latent variables.

A recurring question, which bears relevance to mixed membership models in general, is why
we do not integrate out the single membership indicators— . While this may
lead to computational efficiencies we would often lose interpretable quantities that are
useful for making predictions, for de-noising new measurements, or for performing other
tasks. In fact, the posterior distributions of such quantities typically carry substantive
information about elements of the application at hand. In the application to protein
interaction networks of Section 4.3, for example, they encode the interaction-specific
memberships of individual proteins to protein complexes.

A limitation of our model can be best appreciated in a simulation setting. If we consider
structural properties of the network MMSB is capable of generating, we count a wide array
of local and global connectivity patterns. But the model does not readily generate hubs, that
is, nodes connected with a large number of directed or undirected connections, or networks
with skewed degree distributions.

From a data analysis perspective, we speculate that the value of MMSB in capturing
substantive information about a problem will increase in semi-supervised setting—where,
for example, information about the membership of genes to functional contexts is included
in the form of prior distributions. In such a setting we may be interested in looking at the
change between prior and posterior membership; a sharp change may signal biological
phenomena worth investigating.

We need not assume that the number of groups/blocks, K, is finite. It is possible, for
example, to posit that the mixed-membership vectors are sampled form a stochastic process
Dα, in the nonparametric setting. In particular, in order to maintain mixed membership of
nodes to groups/blocks we need to sample them from a hierarchical Dirichlet process (Teh et
al., 2006), rather than from a Diriclet Process (Escobar and West, 1995).

6 Conclusions
In this paper we introduced mixed membership stochastic blockmodels, a novel class of
latent variable models for relational data. These models provide exploratory tools for
scientific analyses in applications where the observations can be represented as a collection
of unipartite graphs. The nested variational inference algorithm is parallelizable and allows
fast approximate inference on large graphs.

The relational nature of such data as well as the multiple goals of the analysis in the
applications we considered motivated our technical choices. Latent variables in our models
are introduced to capture application-specific substantive elements of interest, e.g., monks
and factions in the monastery. The applications to social and biological networks we
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considered share considerable similarities in the way such elements relate. This allowed us
to identify a general formulation of the model that we present in Appendix A. Approximate
variational inference for the general model is presented in Appendix B.
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A General Model Formulation
In general, mixed membership stochastic blockmodels can be specified in terms of
assumptions at four levels: population, node, latent variable, and sampling scheme level.

A1–Population Level
Assume that there are K classes or sub-populations in the population of interest. We denote
by f ( R(p, q) | B(g, h) ) the probability distribution of the relation measured on the pair of
nodes (p, q), where the p-th node is in the h-th sub-population, the q-th node is in the h-th
sub-population, and B(g, h) contains the relevant parameters. The indices i, j run in 1, …, N,
and the indices g, h run in 1, …, K.

A2—Node Level

The components of the membership vector  encodes the mixed
membership of the n-th node to the various sub-populations. The distribution of the
observed response R(p, q) given the relevant, node-specific memberships, , is then

(10)

Conditional on the mixed memberships, the response edges yjnm are independent of one
another, both across distinct graphs and pairs of nodes.

A3—Latent Variable Level

Assume that the mixed membership vectors  are realizations of a latent variable with
distribution , with parameter vector . The probability of observing R(p, q), given the
parameters, is then

(11)
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A4—Sampling Scheme Level
Assume that the M independent replications of the relations measured on the population of
nodes are independent of one another. The probability of observing the whole collection of
graphs, R1:M, given the parameters, is then given by the following equation.

(12)

Full model specifications immediately adapt to the different kinds of data, e.g., multiple data
types through the choice of f, or parametric or semi-parametric specifications of the prior on
the number of clusters through the choice of Dα.

B Details of the Variational Approximation
Here we present more details about the derivation of the variational EM algorithm presented
in Section 3. Furthermore, we address a setting where M replicates are available about the
paired measurements, G1:M = (N, R1:M), and relations Rm(p, q) take values into an arbitrary
metric space according to f ( Rm(p, q) | .. ). An extension of the inference algorithm to
address the case or multivariate relations, say J-dimensional, and multiple blockmodels B1:J
each corresponding to a distinct relational response, can be derived with minor
modifications of the derivations that follow.

B.1 Variational Expectation-Maximization
We begin by briefly summarizing the general strategy we intend to use. The approximate
variant of EM we describe here is often referred to as Variational EM (Beal and

Ghahramani, 2003). We begin by rewriting Y = R for the data,  for the

latent variables, and  for the model's parameters. Briefly, it is possible to lower
bound the likelihood, p(Y|Θ), making use of Jensen's inequality and of any distribution on
the latent variables q(X),

(13)

In EM, the lower bound  is then iteratively maximized with respect to Θ, in the M
step, and q in the E step (Dempster et al., 1977). In particular, at the t-th iteration of the E
step we set

(14)
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that is, equal to the posterior distribution of the latent variables given the data and the
estimates of the parameters at the previous iteration.

Unfortunately, we cannot compute the posterior in Equation 14 for the admixture of latent
blocks model. Rather, we define a direct parametric approximation to it, q̃ = qΔ(X), which
involves an extra set of variational parameters, Δ, and entails an approximate lower bound
for the likelihood . At the t-th iteration of the E step, we then minimize the

Kullback-Leibler divergence between q(t) and , with respect to Δ, using the data.7 The
optimal parametric approximation is, in fact, a proper posterior as it depends on the data Y,

although indirectly, .

B.2 Lower Bound for the Likelihood
According to the mean-field theory (Jordan et al., 1999; Xing et al., 2003), one can
approximate an intractable distribution such as the one defined by Equation (1) by a fully

factored distribution  defined as follows:

(15)

where q1 is a Dirichlet, q2 is a multinomial, and  represent the set of free
variational parameters need to be estimated in the approximate distribution.

Minimizing the Kulback-Leibler divergence between this  and the

original  defined by Equation (1) leads to the following approximate lower
bound for the likelihood.

Working on the single expectations leads to

7This is equivalent to maximizing the approximate lower bound for the likelihood, , with respect to Δ.
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where

m runs over 1, …, M; p, q run over 1, …, N; g, h, k run over 1, …, K; and ψ(x) is the
derivative of the log-gamma function, .

B.3 The Expected Value of the Log of a Dirichlet Random Vector

The computation of the lower bound for the likelihood requires us to evaluate  for
p = 1, …, N. Recall that the density of an exponential family distribution with natural
parameter  can be written as

Omitting the node index p for convenience, we can rewrite the density of the Dirichlet
distribution p3 as an exponential family distribution,

with natural parameters  and natural sufficient statistics . Let

; using a well known property of the exponential family
distributions Schervish (1995) we find that

where ψ(x) is the derivative of the log-gamma function, .
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B.4 Variational E Step
The approximate lower bound for the likelihood  can be maximized using
exponential family arguments and coordinate ascent Wainwright and Jordan (2003).

Isolating terms containing  and  we obtain  and . The

natural parameters  and  corresponding to the natural sufficient statistics

 and  are functions of the other latent variables and the observations.
We find that

for all pairs of nodes (p, q) in the m-th network; where g, h = 1, …, K, and

This leads to the following updates for the variational parameters , for a pair of
nodes (p, q) in the m-th network:

(16)

(17)

for g, h = 1, …, K. These estimates of the parameters underlying the distribution of the

nodes' group indicators  and  need be normalized, to make sure

.

Isolating terms containing γp,k we obtain . Setting  equal to zero and solving
for γp,k yields:

(18)
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for all nodes  and k = 1, …, K.

The t-th iteration of the variational E step is carried out for fixed values of

, and finds the optimal approximate lower bound for the likelihood
.

B.5 Variational M Step

The optimal lower bound  provides a tractable surrogate for the likelihood at
the t-th iteration of the variational M step. We derive empirical Bayes estimates for the
hyper-parameters Θ that are based upon it.8 That is, we maximize  with respect
to Θ, given expected sufficient statistics computed using .

Isolating terms containing  we obtain . Unfortunately, a closed form solution for
the approximate maximum likelihood estimate of  does not exist Blei et al. (2003). We can
produce a Newton-Raphson method that is linear in time, where the gradient and Hessian for
the bound  are

Isolating terms containing B we obtain , whose approximate maximum is

(19)

for every index pair (g, h) ∈ [1, K] × [1, K].

In Section 2.1 we introduced an extra parameter, ρ, to control the relative importance of
presence and absence of interactions in likelihood, i.e., the score that informs inference and
estimation. Isolating terms containing ρ we obtain . We may then estimate the sparsity
parameter ρ by

(20)

Alternatively, we can fix ρ prior to the analysis; the density of the interaction matrix is
estimated with d̂ = Σm,p,q Rm(p, q)/(N2M), and the sparsity parameter is set to ρ̃ = (1 − d̂).
This latter estimator attributes all the information in the non-interactions to the point mass,

8We could term these estimates pseudo empirical Bayes estimates, since they maximize an approximate lower bound for the
likelihood, .
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i.e., to latent sources other than the block model B or the mixed membership vectors . It
does, however, provide a quick recipe to reduce the computational burden during
exploratory analyses.9
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Figure 1.
A graphical model of the mixed membership stochastic blockmodel. We did not draw all the
arrows out of the block model B for clarity. All the interactions R(p, q) depend on it.
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Figure 2.
Original matrix of sociometric relations (left), and estimated relations obtained by the model
(right).
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Figure 3.
Posterior mixed membership vectors, , projected in the simplex. The estimates
correspond to a model with , and α̂ = 0.058. Numbered points can be mapped to monks'
names using the legend on the right. The colors identify the four factions defined by
Sampson's anthropological observations.
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Figure 4.
Independent analyses of six graphs encoding the relations: positive and negative influence,
positive and negative praise, esteem and disesteem. Posterior mixed membership vectors for
each graph, corresponding to models with , and α̂ via empirical Bayes, are projected in
the simplex. (Legend as in Figure 3.)
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Figure 5.
Top: The two-layered variational inference for  and M = 1. The inner
algorithm consists of Step 5. The function f is described in details in the bottom panel. The
partial updates in Step 6 for  and B refer to Equation 18 of Section B.4 and Equation 19 of

Section B.5, respectively. Bottom: Inference for the variational parameters 
corresponding to the basic observation R(p, q). This nested algorithm details Step 5 in the
top panel. The functions f1 and f2 are the updates for φp→q,g and φp←q,g described in
Equations 16 and 17 of Section B.4.
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Figure 6.
Adjacency matrices of corresponding to simulated interaction graphs with 100 nodes and 4
clusters, 300 nodes and 10 clusters, 600 nodes and 20 clusters (top to bottom) and α equal to
0.05, 0.1 and 0.25 (left to right). Rows, which corresponds to nodes, are reordered according
to their most likely membership. The estimated reordering reveals the original blockmodel
in all the data settings we tested.
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Figure 7.
Left: The running time of the naïve variational inference (dashed, red line) against the
running time of our enhanced (nested) variational inference algorithm (solid, black line), on
a graph with 100 nodes and 4 clusters. Right: The held-out log-likelihood is indicative of
the true number of latent clusters, on simulated data. In the example shown, the peak
identifies the correct number of clusters, K* = 10.
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Figure 8.
Original matrix of friensdhip relations among 69 students in grades 7 to 12 (left), and

friendship estimated relations obtained by thresholding the posterior expectations 

(center), and  (right).
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Figure 9.
The posterior mixed membership scores, , for the 69 students. Each panel correspond to a
student; we order the clusters 1 to 6 on the X axis, and we measure the student's grade of
membership to these clusters on the Y axis.
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Figure 10.
By mapping individual proteins to the 15 general functions in Table 2, we obtain a 15-
dimensional representation for each protein. Here, each panel corresponds to a protein; the
15 functional categories are displayed on the X axis, whereas the presence or absence of the
corresponding functional annotation is displayed on the Y axis. The plots at the bottom zoom
into three example panels (proteins).
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Figure 11.
We estimate the mapping of latent groups to functions. The two plots show the marginal
frequencies of membership of proteins to true functions (bottom) and to identified functions
(top), in the cross-validation experiment. The mapping is selected to maximize the accuracy
of the predictions on the training set, in the cross-validation experiment, and to minimize the
divergence between marginal true and predicted frequencies if no training data is available
—see Section 4.3.2.

Airoldi et al. Page 35

J Mach Learn Res. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Predicted mixed-membership probabilities (dashed, red lines) versus binary manually
curated functional annotations (solid, black lines) for 6 example proteins. The identification
of latent groups to functions is estimated, Figure 11.
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Figure 13.
In the top panel we measure the functional content of the the MIPS collection of protein
interactions (yellow diamond), and compare it against other published collections of
interactions and microarray data, and to the posterior estimates of the MMSB models—
computed as described in Section 4.3.3. A breakdown of three estimated interaction
networks (the points annotated 1, 2, and 3) into most represented gene ontology categories is
detailed in Table 3.
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Figure 14.
We investigate the correlations between data collections (rows) and a sample of gene
ontology categories (columns). The intensity of the square (red is high) measures the area
under the precision-recall curve.
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Table 2

The 15 high-level functional categories obtained by cutting the MIPS annotation tree at the first level and how
many proteins (among the 871 we consider) participate in each of them. Most proteins participate in more than
one functional category, with an average of ≈ 2.4 functional annotations for each protein.

# Category Count

1 Metabolism 125

2 Energy 56

3 Cell cycle & DNA processing 162

4 Transcription (tRNA) 258

5 Protein synthesis 220

6 Protein fate 170

7 Cellular transportation 122

8 Cell rescue, defence & virulence 6

9 Interaction w/ cell. environment 18

10 Cellular regulation 37

11 Cellular other 78

12 Control of cell organization 36

13 Sub-cellular activities 789

14 Protein regulators 1

15 Transport facilitation 41
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Table 3

Breakdown of three example interaction networks into most represented gene ontology categories—see text
for more details. The digit in the first column indicates the example network in Figure 13 that any given line
refers to. The last two columns quote the number of predicted, and possible pairs for each GO term.

# GO Term Description Pred. Tot.

1 GO:0043285 Biopolymer catabolism 561 17020

1 GO:0006366 Transcription from RNA polymerase II promoter 341 36046

1 GO:0006412 Protein biosynthesis 281 299925

1 GO:0006260 DNA replication 196 5253

1 GO:0006461 Protein complex assembly 191 11175

1 GO:0016568 Chromatin modification 172 15400

1 GO:0006473 Protein amino acid acetylation 91 666

1 GO:0006360 Transcription from RNA polymerase I promoter 78 378

1 GO:0042592 Homeostasis 78 5778

2 GO:0043285 Biopolymer catabolism 631 17020

2 GO:0006366 Transcription from RNA polymerase II promoter 414 36046

2 GO:0016568 Chromatin modification 229 15400

2 GO:0006260 DNA replication 226 5253

2 GO:0006412 Protein biosynthesis 225 299925

2 GO:0045045 Secretory pathway 151 18915

2 GO:0006793 Phosphorus metabolism 134 17391

2 GO:0048193 Golgi vesicle transport 128 9180

2 GO:0006352 Transcription initiation 121 1540

3 GO:0006412 Protein biosynthesis 277 299925

3 GO:0006461 Protein complex assembly 190 11175

3 GO:0009889 Regulation of biosynthesis 28 990

3 GO:0051246 Regulation of protein metabolism 28 903

3 GO:0007046 Ribosome biogenesis 10 21528

3 GO:0006512 Ubiquitin cycle 3 2211
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