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ABSTRACT

An accurate genome sequence of a desired species is now a pre-requisite for genome re-
search. An important step in obtaining a high-quality genome sequence is to correctly
assemble short reads into longer sequences accurately representing contiguous genomic
regions. Current sequencing technologies continue to offer increases in throughput, and
corresponding reductions in cost and time. Unfortunately, the benefit of obtaining a large
number of reads is complicated by sequencing errors, with different biases being observed
with each platform. Although software are available to assemble reads for each individual
system, no procedure has been proposed for high-quality simultaneous assembly based on
reads from a mix of different technologies. In this paper, we describe a parallel short-read
assembler, called Ray, which has been developed to assemble reads obtained from a com-
bination of sequencing platforms. We compared its performance to other assemblers on
simulated and real datasets. We used a combination of Roche/454 and Illumina reads to
assemble three different genomes. We showed that mixing sequencing technologies sys-
tematically reduces the number of contigs and the number of errors. Because of its open
nature, this new tool will hopefully serve as a basis to develop an assembler that can be of
universal utilization (availability: http://deNovoAssembler.sf.Net/). For online Supplemen-
tary Material, see www.liebertonline.com.
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1. INTRODUCTION

The availability of high-throughput sequencing has altered the landscape of genome research.

The sequencing technologies provide a tremendous amount of sequences at a lower cost with increasing

lengths of reads (Medini et al., 2008). With these sequences gathered, computational methods enable

genome-wide analysis, comparative genomics studies, the hunt for resistance mutations, and the general

study of molecular evolution among others with the constant of requiring accurately-assembled genomes. To

decode a genome, its DNA is sheared in fragments, which are decoded with sequencers to produce reads.

Reads are assembled by assemblers into larger sequences called contigs.
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JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 17, Number 11, 2010

# Mary Ann Liebert, Inc.

Pp. 1519–1533

DOI: 10.1089/cmb.2009.0238

1519



Three types of assemblers were previously introduced—greedy assemblers, overlap-layout-consensus

assemblers, and de Bruijn assemblers (Pop, 2009). Owing to a minimal overlap length between reads,

overlap-layout-consensus assemblers are unable to assemble short reads. The dated assemblers tailored for

Sanger sequencing were not designed to tackle the large datasets produced by the new sequencing tech-

nologies (Pop, 2009). Although the de Bruijn framework was described as a reliable workhorse for Sanger

sequencing projects (Pevzner et al., 2001), few de Bruijn assemblers were available when high-throughput

sequencing became widely available. The de Bruijn graph was deemed well-suited for assembly of short

reads (Chaisson et al., 2004). A de Bruijn graph allows a compact representation of millions of short (<50

nucleotides) reads (Zerbino and Birney, 2008), where short sequences (k-mers) occuring in reads are only

stored once.

Numerous assemblers for high-throughput sequencing are readily available, but none can simultaneously

assemble reads from different sequencing technologies. On the other hand, Ray can simultaneously as-

semble in parallel reads from a mix of sequencing systems.

2. THE ASSEMBLY PROBLEM

In a typical setting, genome fragments are sequenced to produce reads, followed by de novo assembly of

these reads. A contig is a contiguous sequence produced by an assembler, and represents a region of the

genome. A contig can contain errors—their types are described below. The length of a contig is counted in

nucleotides (nt) or basepairs (bp) when we infer the double-stranded DNA molecule. Each algorithm that

solves the assembly problem (AP) constructs contigs from a family of reads. We use the terminology of

family instead of set because a read can appear more than once in a family.

For a one-chromosome genome, one strives to obtain a contig that is exactly the genome sequence, but

this is nearly impossible in practice because of long repeated regions. A given contig can be compared to

the genome sequence to find assembly errors. Among contigs that deviate from the genome sequence, one

can find the following error types. A chimeric contig (or incorrect contig) contains two (or more) sequences

that are not contiguous in the genome. A mismatch occurs in a contig at a particular position if it aligns on

the genome sequence, but at this position the letter is not the same. An insertion in a contig is characterized

by the addition of a (short) sequence of letters at some position, in respect to the genome sequence. In a

similar fashion, a deletion in a contig is characterized by the removal of a (short) sequence of letters at

some position, in comparison with the genome sequence. An indel is an insertion or a deletion.

A read can be sampled from the forward strand or the reverse-complement strand in the genome. Reads

are generated from the alphabet {A, T, C, G, N}, where N represents ambiguous bases. A read is, in general,

short (36–420 nt) compared to even the smallest bacterial genomes, and individual reads may contain

sequencing errors.

In addition, several protocols exist to sequence the extremities of longer molecules in order to generate

paired reads. They are critical to genome assemblies, as they provide linkage between sequences separated

by a variety of physical distances. For a fragment library, we denote the average length of such molecules

by dm and the standard deviation with ds. For each library, dm and ds are calculated by Ray automatically.

Paired reads provide knowledge of the sequence content of each of the reads in the pair, but also knowledge

of the orientation (DNA strand) of each read, and an estimation of the distance (amount of intervening

sequence) between them (Scheibye-Alsing et al., 2009).

The quality of a specific assembly must be evaluated through some criteria. The length of the contigs is

of course one of them. This leads us to the following definition of the assembly problem.

Definition 1. Given a family of reads (which can contain errors, be paired, and be from different

sequencing technologies), the assembly problem (denoted AP) consists in constructing contigs such that:

1. the breadth of coverage (how much of the genome is represented) is maximal;

2. the number of assembly errors (chimeric contigs, mismatches, insertions, and deletions) is minimal;

3. the number of contigs is minimal.

The minimality of the number of contigs indirectly minimizes the redundancy, i.e. contigs whose

positions in the genome sequence overlap. A contig can be interpreted as a mosaic of reads and the depth of
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coverage of a position is the number of reads covering it in the mosaic. Uneven genome coverage can

complexify the assembly problem, because the classification of a region as being repeated or not is more

difficult. In the assembly problem, it is assumed that, on average, each position is covered numerous times

(>10·). This allows us to expect that most of the positions will be covered in multiple independant reads,

and helps resolve sporadic sequencing errors in occasional reads. The difficulty of the assembly problem

lies on the quality of the reads, the uneven coverage, and the complexity of the genome (large in size, non-

random sequence composition, and repetitive elements often longer than existing read lengths).

3. SEQUENCING TECHNOLOGIES

Genome variation is responsible for biological diversity and sequencing enables its assessment. Se-

quencing started with the chain-terminating inhibitor method by Sanger et al. (1977) in which subsequences

are randomly stemmed from a sequence template by targeted polymerase chain reaction, which is coupled

with chain termination. This method was automated with a computer and fluorescence detection (Smith

et al., 1986). The newly-developed concepts of massively-parallel flow-cell sequencing and sequencing-by-

synthesis were fundamental shifts in genomics (Holt and Jones, 2008). The new sequencing technologies—

Roche/454, Illumina, and SOLiD—produce shorter reads in comparison with the Sanger method. Other

forthcoming sequencing technologies promise longer reads. Short reads are sufficient for de novo se-

quencing if they are paired (Chaisson et al., 2008). Emerging sequencing technologies are evolving fast—

the continuing evolution of these technologies, and others in development, is a strong argument for the need

of assemblers that are technology (and read length) independant.

3.1. Sequencing errors

Each sequencing technology makes specific errors. The mismatches in Roche/454 and Illumina reads

occur mostly at random and the most common Roche/454 sequencing errors are carry-forward errors

(because of leftover unincorporated nucleotides), and homopolymer-related errors (because of the absence

of reversible terminators) (Rothberg and Leamon, 2008). Some of these errors are correlated (the errors in

homopolymer runs are correlated), which makes the AP harder, and leads us to consider algorithms that run

on mixed technologies. In the Illumina technology, one nucleotide is incorporated in each cycle (because of

reversible terminators), regardless if homopolymers are present. In contrast, the Roche/454 system allows

the incorporation of all nucleotides of a homopolymer during the same cycle. The homopolymer problem

arises because the intensity of emitted light is linear when the number of incorporated nucleotides in the

homopolymeric region is low, but is not linear when too many nucleotides are incorporated at once.

4. ASSEMBLY ALGORITHMS

Since the release of the first assembled genome, computer-aided methods have evolved along with the

evolution of sequencing apparatus. Over the course of this evolution, a number of algorithmic pathways

were followed and quickly rendered obsolete by the sheer volume outputted by the new parallel sequencing

technologies. Available assemblers are dedicated to specific and proprietary technologies. Our assembler

Ray is, on the contrary, not dedicated to any specific technology, parallel, and open source. One aim of our

algorithm is to allow the simultaneous use of reads produced by different technologies. What follows is a

brief description of assembler types, along with a list of the most important related algorithms.

4.1. Overlap-layout-consensus

Intuitively, finding read overlaps should be the primary idea behind assembly. The overlap-layout-

consensus framework is merely a three-step process (Myers et al., 2000). First, the overlaps between reads

are computed. Second, the order and orientation of reads in the assembly are determined. Third, the

consensus allows the determination of the nucleotide at each position in the contigs.

Assemblers implementing this idea are numerous, and were crafted to overcome the assembly hurdles in

Sanger-technology projects before high-throughput systems were developed. These software are tailored

for the assembly of long reads, such as Sanger reads. They include the Celera assembler (Myers et al.,
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2000) and Arachne (Batzoglou et al., 2002). Afterwards, the paradigm was adapted to the Roche/454

system. The Roche/454 sequencer is distributed with Newbler (Margulies et al., 2005).

Also, EDENA is an overlap-layout-consensus assembler that can assemble short reads (35 bases)

(Hernandez et al., 2008).

4.2. Greedy assemblers

Using overlaps between reads to build contigs is intuitive. Algorithms can be built upon this idea. A

greedy algorithm iteratively grows contigs by choosing best overlaps first. Implementations of the greedy

algorithm were the first to be introduced for the short read technologies: SSAKE (Warren et al., 2007),

VCAKE ( Jeck et al., 2007), and SHARGCS (Dohm et al., 2007).

4.3. Assembly with de Bruijn graphs

The introduction of the de Bruijn graph for the AP is motivated by redundant information in reads: a

large depth of coverage implies that a lot of overlaps between reads occurs. In presence of such redundant

information, de Bruijn assemblers can solve the assembly problem with a memory usage bounded by the

genome length (Zerbino and Birney, 2008).

Before introducing the de Bruijn graph, we need to give some definitions. For the alphabet S¼ {A, T, C,

G, N}, S* is the associated set of strings. For a string x, jxj denotes its length, x[i] is the letter (or symbol) at

position i (starting at 1), and x[i..j] is the substring of x from positions i to j. For strings x and y, xy denotes

their concatenation.

We denote the reverse-complement sequence of x 2 R� with revcomp(x). The definition is as follows: for

a sequence x, its reverse-complement, y¼ revcomp(x), is defined as complement(y[i]) ¼def
x[jxj � (i� 1)],

where the complement is defined as usual: complement(A)¼ T, complement(T)¼A, complement(C)¼G,

complement(G)¼C and complement(N)¼N. Here is an example: revcomp(AGGGAT)¼ATCCCT.

Finally, a k-mer is a sequence of length k generated with the alphabet of nucleotides. Using these

concepts and notations, we define the de Bruijn graph as follows.

Definition 2. Given an alphabet S¼ {A, T, C, G} and a integer k, a full de Bruijn graph G has

vertices V (G)¼Sk, and arcs {hx, yi, x, y 2 V(G), x[2..k]¼ y[1..k� 1]}

where Sk is the set of all possible k-mers with S. Note that, in a de Bruijn graph, a vertex represents a

sequence of k letters (a k-mer), an arc, being composed of two k-mers that overlap on k� 1 letters, can be

viewed as a sequence of kþ 1 letters (a (kþ 1)-mer), and more generally, a walk of n vertices corresponds

to a sequence of nþ k� 1 letters. A walk, in an oriented graph, can contain several times the same vertex,

akin to walking on the graph respecting the orientation of the arrows. In the de Bruijn framework, a genome

sequence of l letters is a walk in the de Bruijn graph, and has l� kþ 1 vertices. We have a similar

observation for contigs. In the case of reads, the same holds with the exception that k-mers containing the

symbol N are not in the corresponding walk.

Given a full de Bruijn graph G, and a family of reads D � fA, T , C, G, Ng�, one can build a subgraph of

G by retaining only the vertices and the arcs in the graph that correspond respectively to k-mers and (kþ 1)-

mers present in the reads of D, or in reverse-complement reads of D. The value of the integer k is a

parameter that has to be fixed for each de Bruijn algorithm, and 19 is the lowest sensible value (we use 21)

(Flicek and Birney, 2009). With this value, we have a rich set of vertices in the full de Bruijn graph

(421¼ 4,398,046,511,104). Moreover, k¼ 21 is significantly shorter than the length of the reads given by

the present sequencing technologies. Recall that for any read, the strand on the genome sequence from

which it was generated is unknown. de Bruijn graphs based on reads of a family D will therefore be

constructed based on all the reads of D together with all the reverse-complement reads of D.

In the particular case of a pair of reads (r1,r2,dm,ds), four subsequences will be considered for the constructed

de Bruijn graph, namely r1, r2 and their reverse-complement sequences, where r1 and r2 are read sequences of a

fragments library, and dm is the average fragment length observed for the library (with standard deviation ds).

If the reads contain errors, particular structures in the graph—bubbles and tips—will be present (Zerbino

and Birney, 2008). A bubble is a structure between two vertices, such that two disjoint (short) walks exist

between these vertices, and the sequence of letters of each walk is very similar. A tip is a hanging walk in

the graph leading to a dead-end, and whose length is short.
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In the case where reads are error-free and cover the whole genome and when there are no repeated

sequences with more than k letters, the solution of the AP is a single walk in the de Bruijn graph that goes

through each arc exactly once. Such a walk is called Eulerian. In the case where the two strands of the

genome have been sequenced without errors, the solution is not a single walk, but the union of two walks

which collectively use each edge exactly once.

The use of Eulerian walks was previously described as a solution for the assembly problem (Hutchinson,

1969; Gallant, 1983; Idury and Waterman, 1995; Pevzner et al., 2001). Eulerian walks can be found in

polynomial time, but their application to high-throughput sequencing was not particularly successful for

making practical assemblies (Flicek and Birney, 2009). Basically, the EULER approach makes a series of

equivalent transformations that lead to a final set of paths (Pevzner et al., 2001). With this idea, even if a

(kþ 1)-mer is present at two or more locations in the genome sequence, it is still possible to construct a

single Eulerian walk, using edge multiplicities. However, to determine for each edge which multiplicity is

suitable represents a difficult problem when the reads give an uneven coverage.

Many strategies (other than Eulerian walks) have been proposed to produce a good assembly with a de

Bruijn graph. They are based on the idea of simplifying the de Bruijn graph. This simplification addresses

the presence of topological errors in the graph and repetitive sequences.

We describe the existing algorithms in Section 4.3.1 and their respective problems in Section 4.3.2. Note

that, in contrast, our proposed algorithm neither limits its search to Eulerian walks, nor performs such

simplifications on the de Bruijn graph. Indeed, as shown in Section 6, we not only keep the de Bruijn graph

as it is, but we even add annotations to preserve, as far as possible, all read information. Then, our approach

searches for walks that are compatible with the given family of reads.

4.3.1. de Bruijn algorithms. The pioneering work in this field (Pevzner et al., 2001) proposed an

algorithm that searches for Eulerian walks in a de Bruijn graph. Afterwards, this approach was adapted to

short reads (Chaisson et al., 2004). With the advance of high-throughput sequencing, Chaisson et al. created

the EULER-SR framework which deals with short reads and high-coverage data (Chaisson and Pevzner,

2008; Chaisson et al., 2008). Another de Bruijn assembler, called Velvet (Zerbino and Birney, 2008), was

successful at assembling short reads. Velvet builds a de Bruijn graph, and transforms it in a simplified de

Bruijn graph. In Velvet, the graph is also corrected by removing tips and by extracting sequence infor-

mation from bubbles.

Furthermore, ABySS assembled the human genome with a parallel approach (Simpson et al., 2009).

ALLPATHS builds a graph and finds all walks between each paired reads (Butler et al., 2008). Another

approach for the assembly of very short reads (25 nt) was described by Hossain et al. (2009). In their work,

the authors developed SHORTY, which is motivated by the concept of seeds. The latter are long (500 nt)

high-quality sequences from which the assembly can stem. In our proposed algorithm, we also make use of

the concept of seeds, but these seeds are computed by Ray with solely the short reads provided (in

SHORTY, seeds are provided by the user). Finally, note that each of these algorithms only runs on a single

technology. And only ABySS and Ray run in parallel and distribute data across computers with message

passing interface.

4.3.2. Problems with current de Bruijn assemblers. To address the errors in the graph, a coverage

cutoff can be defined to trim erroneous artifacts that are interspersed in the de Bruijn graph (Zerbino and

Birney, 2008). Assembly protocols set the coverage cutoff to a particular value and erode anything in the

graph whose coverage is lower than the cutoff. It is unlikely that all the vertices that have a depth of

coverage lower than the cutoff correspond to concealed errors. Thus, such a cutoff will prohibit an

assembler from yielding large contigs.

Existing assemblers are not designed for the assembly of mixes of reads from different systems, being

only able to run on a single technology. Also, only ABySS and Ray calculate assemblies in parallel using

message passing interface.

5. MIXING SEQUENCING TECHNOLOGIES

Using a mix of sequencing technologies is called hybrid assembly, and decreases the number of cor-

related errors in the reads (Diguistini et al., 2009). In principle, mixing sequencing technologies improves
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de novo assemblies. No solution has been designed to specifically and efficiently tackle this problem.

Current hybrid-assembly procedures are not assembling simultaneously reads acquired from different

systems (Goldberg et al., 2006; Aury et al., 2008; Diguistini et al., 2009). The asynchronous fabrication of

contigs does not highlight the errors contributed by each single sequencing system. Moreover, not piecing

together reads simultaneously can lead to loss of valuable information about short repeated regions

(Chaisson and Pevzner, 2008). To address these shortcomings, Ray makes concurrent use of all available

reads. In our experiments, namely in SpErSim (see Section 7), we observed that the assembly problem is

simpler when the sequencing errors are based on pure random noise. Hence, we consider that mixing

technologies is a good compromise to mimic as closely as possible randomly-occuring noise. The emer-

gence of an array of sequencing technologies makes this compromise realistic.

5.1. Hybrid assembly methods

Goldberg et al. (2006) have assembled Sanger and Roche/454 reads together to produce high-quality

draft assemblies. However, the lack of tools to perform simultaneous hybrid assembly was translated in the

usage of more than one assembler. They assembled the Roche/454 reads with a first assembler, created

Sanger-like reads from the Roche/454 contigs, and assembled the latter with Sanger reads with a second

assembler.

While Roche/454 reads are sufficient to produce high-quality drafts, the latter contain small insertions/

deletions, and mismatches that are directly caused by the technology used, and therefore are correlated

among reads. To improve the rough quality of a draft, sequences from another technology can be aligned

onto the draft assembly to find errors (Aury et al., 2008). This method is not a truly hybrid assembly

because the Roche/454 and Illumina reads are not simultaneously assembled. Note also that in their paper,

the authors suggested that beyond a particular coverage with short Illumina reads, the ability to correct

errors present in a Roche/454 assembly can not be significantly improved, which is in contradiction with

our experimental results. Indeed, with Ray, we experimentally demonstrated that it is possible to avoid

almost all assembly errors by simultaneously assembling the Roche/454 and Illumina reads (see Section 7).

Diguistini et al. (2009) have gathered capillary (Sanger), Roche/454, and Illumina reads to decode the

genome of a 32.5 Mb filamentous fungus. Although mixing sequencing technologies is strongly promoted

by these authors, the underlying assembler, Forge, is unable to work directly with Illumina reads. The latter

were preprocessed, using the Velvet program, to obtain sequences usable by Forge. This dataset is not

considered herein because of the lack of a finished sequence.

6. THE ALGORITHM RAY

Ray is derived from the work by Pevzner et al. (2001) in the sense that we make use of a de Bruijn

graph. However, our framework does not rely on Eulerian walks. To generate an assembly, we define

specific subsequences, called seeds, and for each of them, the algorithm extends it into a contig. We

define heuristics that control the extension process in such a way that the process is stopped if, at some

point, the family of reads does not clearly indicate the direction of the extension. In example, consider

the graph of Figure 1, and suppose that the seed is z2 … z3, then if most of the reads that overlap the seed

also contain z5, then we will proceed by adding z5 to the contig. On the contrary, we will choose an

another direction, and in the case where there is no obvious winner, the process will stop. Note that our

heuristics will give a higher importance to reads that heavily overlap a contig than to reads that only

intersect a small number of the last vertices of it. Indeed, we consider that reads that overlap strongly in

the contig we are constructing are more informative to assign the direction in which the extension should

proceed.

We measure the overlapping level with functions called offseti and offset
paired
i . The proposed heuristics

will therefore limit the length of the obtained contigs, but will give better guarantees against assembly

errors. Moreover, those heuristics allow us to construct greedy algorithms in the sense that at each point,

we extend the contig that we are constructing, or we end the construction. Such a greedy choice that

will never be reconsidered is inevitable if one wants to have an algorithm that runs in polynomial time.

The choice in favor of greedy optimization is motivated by the NP-hard nature of the problem (Pop,

2009).
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To minimize running time and memory utilization, we use the sequence data provided by the reads through

a de Bruijn graph annotation, each read being annotated only once and attached to a single vertex of the graph.

6.1. Coverage distribution

Given a family of reads D¼hr1, . . . , rti, we denote by Dþ the family consisting of the reads of D and the

reverse-complement sequences of D, or more precisely, Dþ ¼ hr1, . . . , rt, revcomp(r1), . . . , revcomp(rt)i.
Moreover, for any integer c, a k-mer is c-confident if it occurs at least c times in the reads of Dþ. Note that a

k-mer that appears twice in the same read is counted twice. We define fDþ as the function that associates to

each integer value c the number of k-mers that are covered c times according to Dþ. As proposed by

Chaisson and Pevzner (2008), this function is the sum of an exponentially-decreasing curve and a Poisson

distribution. The first represents the errors contained in the reads, and the second is a Poisson distribution

because each read is a subsequence picked among all subsequences around a particular length with some

almost uniform probability. The graph of the function fDþ has the shape of the function drawn in Figure 2—

the coverage distributions for the A. baylyi ADP1 dataset are shown in this figure, with Roche/454 reads,

Illumina reads, and a mix of those. fDþ has a local minimum, that we will call cmin, followed by a local

maximum, that we will denote cpeak. Basically, cpeak is an estimate of the average coverage depth of the

genome, and cmin is an estimation of the value where, with high probability, the amount of incorrect data is

lower than the amount of correct data.

6.2. Annotated de Bruijn graph

Given a family of reads D, a de Bruijn parameter k, and a coverage cutoff c, the associated annotated de

Bruijn graph, noted Bruijn(Dþ, k, c) is defined as follows. The vertices V of the graph are the c-confident

k-mers and the set of arcs A is composed of all arcs between two vertices of V that correspond to a

FIG. 1. A subgraph of a de Bruijn graph. This figure

shows a part of a de Bruijn graph. In this example,

short reads are not enough for the assembly problem.

Suppose that the true genome sequence is of the form

h� � � z0 � � � z1 � � � z2 � � � z1 � � � z2 � � � z3 � � � z4 � � � z1 � � � z2 � � �
z3 � � � z5 � � �i. If the length of the reads (or paired reads)

is smaller than the z1 � � � z2 subsequence, no hints

will help an assembly algorithm to differentiate the

true sequence from the following one

h� � � z0 � � � z1 � � � z2 � � � z3 � � � z4 � � � z1 � � � z2 � � � z1 � � � z2 � � �
z3 � � � z5 � � �i. On the other hand, if there is a read that starts before z1 and ends after z2, there will be a possibility to solve

this branching problem.

Coverage distributions for A. baylyi ADP1 (sra/SRA001125)
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FIG. 2. Coverage distributions.

This figure shows the coverage

distributions of k-mers for the A.

baylyi ADP1 dataset with Roche/

454, Illumina, and Roche/454 and

Illumina, k¼ 21. The minimum

coverage and the peak coverage

are identified for the Roche/454,

Illumina, and Roche/454 and Il-

lumina coverage distributions. The

peak coverage of Roche/

454þIllumina is greater than the

sum of the peak coverage of

Roche/454 and the peak coverage

of Illumina, which suggests that

the mixed approach allows one to

recover low-coverage regions.
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1-confident (kþ 1)-mer. For example, for k¼ 5 and c¼ 2, the two k-mers ATGCT and TGCTG will be

vertices of the graph if and only if they both appear at least twice in the reads of Dþ. Moreover,

hATGCT,TGCTGi will be an arc of the graph if and only if ATGCTG appears at least once in the reads of Dþ.

For the annotation, we consider the first c-confident k-mer of each read r; we will denote this k-mer xr.

We then remove from Dþ every read r for which the associated xr has a confidence value of 255 or more. A

vertex with a confidence value of 255 or more is repeated because any region of a genome is usually

covered 30–50 times. We consider that any xr for which we have such coverage will belong to a repeated

region. These regions are more susceptible to generate misassemblies. We avoid these regions, and do not

consider the corresponding reads for the annotation. This choice implies that the algorithm may output

contigs of shorter length, but we will gain on the quality of these contigs.

For the remaining xr’s, first note that xr is a subsequence of the read r that is of length k and such that any

subsequence of length k that starts before xr in r is not c-confident. To each such remaining xr, we complete

the annotation (r, s), where s is the starting position of subsequence xr in the read r. Hence, on a given

vertex x, one can recover any read for which x is the first c-confident k-mer. Note that this annotation

system is not memory intensive since each read is annotated only once. Moreover, the other positions of the

read are recovered by the algorithm using the following functions.

6.2.1. Offset functions. Given a walk w¼hx1 � � � xli, and an arc hxl, yi, we define the ith offset value

of y according to w, noted offseti(w, y), as the number of annotations (r, s) on the vertex xi, such that y is a

subsequence of r, and such that the distance between the starting point of xi and the starting point of y are

equal in both the read r and the walk w concatenated with the vertex y. The starting position of y in the read

r is l� iþ sþ 1.

As an example, put k¼ 5 and c¼ 1, and consider that we have a single read r¼ATGCATCG in D. Since

c¼ 1, all the 5-mers of r belong to the de Bruijn graph. Also, on the vertex xr¼ATGCA, we will have the

annotation (r, 1). Now consider the walk w¼hATGCA, TGCAT, GCATCi, and the vertex y¼CATCG.

Then, we have that offset1(w, y)¼ 1 because the read r starts at position 1 in w, and the distance between y

and xr is the same in the read and in the concatenation of the walk w with the new arc hGCATC, CATCGi.
Note that y is a subsequence of r, whose starting position is 4, which is exactly l� iþ sþ 1, since the length

of the walk w is l¼ 3, the position xr in w is i¼ 1, and the position of xr in the read r is s¼ 1.

We will have the same type of functions for paired reads, except that since the fragment length is

approximated by dm for each library, we will tolerate a certain difference between the length d of a

particular pair of reads and the average length dm for the corresponding fragment library—namely ds.

More formally, for a read pair (r1, r2, dm, ds), let us define the meta read r12 which has length d, begins

with r1, ends with revcomp(r2), and is composed of dummy letters in the middle. Then, given a walk

w¼hx1 � � � xli, and an arc hxl, yi, we define the ith paired offset value of y according to w, noted

offset
paired
i (w, y), as the number of annotations (r1, s1) on the vertex xi, for which there exists a paired

read (r1, r2, dm, ds), such that y is a subsequence of revcomp(r2), and the distances between the starting

point of xi and the starting point of y in the meta read r12 and in the walk w concatenated with the

vertex y differ by a value that is at most ds. Mathematically, the starting position of y in the read r2

is dm� jr2j � (l� iþ s1þ 1) – ds.

As stated above, we want to give more importance to reads that have a large overlap with the contig we

are constructing. Let us point out that when the value of i is getting smaller in the offset function, the

magnitude of the overlap is increasing. So given a partially constructed contig w¼hx1 � � � , xli, and two

possible arcs hxl, yi and hxl, y0i that we can add to it, we will compare the offset values of y and y0 according

to w, if there is a clear winner, the algorithm will choose it, otherwise it will stop the ongoing extension.

6.3. Seeds

The proposed algorithm starts on some walks, for which we have a strong confidence that they are

subsequences of the genome sequence. Such particular walks are referred to as seeds. To obtain them, we

first consider a de Bruijn graph with a very high cutoff value. We fix this cutoff to
cmin þ cpeak

2
. cpeak

corresponds to the average coverage and cmin to where the number of errors is lower than the number of true

sequences. We consider that by taking the average of those two, a very small amount of errors will be in the

de Bruijn graph Bruijn(Dþ , k,
cmin þ cpeak

2
). The resulting stringent de Bruijn graph suffers from a huge loss of

the information contained in the reads, but this procedure is only used to determine the seeds. More
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specifically, the seeds are the set of maximum walks in Bruijn(Dþ , k,
cmin þ cpeak

2
) that are composed of

vertices of indegree and outdegree at most one.

6.4. The heuristics

In this section, we present the heuristics on which our algorithm is based. In these rules, m is a

multiplicative value indicating the confidence required to perform a choice—as the coverage increases, its

value decreases. For a vertex, m¼ 3.0 when its coverage is at least 2, but no more than 19, m¼ 2.0 when its

coverage is at least 20, but no more than 24, and m¼ 1.3 when its coverage is at least 25. For any vertex,

the relation between its coverage and the value of the multiplicator m is not a parameter, and works well on

various tested datasets (see Section 7). The values taken by m are motivated by the distribution of reads on a

seeds—two reads starting consecutively on a seed will be nearer if more local coverage is available.

Given a walk w¼hx1 � � � , xli, and two arcs in the de Bruijn graph Bruijn(Dþ, k, c) that start at xl, namely

hxl, yi and hxl, y0i, we say that

Rule 1: y wins over y0 if the three following inequalities hold.

m �
Xl

i¼ 1

(l� i) � offset
paired
i (w, y0) 5

Xl

i¼ 1

(l� i) � offset
paired
i (w, y)

m �
Xl

i¼ 1

offset
paired
i (w, y0) 5

Xl

i¼ 1

offset
paired
i (w, y)

m � min
i2f1::lg

(offset
paired
i (w, y0)4 0) 5 min

i2f1::lg
(offset

paired
i (w, y)4 0)

FIG. 3. The Ray algorithm.

Ray is a greedy algorithm on a

de Bruijn graph. The extension

of seeds is carried out by the

subroutine GrowSeed. Each seed

is extended using the set of Rules

1 and 2. Afterwards, each ex-

tended seed is extended in the

opposite direction using the re-

verse-complement path of the

extended seed. Given two seeds

s1 and s2, the reachability of s1

from s2 is not a necessary and

sufficient condition of the

reachability of s2 from s1. Owing

to this property of reachability

between seeds, a final merging

step is necessary to remove

things appearing twice in the

assembly.
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So, according to Rule 1, y wins over y0 if 1) the number of paired reads that strongly overlap y and w is

more than m times the corresponding value for y0, 2) the total amount of paired reads that overlap y and w is

more than m times than the same amount for y0, and 3) the paired read that has the maximal overlap over w

and y is more than m times the same value for y0. Recall that the smallest is the value of i, the biggest is the

overlap for the corresponding reads. Rule 2: By replacing the functions offset
paired
i by their corresponding

functions offseti in the three equations above, we get Rule 2. Hence, Rule 2 is doing exactly the same type

of measurement as Rule 1, except that it works on single reads. These rules are utilized to extend seeds in

the Ray algorithm. The Ray algorithm is presented in Figure 3.

6.5. Technical points about the implementation

The data structure selected to extract k-mer information in reads is the splay tree (Sleator and Tarjan,

1985)—a balanced binary search tree based on the splay operation. k-mers are stored on 64 bits—thus, the

maximum value for k is 32.

7. RESULTS AND DISCUSSION

Ray compares favorably with current algorithms. We emphasize that only Ray performs very well on

mixed datasets, and that the parallel nature of Ray makes it scalable. The goal of this evaluation is to

demonstrate that Ray helps to assemble genomes using high-throughput sequencing. Comparisons with

available assemblers are in Tables S1–S5.

7.1. Datasets

Datasets are presented in Table 1. For our datasets, we selected living organisms for which high-quality

data were available—these included Streptococcus pneumoniae, Escherichia coli, Acinetobacter baylyi,

and Cryptobacterium curtum. Streptococcus pneumoniae is a significant cause of human diseases, and the

avirulent strain R6 (NCBI accession number: nuccore/NC_003098) is a platform for investigation (Hoskins

et al., 2001). Escherichia coli K-12 (NCBI accession number: nuccore/NC_000913) is a model organism

(Blattner et al., 1997). We gathered Roche/454 reads (Miller et al., 2008) and Illumina reads (produced by

Table 1. Dataset Descriptions

Dataset Description Reads accession key

Simulations: S. pneumoniae R6

SpSim Simulated 50-bp reads,

depth of coverage: 50

—

SpErSim SpSim with 1% mismatch —

SpPairedSim Simulated 200-bp fragments,

50-bp reads

—

representing their extremities,

depth of coverage: 50

Mixed dataset 1: E. coli K12 MG1655

Roche/454 Roche/454 reads sra/SRA001028

Illumina Illumina paired reads sra/SRA001125

Mixed — sra/SRA001125,

sra/SRA001028

Mixed dataset 2: A. baylyi ADP1

Roche/454 Roche/454 reads sra/SRA003611

Illumina Illumina unpaired reads sra/SRA003611

Mixed — sra/SRA003611

Mixed dataset 3: C. curtum DSM 15641

Roche/454 Roche/454 reads sra/SRA008863

Illumina Illumina unpaired reads sra/SRA008863

Mixed — sra/SRA008863
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Illumina inc.) for E. coli K-12 strain MG1655. Acinetobacter baylyi ADP1 (NCBI accession number:

nuccore/NC_005966) is highly competent for natural transformation, making it very convenient for genetic

engineering (Barbe et al., 2004). We downloaded Roche/454 and Illumina reads for A. baylyiADP1 to test

Ray (Aury et al., 2008). Cryptobacterium curtum (NCBI accession: nuccore/NC_013170) is an opportu-

nistic pathogen, and its genome was assembled with Roche/454 reads and Sanger reads (Mavromatis et al,

2009).

We simulated two error-free datasets from Streptococcus pneumoniae R6 (SpSim and SpPairedSim). We

also simulated one error-prone dataset from Streptococcus pneumoniae R6 (SpErSim). As pointed out by

Hossain et al. (2009), it is striking how the presence of errors in real-world sequencing data is under-

estimated by the common use of simulated data. To test this, we tested Ray on real datasets. We down-

loaded datasets from the Short Read Archive (SRA; available at www.ncbi.nlm.nih.gov/sra). These

sequence reads are from Escherichia coli K-12 MG1655 (Miller et al., 2008), Acinetobacter baylyi ADP1

(Aury et al., 2008), and Cryptobacterium curtum DSM 15641 (Mavromatis et al., 2009). For each of these

genomes, the corresponding dataset contained Illumina reads, and Roche/454 reads. Table S1 describes

datasets on which comparisons presented in Tables S2–S5 were performed.

7.2. Quality assessment metrics

To assess the quality of assemblies and compare our method with other approaches, we selected a set of

metrics usually utilized when comparing sequence quality. These metrics are described in the definition of

the AP (see Definition 1) and characterize a fine assembly. They are the number of contigs having at least

500 letters (or bp), the number of bases (bp), the mean size of contigs (bp), the N50 (the length of the

largest contig such that all contigs with at least its length contains at least 50% of the assembly, in bp), the

largest contig size (bp), the genome coverage (breadth of coverage—percentage of bases in the genome

covered), incorrect contigs, mismatches, and indels. The number of contigs is a measure of the fragmen-

tation of the assembly. A higher number of assembly bases indicates that the assembly contains two strands

Table 2. Assemblers

Assembler Version

ABySS (Simpson et al., 2009) 1.1.2

EULER-SR (Chaisson et al., 2008) 1.1.2

Newbler (Margulies et al., 2005) 2.0.00.20

Ray 0.0.7

Velvet (Zerbino and Birney, 2008) 0.7.61

Table 3. Assemblies of Simulated Error-Free and Error-Prone Datasets

Assembler

Contig

�500 bp

Bases

(bp)

Mean

size (bp)

N50

(bp)

Largest

contig (bp)

Genome

coverage (%)

Incorrect

contigs Mismatches Indels

Running

time

SpSim

ABySS 417 1898819 4553 7349 27222 0.9343 0 4 0 1m56.066s

EULER-SR 261 1967594 7538 11621 61396 0.9419 6 68 123 7m22.779s

Velvet 280 1917129 6846 11279 44362 0.9437 1 23 8 2m15.931s

Ray 259 1954999 7548 11561 77867 0.9608 0 0 0 3m25.240s

SpErSim

ABySS 418 1898547 4541 7349 27222 0.9342 0 4 0 4m52.727s

EULER-SR 267 1965104 7359 11477 61349 0.9413 6 79 237 11m15.383s

Velvet 290 1913682 6598 10302 42572 0.9423 2 27 11 2m40.792s

Ray 259 1939235 7487 11554 77853 0.9531 0 0 0 4m29.223s

SpPairedSim

ABySS 151 2019778 13376 22045 104182 0.9815 0 213 9 3m38.944s

EULER-SR 235 1976831 8412 12383 61593 0.9458 13 69 187 9m59.464s

Velvet 113 1950222 17258 32111 123292 0.9565 30 382 140 2m15.371s

Ray 96 1964569 20464 36692 127906 0.9632 0 1 0 5m52.834s
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for particular genomic regions, or that the DNA molecules were contaminated. The distribution of contig

lengths is evaluated with the mean contig length, N50, and largest contig length. The genome coverage is

crucial in evaluating the fraction of the genome being covered by the assembly. The number of contigs,

mean size, N50, largest contig length, and the breadth of coverage are standard indicators, but they miss the

assembly errors. The sensitivity of an assembly software towards repetitive elements—the main source of

misassemblies—is evaluated with the number of incorrect contigs. Mismatches, small insertions, and small

deletions are local errors. Lowering the number of these error types is paramount to the analysis of genome

variation. The number of incorrect contigs, the number of mismatches, and the number of indels allow

critical assessment of genome assemblies. Assembly contigs were aligned to a reference, and these

alignments were evaluated using the metrics described above. Alignments of sequences were done with

Mummer (Kurtz et al., 2004) and Blast (Altschul et al., 1997).

7.3. Genome assemblers

Numerous assemblers are available. We selected the most recent assemblers in our benchmarks. We

compared Ray with Velvet (Zerbino and Birney, 2008), EULER-SR (Chaisson et al., 2008), ABySS

(Simpson et al., 2009), and Newbler (Margulies et al., 2005). We refer the reader to Table 2 for assembler

descriptions. ABySS was run according to the documentation provided. EULER-SR was run with k¼ 21. A

rule file was provided when paired information was available. Newbler was run with default parameters

using the command-line interface. Ray was run with the sequence files as input, and we fixed the

parameters to the same value on all datasets, namely we fixed c¼ 2 and k¼ 21. The values of cmin and

cpeak were calculated automatically (see Section 6.1), and so were the average fragment length and

standard deviation for paired libraries. Ray is an assembler implementation using auto-calculated pa-

rameters (cmin, cpeak, and dm and ds for each paired library) which renders the process readily applicable.

Velvet was run with hash size 21, and the expected and cutoff coverages were determined according to

the manual.

7.4. Simulations

Results on simulated data are shown in Tables 3 and S2. We chose to include simulated data because in

the case of real data, the reference is not always error-free. Three datasets are presented. SpSim is an error-

free dataset with 50-bp reads. SpErSim contains the same reads as SpSim, in addition of random mis-

matches. SpPairedSim is similar to SpSim, but includes paired information.

SpSim (simulated). The SpSim dataset contained simulated short 50-base reads at 50· (depth of cov-

erage) from the 2038615-base Streptococcus pneumoniae R6 genome. The peak coverage cpeak in the

coverage distribution had a value of 29, and the cmin was not relevant in this dataset (thanks to the absence

of errors). All five assemblers, except Newbler, were able to analyze short reads (Tables 3 and S2). In

Newbler, overlaps were detected using a minimum overlap length, and this minimum overlap length was

Table 4. Assemblies of Mixed Readouts

Data

Contig

�500 bp

Bases

(bp)

Mean

size

(bp)

N50

(bp)

Largest

contig

(bp)

Genome

coverage

(%)

Incorrect

contigs Mismatches Indels

Running

time

Mixed dataset 1: E. coli K-12 MG1655

Illumina 126 4591168 36437 72499 174569 0.9818 0 2 4 47m54.377s

Roche/454 874 4513335 5163 8771 42344 0.9731 9 64 247 29m53.841s

Mixed 109 4579657 42015 87318 268385 0.9831 1 234 6 62m30.978s

Mixed dataset 2: A. baylyi ADP1

Illumina 259 3677696 14199 25852 72730 0.9749 0 82 6 29m48.993s

Roche/454 109 3547847 32549 61793 214173 0.9846 0 69 380 43m3.785s

Mixed 91 3540404 38905 82891 215819 0.9804 1 7 1 36m27.635s

Mixed dataset 3: C. curtum DSM 15641

Illumina 72 1606647 22314 36518 91303 0.9862 0 1 1 19m51.388s

Roche/454 30 1609423 53647 261125 477358 0.9904 0 0 8 21m24.064s

Mixed 27 1602133 59338 116274 236544 0.9897 0 0 1 35m8.569s

Roche/454 reads were assembled with Newbler, whereas Illumina and mixed data were assembled with Ray.
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longer than the read length. The assemblies were similar, but Ray was slightly better for this dataset.

Indeed, Ray produced 259 contigs, and its assembly covered 96% of the genome. Both ABySS and Ray

produced no incorrect contigs. EULER-SR produced more mismatches than the other assemblers and

yielded indels on this error-free data set. Ray had the best overall performance on this dataset.

SpErSim (simulated, 1% random mismatch). The results for this dataset were similar to those ob-

tained with the dataset above. From these results, we concluded that assemblers are not very sensitive to

random noise. The addition of errors, however, increases the amount of consumed memory, owing to the

additional k-mers occuring in the reads, but not in the genome. These errors are instanciated as bubbles and

tips in the graph.

SpPairedSim (simulated). This dataset included short 50-base reads at 50· from S. pneumoniae R6, and

these reads were generated in a paired-end fashion. The paired reads are the extremities of 200-nt frag-

ments. Only Newbler was unable to assemble this dataset, for the same reason as in the dataset SpSim. Ray

produced no incorrect contigs, only 1 mismatch, and 0 indel (Tables 3 and S2). Even if the number of

contigs is very low, the number of mismatches and the number of indels must also be minimized to

facilitate downstream analyses. It is very important that the assembly contains the lowest number of errors

because otherwise mismatches and indels will be interpreted as mutations by biologists. Given the null

number of chimeric contigs for Ray, and the large number of mismatches for other assemblers, Ray

outperformed the other assemblers for this dataset.

7.5. Real mixed datasets

Real datasets are described in Tables 1 and S1. Table 4 presents the added value provided by mixing

reads, for three different genomes: E. coli K-12 MG1655, A. baylyi ADP1, and C. curtum DSM 15641.

Comparisons with other assemblers are presented in Table S3 (E. coli K-12 MG1655), Table S4 (A. baylyi

ADP1), and Table S5 (C. curtum DSM 15641).

E. coli. For E. coli K-12 MG1655, Newbler gave 874 contigs whereas Ray produced 126 with only

Illumina reads, and 109 with both technologies (Roche/454 and Illumina) with 1 misassembled contig that

aligned in two blocks: 1–83124 with 4210996–4294119, and 82863–112667 with 4294197–4323999. This

contig was presumably correct according to the colinearity between aligned segments. For this genome, the

Illumina reads were grouped in two paired libraries, dm and ds had values of 215 and 11 for the first library

and 486 and 26 for the second.

A. baylyi. For A. baylyi ADP1, Newbler produced 109 contigs with 380 indels. Ray assembled the

Illumina reads in 259 contigs and the 454/Roche and Illumina reads in 91 contigs, which is less than 109,

the number for Newbler with Roche/454 reads only. Mixed reads allowed Ray to detect homopolymer

errors (indels): Newbler produced 380 and Ray only 1. For the A. baylyi ADP1 mixed data, the mis-

assembled contig aligned in two blocks: 1358–560 with 2804111–2804909, and 234–1 with 2804911–

2805144—a single indel in the contig.

C. curtum. For C. curtum DSM 15641, Newbler produced 30 contigs with 8 indels, and Ray assembled

data in 76 contigs (Illumina reads) and in 27 contigs (Roche/454 and Illumina reads). Ray (27 contigs)

outperformed Newbler (30 contigs), and the other metrics were constant, except for the largest contig

length, for which Newbler was better.

Accordingly, for these reported results, Ray is an excellent assembler—and the only one to assemble

successfully mixed datasets (Tables S3–S5). Also, Ray is better than Velvet and ABySS on Illumina data.

Furthermore, the assembly of E. coli K-12 MG1655 with paired short sequences confirmed that read

length does not matter for de novo assembly—a pair of reads can be transformed explicitely in a longer

sequence of a length d (d being near the dm of its corresponding paired library) like in EULER-SR

(Chaisson et al., 2008), or implicitely, like in Ray.

7.6. Scalability

Ray assembles reads in an efficient way. In Tables 3, 4, and S2–S5, the running time indicates that Ray

ranked well in speed evaluation. Ray is scalable because it uses messages passing, like ABySS. Scalability

will be instrumental, if not paramount, to tackle not only larger genomes, but also to sort out the

tremendous amount of data and weed out the errors coming from the cutting-edge sequencers, such as the

Illumina HiSeq 2000—which has a reported output of 150–200 Gb. To the best of our knowledge, only
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ABySS and Ray make extensive use of message passing interface, allowing them to run on many com-

puters at once.

8. CONCLUSION

The throughput of new sequencing instruments is overwhelming assemblers. Thus, better bioinformatics

systems are necessary and critical in sequence assembly. The cost of DNA sequencing has dramatically

lowered over the last years while the sheer volume of data generated by sequencing instruments has grown

exponentially. The lower cost makes genome research more affordable whereas the generated volume of

data increases the complexity of the analyses. To assist in these analyses, numerous assembly algorithms

have been published over the years. However, none of these can tackle simultaneously a mix of reads from

different sequencing systems. The ability to assemble simultaneously such mixes of reads is useful to

alleviate the error rates of each single sequencing platform. Ray allows this type of analysis. In principle,

genomes obtained with Ray will require less sequence finishing.

Our contributions are an open source parallel assembler, the best results on simulated datasets (Tables 3

and S2), improved assemblies on Illumina reads in comparison with current state-of-the-art short-read

assemblers (Tables 3 and S3–S5), and the first assembler that can simultaneously assemble reads from a

mix of sequencing technologies (Tables 4 and S3–S5).

Future directions are to assemble a human genome with Ray, and to adapt the code for the new upcoming

sequencing platforms. With new sequencing technologies emerging, an assembler that can handle all of

them in an efficient fashion is highly desirable.
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