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e Background and Aims Polyploidy is a major component of plant evolution. The citrus gene pool is essentially
diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main
objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the impor-
tance of genotypic and environmental factors on tetraploid formation.

e Methods Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and geno-
typed with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to
grow all embryos contained in polyembryonic seeds of ‘Tardivo di Ciaculli’ mandarin, followed by characteriz-
ation of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidiza-
tion events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed
for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same
genotype (‘Carrizo’ citrange; Citrus sinensis x Poncirus trifoliata) from seeds collected in different tropical, sub-
tropical and Mediterranean countries.

o Key Results Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All
tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric.
Significant genotypic and environmental effects were observed, as well as negative correlation between mean
temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetra-
ploids were observed for citranges cultivated in the Mediterranean area.

e Conclusions Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic
citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic
areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome dou-
bling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless tri-
ploid cultivars and have potential direct use as new rootstocks.
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INTRODUCTION

Polyploidy is a major component of eukaryote evolution and
particularly in angiosperms (Grant, 1981; Soltis and Soltis,
1993; Wendel and Doyle, 2005). Many plant species result
from autopolyploidization or allopolyploidization events and
polyploidization should be considered as the most common
sympatric speciation mechanism (Otto and Whitton, 2000).
According to Thompson and Lumaret (1992), the dynamics
of polyploid plants is based on three processes: the origin
(polyploidization events), the establishment and the persist-
ence of new polyploids. The mechanisms leading to poly-
ploidy were variously discussed during the 1970s, and for a
long time chromosome doubling was considered the major
cause. Most authors (e.g. Stebbins, 1971) considered that
meiotic restitution played only a minor role in the evolution
of polyploid complexes. However, Harlan and De Wet

(1975) argued that spontaneous chromosome doubling must
be relatively rare in nature while polyploidization arising
from 2n gametes seems quite common. They claimed that,
‘Almost all polyploids arise by way of unreduced gametes;
other mechanisms occur, but are negligible.” These con-
clusions are now endorsed by numerous plant evolutionists
(e.g. Bretagnolle and Thompson, 1995; Ramsey and
Schemske, 1998, 2002).

Diploidy is the general rule in Citrus and related genera of
Aurantioideae, with a basic chromosome number x = 9 (Krug,
1943). However, some higher euploid genotypes have been
found in the citrus germplasm. The most common euploid vari-
ations are triploid and tetraploids (Lee, 1988). Longley (1925)
was the first to formally identify a tetraploid wild form: the
‘Hong Kong’ kumquat (Fortunella hindsii Swing.). Triploid
‘Tahiti’ lime (Citrus latifolia Tan.), tetraploid strains of
Poncirus trifoliata (L.) Raf., allotetraploid Clausena excavata
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Burm. F,, tetraploid Clausena harmandiana Pierre (Guill) and
hexaploid Glycosmis pentaphylla Retz. (Corréa) are other
examples of the few natural polyploids found in the germplasm
of Aurantioideae (Ollitrault et al., 2008).

Despite the scarcity of polyploid genotypes in citrus germ-
plasm banks, it appears that polyploidization events are rela-
tively frequent when seedling populations are analysed. The
reported frequency of female 2n gametes ranges from rates
below 1 % to over 20 % (Soost, 1987; Iwamasa et al., 1988),
probably due to the abortion of the second meiotic division
in the megaspore (Esen et al., 1979). It appears that most of
the spontaneous triploids arising from diploid parents are
found in small and abnormal seeds (Esen and Soost, 1971,
1973; Geraci et al., 1975; Aleza et al., 2010a), which are unli-
kely to germinate without implementation of an embryo rescue
procedure. Therefore, 2n gametes cannot have played an
important role in citrus evolution.

In citrus germplasm, apomictic (nucellar polyembryony)
and non-apomictic genotypes are found (Frost and Soost,
1968). In non-apomictic citrus genotypes, cases of sexual
polyembryony have been reported, probably originating by
cleavage of the zygotic embryo or from two or more functional
embryo sacs in a single ovule (Frost, 1926; Bacchi, 1943;
Aleza et al., 2010b). The majority of citrus genotypes are apo-
mictic, with the exception of all citron (C. medica L.),
pummelo [C. grandis (L.) Osb.] and -clementine
(C. clementina Hort. ex Tan.) genotypes and some mandarin
hybrids. Tetraploidization seems to occur frequently in apo-
mictic citrus genotypes. Lapin (1937) found tetraploid seed-
lings among eight citrus species (rate ranging from less than
1 to 5:6 %) and Poncirus (4 %). Cameron and Frost (1968)
estimated that 2-5% of nucellar progenies from a broad
range of citrus genotypes grown in California were tetraploid,
whereas Barrett and Hutchison (1978) found less than 1 % of
tetraploids in seedlings of Citrus, Poncirus and intergeneric
hybrids (Citrus x Poncirus) obtained from seeds coming
from California and Florida (0-75 and 0-90 %, respectively).
In these pioneering studies, ploidy variation was estimated
by observation of morphological traits and some tetraploids
were confirmed by chromosome counts. The reliability of the
estimated rates of tetraploidy is thus questionable.
Chromosome doubling in somatic tissues was observed by
Raghuvanshi (1962); however, very few tetraploid budsports
have been identified as a consequence of unfavourable compe-
tition between diploid and tetraploid cells in the meristem
(Iwamasa et al., 1988). The formation of fully developed tetra-
ploid seeds from diploid female x tetraploid male hybridiz-
ation has also been reported (Tachikawa et al., 1961;
Cameron and Soost, 1969; Esen and Soost, 1972). Esen and
Soost (1972) suggested that they originated from unreduced
gametes fertilized by diploid pollen. However, it appears that
most of the natural tetraploid lines of citrus arise from apomic-
tic genotypes. Frost and Soost (1968) and Kobayashi et al.
(1981) proposed that chromosome doubling in nucellar tissue
might be the general mechanism underlying tetraploidization
in apomictic citrus genotypes (Cameron and Frost, 1968).
However, this hypothesis was not formally demonstrated for
a large range of genetic diversity. Today, there is renewed
interest in citrus tetraploid lines as parents for seedless triploid
breeding programmes (for a bibliographic review see Ollitrault

et al., 2008) and for rootstock breeding (Saleh er al., 2008).
Several research groups are working to expand the tetraploid
gene pool by somatic hybridization (Grosser er al., 2000,
2010) or tetraploid seedling selection (our group). Within
this context, the origin and genetic structure of tetraploid seed-
lings must be clearly identified for their rational use in citrus
breeding programmes.

The aim of the present work was to answer three basic ques-
tions. (1) What is the genetic origin of the tetraploid plantlets
produced by diploid apomictic citrus? (2) What is the probable
tissue associated with tetraploidization events and to what
extent does the rate of tetraploid seedling occurrence reflect
the frequency of these events? (3) How do genotypes and
environmental conditions affect tetraploidization?

MATERIALS AND METHODS
Plant material

Genetic origin of tetraploid seedlings in Citrus species. Seeds of
30 apomictic genotypes representing 26 cultivars of three
Citrus species and interspecific hybrids (Table 1) obtained
by open pollination were collected from mature fruits of
trees from two germplasm banks (IVIA Germplasm Bank,
Valencia, Spain, and INRA/CIRAD Germplasm Bank,
Corsica, France). The taxonomic classification of Swingle
and Reece (1967) is used in this paper. Immediately after
extraction, seeds were planted in trays of 54—96 alveoli, one
seed per alveolus, containing a substrate of a mixture of six
parts of peat moss (black/blond, 1:1) and one of perlite, in
temperature-controlled greenhouses (18—-27 °C).

Accurate evaluation of tetraploidization events and their location.
Seeds of ‘Tardivo di Ciaculli’ mandarin, obtained by open pol-
lination, were collected from mature fruits of trees of the IVIA
Germplasm Bank. Embryos were isolated from seeds under
aseptic conditions with the aid of a stereoscopic microscope
and were cultivated on Petri dishes containing Murashige
and Skoog (1962) culture medium with 50 g L™' sucrose,
500mgL~' malt extract supplemented with vitamins
(100 mg L™" myo-inositol, 1 mgL ™" p?/ridoxine hydrochlo-
ride, 1 mg L™ " nicotinic acid, 0-2 mg L™ thiamine hydrochlo-
ride, 4 mg L ™" glycine) and 8 g L™ ' Bacto agar (MS). After
germination plantlets were transferred to 25 x 150-mm test
tubes with MS culture medium without malt extract.
Cultures were maintained at 24 + 1 °C, 60 % humidity and
16 h daily exposure to 40 wE m~ % s~ illumination.

Inter-annual and genotypic effect. Seeds of seven apomictic
genotypes including one sour orange (C. aurantium L.), two
mandarins, one Poncirus and three citranges obtained by
open pollination were collected from mature fruits of trees
from the INRA/CIRAD Germplasm Bank in three consecutive
years (Table 2). Seedlings were grown as described above.

Impact of geographical origin of seeds on tetraploid seedling
rates for the same genotype. To complete the analysis of environ-
mental effects, we used seeds of ‘Carrizo’ citrange from several
countries worldwide (South Africa: Eastern Cape; Brazil: Bahia
and San Paulo states; Uruguay: San José; USA: California and
Florida; France: Corsica; Spain: Valencia; Table 3). For this
experiment, tetraploid rates were evaluated in three samples of
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TaBLE 1. Tetraploid rates in seedlings of 30 genotypes of the Citrus genus
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Accession No. of No. of 4x SP. Percentage 4x
Species Genotype no. Origin seedlings seedlings 4x* seedlings
C. sinensis ‘Boukhobza’ SRA-569 Cirad, Corsica 290 2 2 0-8
‘Tarocco Rosso’ SRA-574 Cirad, Corsica 300 1 1
‘Cara Cara’ SRA-666 Cirad, Corsica 210 1 1
‘Sanguinelli’ SRA-243 Cirad, Corsica 150 1 1
‘Sanguinelli’ IVIA-34 Ivia, Moncada 63 2 2
‘Moro’ SRA-301 Cirad, Corsica 300 1 1
‘Shamouti’ SRA-299 Cirad, Corsica 350 2 2
‘Parson Brown’ SRA-144 Cirad, Corsica 150 1 1
‘Pineapple’ SRA-42 Cirad, Corsica 300 6 5
C. paradisi ‘Star Ruby’ SRA-293 Cirad, Corsica 150 2 2 2-8
‘Star Ruby’ IVIA-197 IVIA, 61 1 1
Moncada
‘Duncan’ IVIA-274 IVIA, 78 5 5
Moncada
C. reticulata ‘Tardivo di IVIA-186 IVIA, 73 7 6 3.0
Ciaculli’ Moncada
‘Anana’ IVIA-390 IVIA, 70 4 4
Moncada
‘Kara’ IVIA-218 IVIA, 100 2 2
Moncada
‘Salteiiita’ IVIA-361 IVIA, 84 0 0
Moncada
‘Fremont’ SRA-147 Cirad, Corsica 150 0 0
‘Beauty’ SRA-261 Cirad, Corsica 150 0 0
‘Simeto’ IVIA-413 IVIA, 73 0 0
Moncada
‘Kinnow’ SRA-276 Cirad, Corsica 150 2 2
‘Kinnow’ IVIA-33 IVIA, 92 13 13
Moncada
C. reticulata x C. sinensis ‘Murcott tangor’ SRA-601 Cirad, Corsica 150 2 2 3.5
‘Murcott tangor’ IVIA-196 IVIA, 179 10 8
Moncada
‘Nadorcott tangor’ IVIA-641 IVIA, 77 2 2
Moncada
‘Ortanique tangor’ IVIA-276 IVIA, 105 4 4
Moncada
C. reticulata x C. paradisi ‘Mapo tangelo’ IVIA-190 IVIA, 38 2 2 2-5
Moncada
‘Minneola tangelo’ IVIA-84 IVIA, 166 3 3
Moncada
Complex interspecific ‘Page’ IVIA-79 IVIA, 156 1 1 1-0
hybrids Moncada
‘Sunburst’ IVIA-200 IVIA, 112 2 2
Moncada
‘Fairchild’ IVIA-83 IVIA, 115 1 1
Moncada
Total 4442 80 76 1-80

* Number of seeds producing at least one 4x seedling.

TaBLE 2. Variation in tetraploid rates in seedlings of seven genotypes from the INRA/CIRAD Germplasm Bank (Corsica) over three
years (the number of seedling analysed is given in parentheses)

Species Genotype Accession Year 2002 Year 2003 Year 2004 P

C. aurantium ‘Begaradier’ SRA-952 3-1 % (1002) 19 % (268) - <0-1
C. reticulata ‘Willow leaf” SRA-133 39 % (1207) 2-5% (1613) 0-4 % (719) <0-001
C. reticulata ‘Cleopatra’ SRA-948 4-1% (761) 1-2 % (759) 0-2 % (526) <0-001
P. trifoliata ‘Pomeroy’ SRA-1074 - 5-4 % (1600) 1-0 % (487) <0-001
C. sinensis x P. trifoliata ‘Carrizo’ SRA-796 172 % (853) 81 % (908) 3-5% (373) <0-001
C. sinensis x P. trifoliata ‘Troyer’ SRA-981 20-9 % (250) 69 % (348) - <0-001
C. sinensis x P. trifoliata ‘C 35 SRA-731 - 2:6 % (349) 0-3 % (726) <0-001
Homogeneity ) test P < 0-001 P < 0:001 P < 0-001
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TaBLE 3. Origin of the seeds used for the analysis of environmental influence and mean temperatures during the blooming period
on tetraploidization

Mean Minimum mean Maximum mean
Origin Latitude, longitude, altitude temp. ("C) temp. (°C) temp. (°C)
Station de Recherches Agronomiques de Corse — INRA-CIRAD,  46°98'N, 7°98'E, 55 m 139 82 17-4
San Giuliano (Corsica) — France.
Willits & Newcomb Inc., Arvin (CA) — USA. 35°12'N, 118°47'W, 152-4 m 14-6 7-8 18-8
Instituto Valenciano de Investigaciones Agrarias, Moncada 39°34'50”N, 00°24'17"W, 55 m 150 7-6 19-2
(Valencia) — Spain.
Programa Nacional de Certificacion de Citricos — MGAP, Punta 34°47'3"S, 56°15'7"W, 48-8 m 15-8 10-5 19-3
del Espinillo (San José) — Uruguay.
Outspan Foundation Block, Uitenhage (Eastern Cape) — South 33°76'67"S, 25°31'67"E, 110 m 169 89 233
Africa.
Thompson Citrus Nursery, Winter Haven; Polk County (FL) — 27°59'N, 81°31'W, 15 m 219 149 257
USA.
Centro de Citricultura Sylvio Moreira — IAC, Cordeirépolis (San ~ 22°32'S, 47°27'W, 639 m 219 152 277
Paulo) — Brazil.
Centro Nacional de Pesquisa de Mandioca e Fruticultura 12°40'19”S, 39°06'22"W, 220 m 23.8 19-6 287

Tropical — EMBRAPA, Cruz das Almas (Bahia) — Brazil.

80 seeds from each geographical origin, except for the South
African origin, for which three samples of 100 seeds were
used. Seedlings were grown as described above.
Meteorological data were collected from the different sites
during the period covering floral induction and the flowering
period (August—November for the Southern Hemisphere and
February—May for the Northern Hemisphere). Mean tempera-
ture, mean minimum temperature and mean maximum tempera-
ture during the flowering period are given in Table 3.

Ploidy level evaluation by flow cytometry

Ploidy level was determined by flow cytometry according to
the methodology described by Aleza er al. (2009). Each
sample comprised a small piece of leaf of the analysed plant
(approx. 0-5mm?) with a similar piece from a diploid
control plant. For each genotype, one of the seedlings ident-
ified as tetraploid was subjected to detailed analysis. Ten
samples of four mixed leaves harvested from the entire
canopy of the tetraploid plants were studied without a
diploid control to check their possible cytochimeric nature.

Chromosome counts

For each genotype we performed a chromosome count of the
tetraploid plant selected for inclusion in the IVIA or CIRAD/
INRA Germplasm Banks. Tips and small leaves were collected
and incubated in a solution of 0-04 % 8-hydroxyquinoline (4 h at
room temperature and 4 h at 4 °C). They were then incubated in
an ethanol/acetic acid solution (3 : 1) for 48 h and stored at 4 °C
in a70 % ethanol solution. The preparations were then treated for
20 min in 5 M HCI and washed with distilled water. Finally, the
tissue was deposited on microscope slides, stained with a drop of
DAPI (4-6-diamine-2-phenylindol) and squashed. Observa-
tions were carried out with UV light using an E800 eclipse
Nikon microscope.

Molecular marker characterization

Genetic analysis was performed with 26 single sequence
repeat (SSR) markers: TAA 1, TAA 15 and CAC 15 published

by Kijas et al. (1997), Ci01C07, Ci02B07, Ci07C07, Ci07C09
and mCrCIRO7E12 (Froelicher et al., 2008), mCrCIR02D04b
(Kamiri et al, 2011), mCrCIR0O1C06, mCrCIR02D09,
mCrCIR02F12, mCrCIR02G02, mCrCIR03C08, mCrCIR03
G05, mCrCIR04H06, mCrCIR05A05 and mCrCIR07D06
(Cuenca et al., 2011) and eight new SSR markers (described
in Table 4). These markers display a broad distribution in
the clementine genetic map (Ollitrault ez al., 2011).
Extraction of genomic DNA was performed according to
Dellaporta and Hicks (1983). PCR products were separated
by vertical denaturalized electrophoresis (acrylamide, 6 %
bis-acrylamide, 7 m urea) 0-5x TBE buffer (Tris, boric acid
and 0-5 m EDTA, pH 8) in DCodeTM Biorad® buckets accord-
ing to the methodology described by Froelicher ef al. (2008).
Silver staining was performed according to Benbouzas et al.
(2006). The number of heterozygous loci analysed (n) was
recorded for each genotype. The recombination rate (r) for
each pair of adjacent SSR markers in a single linkage group
was evaluated from their genetic distance (Kosambi map func-
tion) in the clementine genetic map (Ollitrault et al., 2011).
The probability that a zygotic plant (arising from selfing)
would not be identified by the analysed marker was estimated
per linkage group based on P,, = P, (1 — 2r, (1-r,)), where
P; = 0-5 and r, is the recombination rate between the n—1 and
n heterozygous loci in the ordered linkage group. The global
probability was calculated by multiplying the probability per
each linkage group. As four of the markers used are not
mapped and not taken into account, this probability is an over-
estimation of the risk to consider a zygotic plant as apomictic.
To synthesize the genotype data, a cluster analysis was done
with the Darwin v.5-0-155 software (Perrier er al., 2003;
Perrier and Jacquemoud-Collet, 2006) according to the
weighted neighbour-joining method, using the simple-
matching dissimilarity index, where d;; is the dissimilarity
between units i and j, L is the number of loci, 7 is the level
of ploidy and m, is the number of matching alleles for locus /:

1 Lm[
di=1-=Y =
L]=17T
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TABLE 4. SSR markers used for the genetic analysis
Linkage Position
SSR marker Sequence forward 5" — 3’ Sequence reverse 5’ — 3’ group* (cM) SSR motif Reference
TAA 15 GAAAGGGTTACTTGACCAGGC CTTCCCAGCTGCACAAGC 1 119734 TAA Kijas et al.
mCrCIR02D09  AATGATGAGGGTAAAGATG ACCCATCACAAAACAGA 2 13378  GA (Clugegn7c)a et al.
mCrCIR0O4HO6 ~ GGACATAGTGAGAAGTTGG CAAAGTGGTGAAACCTG 2 27906  GA (Czl?elnlc)a et al.
CAC 15 TAAATCTCCACTCTGCAAAAGC GATAGGAAGCGTCGTAGACCC 2 52-561 CAC %(21(;';51 )et al.
mCrCIR03C08  CAGAGACAGCCAAGAGA GCTTCTTACATTCCTCAAA 2 98-:689  GA (Clu9:n7(:)a et al.
mCrCIR0O5A05  ATACCTGTGAGCGTGAG CCTCTTCCCTTCCATT 2 153-129  GA (Czlgclnlc)a et al.
Ci01C07 GTCACTCACTCTCGCTCTTG TTGCTAGCTGCTTTAACTTT 2 153.604 TC ;zrgtlellilher
mCrCIRO7D06 ~ CCTTTTCACAGTTTGCTAT TCAATTCCTCTAGTGTGTGT 4 16354 TG GA eCtuilI.lc(j 2?%1)1.
mCrCIR03G05  CCACACAGGCAGACA CCTTGGAGGAGCTTTAC 4 75-074  GA (Czl?elnlc)a et al.
mCrCIR02D04b CTCTCTTTCCCCATTAGA AGCAAACCCCACAAC 4 85-835 GA i(zé?rilir)l et al.
mCrCIR03D12a  GCCATAAGCCCTTTCT CCCACAACCATCACC 4 90-063  TGGA gg\)}/ l;ublished
Mest 15 TTATTACGAAGCGGAGGTGG GCCTCGCATTCTCTTGACTC 5 16214  GAG E :-3( é;)rublishecl
Mest 88 GCCTGTTTGCTTTCTCTTTCTC ATGAGAGCCAAGAGCACGAT 5 57.056 TC E:if i)rublished
mCrCIRO7E12  TGTAGTCAAAAGCATCAC TCTATGATTCCTGACTTTA 5 95430 GAAAGA gf(l)l;:kléiiher
Mest 56 AGTCCGCCTTTGCTTTTTCT GGTGCAAAAGAGAGCGAGAG 5 104-503  CA Ie\;ec\lhl/. ;ﬁgﬁfsgl)led
Mest 123 GGGATGGACTCCCAGTGTTA AAGAAAGATTTGCTGGCAGAG 6 26-839 TC E :-3( é;)rublishecl
mCrCIR02F12 GGCCATTTCTCTGATG TAACTGAGGGATTGGTTT 6 60-841 GA gl??r(lira et al.
mCrCIR01C06 ~ GGACCACAACAAAGACAG TGGAGACACAAAGAAGAA 6 88-819 GA (Czligrllga et al.
Mest 132 TTATTTCCTTTGACGGTGGG TTCTTTGGAGCCGAACAACT 6 91877 GA gg\)}/l}:ublished
TAA 1 GACAACATCAACAACAGCAAGAGC AAGAAGAAGAGCCCCCATTAGC 6 93386  TAA Eijilie; al.
Ci07C07 TATCCAGTTTGTAAATGAG TGATATTTGATTAGTTTGG 7 98-:019 TG gr?)gfilher
Ci02B07 CAGCTCAACATGAAAGG TTGGAGAACAGGATGG 9 0 GA le:i'(?el.lifi(;(r)g)
mCrCIR02G02  CAATAAGAAAACGCAGG TGGTAGAGAAACAGAGGTG No map - GA eCtuL;lnc(az (t)’(t)i)l
mCrCIR02G12  AAACCGAAATACAAGAGTG TCCACAAACAATACAACG No map - GA ﬁg\ilgublished
Ci07C09 GACCCTGCCTCCAAAGTATC GTGGCTGTTGAGGGGTTG No map - GA giiﬁ?éher
Mest 192 CGCGGATCATCTAGCATACA CTTGGCACCATCAACACATC No map - AT f\; ec\lai. ;igﬁf})led
marker
* Clementine genetic map (Ollitrault et al., 2011).

Statistical analysis RESULTS

Chi square tests of homogeneity were used to evaluate the
significance of annual and genotypic factors in the genotypic
and inter-annual variation of the frequency of tetraploid

seedlings.

Analysis of variance was used to study the impact of geo-
graphical origin of ‘Carrizo’ citrange on tetraploidy rates.
The Duncan test was used for comparisons between means.

genetic origin

Identification of tetraploid plants from seedling populations
of several apomictic citrus genotypes and analysis of their

Seedlings of 30 apomictic diploid genotypes of the Citrus
genus were analysed to investigate the genetic origin of tetra-
ploid seedlings. We found 80 tetraploid plants (2n = 4x = 36)
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arising from 76 seeds from the 4442 seedlings analysed
(Table 1). Tetraploid plants were identified for all genotypes
studied, except for ‘Beauty’, ‘Fremont’, ‘Saltefiita’ and
‘Simeto’ mandarins. Overall, the frequency of tetraploid
plants was 1-80%. The lowest frequency was found for
sweet oranges (0-80%) and tangelos (1-04 %) and the
highest for tangors (3-52 %); rates between 2-5 and 3 % were
observed for the other species. Intraspecific variability has
been observed, with rates varying from 0 to 9 % between the
aforementioned mandarins and ‘Tardivo di Ciaculli’ mandarin,
for example. Tetraploid seedlings were obtained from fruits
producing a majority of diploid seedlings. For 15 genotypes,
a more detailed analysis of the ploidy level of plantlets
arising from seeds producing at least one tetraploid seedling
was performed. Twenty-eight seeds produced only one tetra-
ploid plant. When more than one plant per seed was obtained,
in most cases (25/28) diploid plantlets were found associated
with the tetraploid ones (Table 5). In total, only three seeds
among 4442 produced two tetraploid plants (Table 1).

One tetraploid plant of each cultivar was thoroughly ana-
lysed using ten samples of four mixed leaves coming from
different branches covering the entire canopy. All the
samples analysed displayed a single peak corresponding to
the tetraploid level. This result demonstrates that these plants
were not chimeric for ploidy level (Fig. 1). The same plants
were analysed for chromosome counts and all of them
displayed 36 chromosomes (2n = 4x = 36).

All the tetraploid plants and their parental diploid lines were
characteriZed by using 24 SSR markers. These SSR markers
showed considerable polymorphism among the parental lines
and the observed segregation confirmed the monolocus status
of the markers and thus the heterozygosity of the cultivars dis-
playing two allelic bands. For example, all the cultivars ana-
lysed in Fig. 2 display heterozygotic profiles for the TAA1S
and mCrCIR07D06 SSR markers. According to positions of
the heterozygous markers for each parental genotype, we
have estimated the probability of a diploid zygotic seedling
from self-fertilization being identical to the mother plant.
This is also the rate for a potential doubled diploid zygotic
plant. Regardless, the probability of a zygotic plant originating

from outcrossing being identical to the mother plant would be
lower than it would from selfing. According to the diploid par-
ental genotypes, between 14 and 20 of the analysed markers
were heterozygous, corresponding to a probability of having
zygotic seedlings identical to nucellar ones below 1-07 x
102 (see Supplementary Data Table SI, available online).
All the tetraploid plants were found to be identical to their
diploid parent for all the markers analysed, as shown in the
neighbour-joining tree (Fig. 3 and Supplementary Data
Table S1).

Frequency of tetraploidization events and potential tissular
origin in ‘Tardivo di Ciaculli’ mandarin

Under greenhouse conditions the rate of germination of apo-
mictic embryos is low because many embryos are very small
(Fig. 4). To estimate the relative number of diploid and tetra-
ploid embryos in the same seed better, we conducted a sys-
tematic in vitro rescue of all the embryos contained in the
apomictic seeds of ‘Tardivo di Ciaculli’ mandarin. This is a
highly polyembryonic cultivar producing a high rate of tetra-
ploid seedlings (Table 1). Among the 96 seeds studied, we
found between two and 29 embryos per seed (mean 8-1).
Among 777 cultivated embryos, 634 successfully germinated
in vitro (6-6 plantlets per seed), of which 573 were diploids
and 61 tetraploids (9-6 % tetraploids). For greenhouse seed-
lings of ‘Tardivo di Ciaculli’ mandarin, among 73 germinated
seeds only 110 plantlets were recovered (1-5 plantlets per
seed), of which 103 were diploids and seven were tetraploids
(6-3 % tetraploids). These data indicate that the germination
rate of both diploid and tetraploid embryos is much higher
in vitro than in vivo, as expected. However, in vitro we
found that 40 of 96 seeds contained at least one tetraploid
embryo while only six of 73 seeds produced a tetraploid
plant in the greenhouse. The number of successful tetraploidi-
zation events (producing tetraploid embryos) per seed is there-
fore at least more than four times higher than that estimated by
analysing seedlings produced under greenhouse conditions.
All seed containing tetraploid embryos also contained
diploid embryos. Among the seeds containing tetraploid

TABLE 5. Number of seeds that germinated producing different combinations of tetraploid and diploid plantlets for 15 accessions

of Citrus
Variety Accession I x4x+0 x2x I x4x+1x2x I x4x+2x2x I x4x+3 x2x I x4x+4 x2x 2 x 4x
‘Anana’ IVIA-390 1 3 0 0 0 0
‘Duncan’ IVIA-274 1 4 0 0 0 0
‘Fairchild’ IVIA-83 1 0 0 0 0 0
‘Kara’ IVIA-218 2 0 0 0 0 0
‘Kinnow’ IVIA-33 7 5 1 0 0 0
‘Mapo’ IVIA-190 2 0 0 0 0 0
‘Minneola’ IVIA-84 1 2 0 0 0 0
‘Murcott’ IVIA-196 2 2 0 1 1 2
‘Nadorcott’ IVIA-641 1 1 0 0 0 0
‘Ortanique’ IVIA-276 2 1 1 0 0 0
‘Page’ IVIA-79 1 0 0 0 0 0
‘Sanguinelli’ IVIA-34 2 0 0 0 0 0
‘Star Ruby’ IVIA-197 1 0 0 0 0 0
‘Sunburst’ IVIA-200 1 1 0 0 0 0
‘T. Ciaculli’ IVIA-186 3 2 0 0 0 1
Total 28 21 2 1 1 3
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Histograms of the control diploid plant of ‘Murcott’ tangor (a), the control diploid plant and tetraploid plant of ‘Murcott’ tangor (b,c) and tetraploid
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Fi1G. 2. Allelic variability of TAA15 and mCrCIR07D06 SSR markers for some of the diploid parental lines. 1, ‘Nadorcott’; 2,
’; 6, ‘Anana’; 7, ‘Kinnow’; 8, ‘Fairchild’; 9,‘Sunburst’; 10, ‘Mapo’; 11, ‘Minneola’; 12, ‘Sanguinelli’; 13, ‘Duncan’; 14 ‘Star Ruby’.

‘Kara’; 5, ‘T. Ciaculli
embryos, most contained a single tetraploid (25), while ten,
four and one seed contained two, three and four tetraploid
embryos, respectively (Fig. 5).

Thirty-six diploid plants and ten tetraploid plants arising
from eight seeds with different 2x/4x ratio (4:1, 4:1, 4:1,
4:1,4:1,5:1, 3:2, 8:2) were analysed with seven SSR
markers heterozygous for ‘Tardivo di Ciaculli” mandarin
(Ci02B07, mCrCIR03D12a, mCrCIR0O5A05, mest 15, mest
56, mest 123, mest 132). All the plants were identical to the
parental diploid line, demonstrating they were all of nucellar
origin. It is also clear that tetraploid plants were obtained
from nucelli that predominantly comprised diploid cells.

Genotypic and inter-annual variation of the frequency
of tetraploid seedlings

To analyse the importance of genetic and environmental
factors, tetraploid seedling rates were evaluated with seeds har-
vested from the same trees of seven genotypes of the INRA/
CIRAD Germplasm Bank over a period of three years (2002,
2003 and 2004). A total of 12749 seedlings were analysed
by flow cytometry (Table 2) and 580 tetraploid plantlets
were identified. Systematic analysis of all tetraploid seedlings
with five SSR markers (selected to be heterozygotic for each
diploid parental genotype) confirmed their identity with their
diploid parents (data not shown). Variability between geno-
types for tetraploid production during the same year was
highly significant. ‘Troyer’ and ‘Carrizo’ citranges produced
the highest tetraploid rates, reaching 21 % for ‘Troyer’ in
2002. Significant variations were also observed between
years for a single genotype, and consistent results were
observed for all genotypes. Tetraploid rates were highest in
2002 and were lowest for all genotypes in 2004. Considering
only the three varieties studied over the three years, average

mCrCIR07D06
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‘Murcott’; 3, ‘Ortanique’; 4,

tetraploid rates were respectively 8-4, 3-9 and 14 % for
2002, 2003 and 2004. The high correlation coefficient (R?)
between rates of tetraploid plant production by the different
genotypes in successive years (0-893 and 0-871 for 2002-
2003 and 2003-2004, respectively) suggests that environ-
mental factors affect tetraploid plant production.

Variation in tetraploid frequencies in ‘Carrizo’ citrange
seedlings from different geographical origins

Given the inter-annual variation of tetraploid rates and thus
the impact of environmental conditions on tetraploidization
events, we compared tetraploid rates between seed samples of
a single genotype, harvested in different countries. ‘Carrizo’
citrange was chosen due to its high rate of tetraploid seedling
production and the important variation observed between seed
samples harvested in Corsica during three different years.

Significant differences were found for tetraploid production
between the different geographical origins (Table 6). Highest
rates of seeds producing tetraploid plants (199, 19-7 and
18-7 %) and tetraploid plants among all seedlings (19-2, 12-1
and 13-3 %) were found for those of Valencia, Corsica and
Uruguay origins, respectively. Lower rates were found for
Florida, Bahia and San Paulo, 4-2, 1-5 and 3-3 %, respectively,
for seeds that produced 4x plants and 2.5, 0-9 and 1.9 % for 4x
plants. Values for South Africa were intermediate, with 8.1
and 6-2 %, respectively, for seeds that produced 4x seeds and
4x plants. Rates for California were also intermediate but did
not differ significantly from regions producing the highest
rates (Valencia, Corsica and Uruguay) or from South Africa.
Overall, it appears that tropical regions produced fewer tetra-
ploid seedlings than the Mediterranean and sub-tropical
regions. Moreover, tropical samples produced no more than
one tetraploid plant per seed.
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o ‘Tardivo di Ciaculli’ (1x 2x, 7 x 4x, 20)

e ‘Mapo’ (1x 2x, 2x 4x, 16)

e‘Anana’ (1x 2x, 4x 4x, 18)

® ‘Murcott’ (1x 2x, 12x 4x, 16)
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p ‘Boukhobza’ (1x 2x, 2x 4x, 20)
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o ‘Minneola’ (1x 2x, 3x 4x, 19)

® ‘Kinnow’ (1 x 2x, 15x 4x, 20)

e ‘Sunburst’ (1x 2x, 2x 4x, 19)
¢ ‘Fairchild’ (1x 2x, 1x 4x, 15)

e ‘Page’ (1x 2x, 1x 4x, 17)

¢ ‘Ortanique’ (1x 2x, 4x 4x, 19)

T‘Star Ruby’ (1x 2x, 3x 4x, 14)

Fic. 3. Cluster analysis of tetraploid plants and their diploid parental lines based on 24 SSR markers: neighbour-joining analysis using simple-matching dis-
similarity index. The numbers of diploid and tetraploid plants analysed are indicated, and the last number corresponds to the number of heterozygotic SSR
markers used for genetic analysis.

Significant negative correlations (Pearson coefficient) were
observed between the rates of seeds producing tetraploid
plants and mean temperatures (R = —0-91), mean maximal
temperatures (R = —0-94) and mean minimum temperatures
(R = —0-84) of the site where the seed samples were harvested
(the mean temperature covered the period of floral induction
and blooming; see Materials and methods). Likewise, a signifi-
cant negative correlation was found between the rate of tetra-
ploid plants among all seedlings and the same temperature
parameters (R = —0-86, —0-86 and —0-81, respectively).

DISCUSSION
Genetic structure and origin of citrus tetraploid seedlings

Tetraploid seedlings may result from chromosome doubling of
somatic or zygotic tissue or from the fertilization of non-
reduced ovules by diploid pollen. Seeds from open pollination
were harvested in the Germplasm Banks of IVIA (Spain) and
INRA/CIRAD (Corsica), where no tetraploid adult parents

were present at this time. Non-reduced pollen seems to be
extremely rare in citrus (Esen and Soost, 1977; Luro et al.,
2004) so the probability of obtaining tetraploid zygotic
embryos from two diploid parents can be considered as
quasi null and has never been described in citrus. Therefore,
the potential origin of the tetraploids obtained could be: (1)
nucellar seedlings from fruits of tetraploid branches of the
diploid mother tree produced by chromosome doubling in
somatic tissues of the diploid parental tree, (2) nucellar seed-
lings from doubled primordium cells of nucellar tissue, (3)
chromosome doubling during the nucellar embryo develop-
ment, and (4) chromosome doubling of the zygotic embryo
at early or later stages of development.

Flow cytometry analysis of numerous leaves and roots of
tetraploid seedlings clearly demonstrated that these plants
were not chimeric for ploidy. Thus the tetraploid plants did
not originate by chromosome doubling at a later stage of
embryo development.

Seventy-eight tetraploid plants arising from 22 diploid
genotypes have been genotyped with 24 SSR markers and
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Fi1G. 4. Plantlets obtained from embryos contained in one apomictic seed of
‘Tardivo di Ciaculli’ mandarin.

40
= NT
35
m3
% 30F m2
8 25f — E':)
u= (]
5 o0
2
c 15F
S
Z 10}
5- H
'_| 1 1 1 1 1 1 ﬁ ]
0
0-2 2-4 4-6 6-8 8-10 1012 >12

Number of germinated plants per seed

Fi1G. 5. Distribution of the number of seeds according to the total number of
recovered plants per seed after in vitro embryo rescue and the number of tetra-
ploid plants (NT: O, 1, 2 or 3) per seed in ‘Tardivo di Ciaculli’ mandarin.

compared with the parental diploid genotype. Note that all
sweet orange cultivars displayed identical profiles for all ana-
lysed markers, as well as the two grapefruits. These results are
in agreement with previous molecular studies (Barkley et al.,
2006; Luro et al., 2008), which have clearly shown that each
of these apomictic taxa originated from a single hybrid and
that within-taxa diversification was due to budsport mutation
events without further sexual recombination. All the tetraploid
plants displayed the same SSR profile as their diploid parents
for all the heterozygous markers analysed. Such identity
between tetraploid seedlings and diploid parents was also
observed for the 580 tetraploid plants identified in the seed-
lings of seven citrus genotypes (including Poncirus and inter-
generic hybrids) over three years. These results clearly
demonstrate that potential origin by early endomitosis of
zygotic embryos can be discarded. This identity of tetraploid
seedlings with parental diploid genotypes is also consistent
with the hypothesis that they do not arise from fertilization
of a 2n ovule by diploid pollen. From these results we con-
clude that tetraploid seedlings in apomictic genotypes arise
from somatic chromosome doubling of maternal cells.

The fact that the tetraploid seedlings were obtained from
seeds producing mostly diploid embryos is consistent with pre-
vious results (Cameron and Frost, 1968). It indicates that poly-
ploid seeds do not arise from tetraploid sectors of the trees, or
from fruits resulting from vegetative or floral bud solid tetra-
ploidization. Indeed, in this case all the seeds from a single
fruit would have the same ploidy level. Kobayashi et al
(1981) demonstrated that, in apomictic citrus genotypes,
adventitious embryos originated from a single cell of the
nucellus which they termed primordium cells. As observed
by Hutchison and Barrett (1981), we have shown that
diploid and tetraploid seedlings can arise from the same apo-
mictic seed and, moreover, we have demonstrated by SSR
analysis that the associated diploid seedlings were also of
nucellar origin in ‘Tardivo di Ciaculli” mandarin seedlings.
Consequently, tetraploidization events occur in nucellar
tissues that are mostly diploid. Our results demonstrate that
the formation of tetraploid embryos is the consequence of
chromosome doubling of individual nucellar primordium
cells of the nucellus, each subsequently producing one solid
tetraploid embryo.

Furthermore, in other experiments performed by our group,
seeds of different tetraploid apomictic citrus genotypes always
produced tetraploid seedlings, associated with octoploid plant-
lets in some cases (Schwarz, 2001). This is in agreement with
the results obtained here.

Frequency of tetraploid plants in seedlings of diploid apomictic
citrus is dependent on genotype and environment

The global frequency of tetraploid seedlings among 30 ana-
lysed genotypes of Citrus cultivated in Valencia and Corsica
was 1-8 % (varying from 0 to 9-7 % with cultivar and environ-
mental conditions). This value is higher than that recorded by
Barrett and Hutchison (1978) from seeds harvested in Florida
(0-75 %) and California (0-9 %). In our analysis of 30 citrus
genotypes we observed some variation between species as
well as within species. However, the relatively low number
of plants analysed for some genotypes, and the different geo-
graphical and annual origin of seeds does not allow us to draw
any general conclusions on genotypic effect. This aspect was
analysed further by study of tetraploid rates of seven genotypes
from Corsica over three years. We found very high rates of tet-
raploid seedlings for ‘“Troyer’ and ‘Carrizo’ citranges, reaching
20 % for some seed samples. As for Citrus species, these
values are higher than those observed by Hutchison and
Barrett (1981) in Florida (between 1 and 3 %). Such a discre-
pancy may be due to differences among the genotypes ana-
lysed and the geographical origin of the seeds harvested;
however, they could also be due to differences in the tetraploid
identification method, which in previous studies was based on
visual observation of morphological traits. From a systematic
search of autotetraploids in a wide range of apomictic geno-
types, Barrett and Hutchison (1978) postulated that the
ability to produce such tetraploid seedlings is a variable
genetic trait present in apomictic citrus and related species.
Moreover, Hutchison and Barrett (1981) concluded from a
3-year analysis of ‘Troyer’ and ‘Carrizo’ citranges from
Florida that tetraploid seedling frequency is affected by
environmental conditions. Analysis of seedlings of seven
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TABLE 6. Variation in tetraploid plant rates in seedlings of ‘Carrizo’ citrange from different geographical origin

No. of germinated No. of plants No. of plants No. of seeds producing  No. of 4x Percentage seeds Percentage 4x
Location seeds per seed analysed 4x plants plants producing 4x plants plants
Corsica 234 1-80° 421 46 51 19-7¢ 12.1¢¢
California 222 1-53° 340 27 30 12.2¢4 88"
Valencia 191 1:31° 229 38 44 19-9¢ 19-2¢
Uruguay 219 1.77° 383 41 51 18-7¢ 13.3%¢
South Africa 295 1-69% 498 24 31 8-1% 6:2°
Florida 236 1.73¢ 408 10 10 4.00° 2.5%
San Paulo 210 1.75¢ 364 7 7 3.3 1.9%
Bahia 203 1-58° 321 3 3 1-5* 0-9*

Different letters in the same column indicate significant differences (P < 0-05).

genotypes of Citrus, Poncirus and intergeneric hybrids har-
vested during three consecutive years in Corsica confirmed
these assumptions. Indeed, both genotypic and inter-annual
effects were significant. A higher incidence of tetraploid
plants was found for two citranges, with rates varying
between 3-5 and 21 % depending on the year, while the
lowest rates were found for ‘Cleopatra’ mandarin, varying
from 0-2 to 4 %. We found that the inter-annual effect influ-
enced the different genotypes in the same way, as reported
by Hutchison and Barrett (1981) but with a stronger impact.
This could be related to the greater inter-annual climatic varia-
bility in the Mediterranean area than in Florida during floral
induction and the blooming period.

We confirmed the importance of environmental conditions
on tetraploidy rates by studying seeds of the same genotype
(‘Carrizo’ citrange) harvested in different countries. Higher
rates were observed for the Mediterranean than for tropical
areas, and significant negative correlations were observed
between tetraploid rates and mean temperatures during floral
induction and the blooming period. These results are in agree-
ment with the higher tetraploid rates found in our experiments
compared with data for Florida (Barrett and Hutchison, 1978;
Hutchison and Barrett, 1981) and they suggest that colder con-
ditions favour tetraploidization events in citrus nucellar cells.
In mango (Mangifera indica L.), another apomictic species,
the influence of environmental conditions on spontaneous tet-
raploidy follows the same pattern as in citrus. In a small-scale
study in the Canary Islands, spontaneous tetraploid apomictic
seedlings were found on the relatively cold island of Tenerife,
where temperatures are not suitable for commercial mango
production, but they were not found in the same genotypes
on the island of La Gomera, which has a tropical climate
that supports commercial mango production (Galan-Sauco
et al., 2001). Tetraploid seedlings of mango have not been
reported from any of the tropical areas where the crop is
produced.

The effect of low temperatures on polyploidization events
appears to be a general rule, both in plants and in animals
(Ramsey and Schemske, 1998; Otto and Whitton, 2000).
Moreover, it has long been known that the frequency of poly-
ploid taxa increases with latitude in the Northern Hemisphere.
The possible reasons for this trend have been debated for many
decades. Hagerup (1931) suggested that polyploids are better
adapted than diploids to extreme climates. Manton (1950),
Love and Love (1957), and Johnson et al. (1965) considered

that polyploids have selective advantages where climatic fluc-
tuations have been frequent and catastrophic, because they
have great genetic variability resulting from recent hybridiz-
ation. Stebbins (1950) argued that polyploids seem better
suited than diploids to colonize newly deglaciated areas
because of greater ecological adaptability. Recent studies
have shown that important modifications in gene expression
occur immediately after allopolyploidization events (Comai
et al., 2000; Adams et al., 2004; Wang et al., 2004, 2006;
Flagel and Wendel, 2010). Neoregulation of parental genome
expression in allopolyploid plants would partially explain
why they often give rise to new phenotypes, exceeding the
variability range of the diploid gene pool and their higher
adaptability (Osborn et al., 2003). Besides the adaptive advan-
tage of polyploids, the higher rate of polyploidization events in
a colder environment could be one of the factors underlying
the increased frequency of polyploid species with latitude in
the Northern Hemisphere. It could contribute to the overall
increase in gametophytic apomictic taxa in northern regions
(Asker and Jerling, 1992). Gametophytic apomixis is inti-
mately related to polyploidy and it was proposed that apomixis
was due to epigenetic variation associated with polyploidy or
interspecificity (Koltunow and Grossniklaus, 2003). In angios-
perms, apomixis is most likely to arise in areas and time
periods influenced by glaciations of the Pleistocene, where
range fluctuations of plants because of climatic oscillations
offered the most frequent opportunities for interspecific
hybridization and polyploidization events (Horandl, 2006). In
these areas with potentially higher rates of tetraploidization
events, the establishment and persistence of these tetraploid
cytotype was favoured by apomixis. Indeed, taxa with gameto-
phytic apomixis have advantages in higher latitudes/altitudes
over their sexual relatives due to (1) a shortening of the repro-
ductive pathway and faster seed development in shorter veg-
etation periods, (2) reproductive assurance if pollinators and
mating partners are rare and (3) potentially less pressure
from predators because of reduced biotic interactions from
colder climates (Horandl, 2006).

In these areas with potentially higher rates of tetraploidization
events and the insignificant role of polyploidy in citrus evolution

It should be noted that the rate of tetraploid plants found
among greenhouse seedlings is an underestimation of the
real rate of tetraploidization events per seed. Indeed, by
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in vitro rescue of all the embryos contained in seeds of
‘Tardivo de Ciaculli’ mandarin, we found that 42 % of the
seeds contained at least one tetraploid embryo, while in the
greenhouse seedlings, only 8 % of seeds of the same sample
produced tetraploid plantlets. This is a consequence of the
small size of many embryos that do not germinate under
greenhouse conditions. Overall, even considering only tetra-
ploid seedling rates in the greenhouse, successful polyploidi-
zation frequencies observed for citrus are very high
compared with the mean value of 10™° tetraploids per individ-
ual and generation estimated in plants by Ramsey and
Schemske (1998). It is highly probable that adventitious
embryony is favourable to polyploidization. Indeed, the
same phenomenon has been observed in apomictic mango
(Galan-Sauco et al., 2001). It is interesting to note that
species having a sporophytic form of apomixis (adventitious
embryony), such as citrus or mango, do not present the
general link found between ploidy and apomixis (Asker and
Jerling, 1992; Richards, 1996; Roche et al., 2001), but
display repetitive tetraploidization events in primordium
embryogenic cells, producing relatively high levels of tetra-
ploid seedlings.

As with most angiosperms it is very probable that the citrus
genome has undergone one or more very ancient whole
genome duplication events (palaeopolyploidy; Adams and
Wendel, 2005; Cui et al., 2006). However, despite frequent
natural polyploidization events and the apomictic nature of
most of the nucellar doubled-diploids, it appears that poly-
ploids have played a minor role in more recent diversification
of the Aurantioideae subfamily and evolution of the Citrus
genus, as demonstrated by their scarcity in natural germplasm.
One possible explanation could be that citrus originated and
were domesticated in tropical areas of South-East Asia, and
our study shows that the frequency of tetraploidization
events is much lower in tropical regions than in cooler
areas, such as the Mediterranean Basin. From an evolutionary
perspective, the occurrence of tetraploidization events in the
tropical areas where citrus originated was rarer than the rate
we estimated from the germplasm banks in Spain and
Corsica. Even the data from Florida germplasm genotypes
growing in a much warmer environment (Barrett and
Hutchison, 1978) give tetraploid seedling rates of between
0-2 and 3-3 %, with a 0-75 % average from the analysis of
32 citrus genotypes. These values are high compared with
the tetraploidization rates of other plant species (Ramsey
and Schemske, 1998).

Polyploidy has played an important role in the creation of
plant diversity (Stebbins, 1971; Masterson, 1994) but several
factors influence the successful establishment of a tetraploid
compartment from rare tetraploid plants. For species with
sexual mating, self-pollination and all modifications that
favour the transfer of tetraploid plant pollen to other tetraploid
plants (such as a change in the flowering time, in pollinator
preferences, or limited pollen and seed dispersion) are favour-
able for tetraploid compartment establishment (Baack, 2005).
Pollen competition in favour of 2x pollen compared with 1x
pollen is also a major factor allowing minority tetraploid cyto-
types to establish a tetraploid compartment in sympatric situ-
ations, as demonstrated in Chamerion angustifolium
(Husband et al., 2002). Apomixis of the tetraploid cytotypes

is generally considered as a favourable element for successful
establishment of tetraploids (Schranz et al., 2005; Hufft-Kao,
2008). Consendai and Horandl (2010) demonstrated that tetra-
ploid apomicts colonize previously devastated and also distant
areas via long-distance dispersal and they have the advantage
of uniparental reproduction. For the diploid sexual cytotype,
self-sterility and pollinator dependence may strongly limit
range expansions.

As already mentioned, the better adaptability of allopoly-
ploids could result from new genome regulation. Genome
neo-regulation has been shown to be much more closely
related to interspecificity than polyploidization itself. Indeed,
several studies, such as in Spartina (Salmon et al., 2005),
Helianthus (Lai et al., 2006) and Arabidopsis (Wang et al.,
2006), reveal that neo-regulation of genome expression
occurs in interspecific crosses within the same ploidy level,
while chromosome doubling or autopolyploidization affects
the genome (Wang et al., 2006; Stupar et al., 2007) or pro-
teome (Albertin et al., 2005) expression only slightly. In
addition to epigenetic changes induced by a ‘genomic shock’
(McClintock, 1984), an advantage of allopolyploidy was
proposed to result from the juxtaposition and interaction of
divergent homeologous regulatory networks, leading to new
cis- and trans-acting effects on gene expression (Chen, 2007;
Landry et al., 2007). In the case of chromosome doubling of
fertile intra- or inter-specific diploid genotypes, as occurs for
apomictic citrus, the previous arguments for the advantage
of tetraploid over diploid parents are not valid. Cameron and
Frost (1968) and further studies have shown that most of the
doubled diploid citrus lines are less vigorous than their par-
ental diploid lines, probably limiting their competitiveness.
In addition, in citrus, polyembryony of most natural
doubled-diploids strongly limits the potential for evolution
and fitness of the tetraploid gene pool. In seeds of apomictic
citrus, competition between the zygotic and nucellar
embryos generally results in failed development of the
zygotic embryo (Frost and Soost, 1968; Koltunow, 1993),
hampering the contribution to the next sexual generation of
these genotypes as female parents. Thus, tetraploid plants
should mainly contribute to the sexual next generation as
male parents, pollinating non-apomictic diploids and generally
producing abnormal triploid seeds that are highly unlikely to
germinate under natural conditions. Moreover, it has been
shown that the degeneration of pollen mother cells is more fre-
quent in doubled-diploid citrus than in their diploid parental
genotypes (Frost and Soost, 1968). These authors also
observed high variability in chromosome conjugation (quadri-
valent, trivalent, bivalent and univalent) during metaphase I.
Consequently, most autotetraploids generally produce few
pollen grains with a normal chromosome complement (Frost
and Soost, 1968) and have lower pollen viability than
diploid parental lines. This lower pollen fertility for nucellar
tetraploid plants might also have limited their contribution to
generation of new sexual polyploids. Furthermore, in the
case of successful triploid offspring production, the triploid
hybrids have very low fertility and are virtually seedless,
which precludes their perpetuation by natural means. During
the domestication process, tetraploids were not selected by
farmers owing to their thick peel and rough pulp (Cameron
and Frost, 1968).
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Tetraploids for citrus breeding

Scion breeding. We have discussed here the selection of tetra-
ploid plants of sweet oranges (‘Sanguinelli’, ‘Pineapple’,
‘Boukhobza’, ‘Tarocco Rosso’, ‘Cara Cara’, ‘Moro’,
‘Shamouti’ and ‘Parson Brown’), mandarins (‘Anana’,
‘Kinnow’, ‘Kara’, ‘Tardivo di Ciaculli’ and ‘Willow leaf”),
grapefruits (‘Duncan’ and ‘Star Ruby’), tangors (‘Murcott’,
‘Nadorcott” and ‘Ortanique’) and tangelos (‘Mapo’,
‘Minneola’, ‘Page’, ‘Sunburst’” and ‘Faichild’). In addition, tet-
raploid lines of C. aurantifolia (IVIA-490), ‘Eureka Frost’
lemon (IVIA-495), ‘Orlando’ tangelo (IVIA-492) and
‘Dweet’ tangor (IVIA-496) have been selected by the IVIA
(Spain). All these new tetraploid plants have been included
in the IVIA and CIRAD/INRA Germplasm Banks for use as
male parents in triploid breeding programmes. Several thou-
sand triploid hybrids have already been produced at the
IVIA by 2x x 4x crosses with these new tetraploid parents.
With the demonstration that tetraploid seedlings from apomic-
tic genotypes are doubled-diploid, between 66 % (under the
tetrasomic random chromosome segregation model; Muller,
1914; Marsden et al., 1987) and 56 % (tetrasomic maximum
equational segregation model; Mather, 1936) of the diploid
parental heterozygosity is transmitted to the triploid progeny.
In comparison with triploids obtained from 2n gametes in
2x x 2x crosses and in agreement with the hypothesis that
2n gametes in citrus arise from second division restitution
(SDR) (Esen et al., 1979; Luro et al., 2000; Cuenca et al.,
2011) it should be assumed that the phenotypic traits of the
diploid parent from which the diploid gamete originated will
be transmitted to the triploid progenies at higher frequencies
in 2x X 4x crosses than in 2x x 2x crosses. Moreover, less
polymorphism can be expected in triploid progenies arising
from 2x x 4x crosses than from 2n SDR gametes (Ollitrault
et al., 2008).

Rootstock breeding. Recent work on citrus tetraploid rootstocks
suggests that they could be more tolerant to salt and water
stress than their parental diploids (Saleh et al., 2008), probably
due to modified abscisic acid constitutive synthesis (Allario
et al., 2009). Furthermore, tetraploid rootstocks generally
reduce canopy size, which is a desirable trait in modern orchards
(Barrett and Hutchison, 1978; Lee, 1988). The selection of
doubled-diploid lines from seedlings of traditional rootstocks
could be an interesting way to improve tolerance to abiotic
stress without modifying allelic constitution, with high probabil-
ities of transmitting traits related to disease resistance. Here we
have described the selection of tetraploid lines of sour oranges,
‘Cleopatra’ mandarin, ‘Pomeroy’ Poncirus and citranges
(‘Carrizo’, ‘Troyer’ and ‘C.35’). In addition to these genotypes,
tetraploid nucellar plants were obtained for C. macrophylla
Wester (IVIA-518), C. volkameriana Ten. & Pasq (SRA-729
and IVIA-500), C. limonia Osb. (SRA-777 and IVIA-516),
C. jambhiri (IVIA-498), ‘Gou Tou’ and ‘Sevillano’ sour
oranges (SRA-506 and IVIA-497), Poncirus (‘Rubidoux’
IVIA-504 and ‘Flying Dragon’ IVIA-499), C. reticulata x P. tri-
foliata (ICVNO110155) and C. paradisi x P. trifoliata (‘4475
ICVNO110140 and ‘CP4475° IVIA-501). All these tetraploid
genotypes, with potential interest for use as rootstocks, have
been included in the IVIA and INRA/CIRAD Germplasm
Banks. Agronomical trials are currently underway to evaluate

the agronomic performance of some of these tetraploid root-
stocks under abiotic stress conditions.

Conclusions

Tetraploidization is a frequent event in seeds of diploid apo-
mictic Citrus, Poncirus and their intergeneric hybrids.
Genotypic and environmental factors affect the rate of tetra-
ploidy. The higher frequencies of tetraploidy were observed
for intergeneric hybrids of sweet orange and Poncirus
(‘Carrizo’ and ‘Troyer’ citranges) cultivated in the
Mediterranean area, where tetraploid seedling frequencies
could exceed 20 %. The colder conditions of marginal pro-
duction areas would seem to favour tetraploidization. Even
in tropical areas, the rates of tetraploidy in seedlings of
diploid apomictic genotypes are higher than the frequency of
polyploidization events generally reported in the literature
for other species. Therefore, the factors limiting the evolution-
ary role of polyploidization in citrus are probably related to the
problems of establishment and persistence of new polyploids.
Molecular marker analysis definitively demonstrates that the
tetraploids found in seedlings of apomictic diploid citrus
arise from chromosome doubling of nucellar cells. Given the
high frequency of tetraploids in seedlings of apomictic
diploid citrus, chromosome doubling cannot be considered a
negligible mechanism of polyploidization in plants.
However, it is probably less favourable for successful estab-
lishment and persistence of a new tetraploid compartment. It
would be interesting to investigate its occurrence in other
species with a similar reproductive system (apomixis by
adventitious nucellar embryony). In the near future, ploidy
manipulation associated with new breeding strategies aiming
to develop triploid seedless easy-to-peel fruits and tetraploid
rootstock should lead to a dramatic change in cultivated
citrus, moving from the cultivation of diploid to polyploid
plants. The tetraploid genotypes arising from chromosome
doubling of nucellar cells of apomictic citrus could play a sig-
nificant role in the evolution of cultivated forms, as parents in
interploid crosses or directly as new rootstocks.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of Table S1: genetic analysis of
diploid parental genotypes with SSR markers.
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