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† Background and Aims Lady’s slipper orchids (Paphiopedilum) are of high value in floriculture, and interspecific
hybridization has long been used for breeding improved cultivars; however, information regarding the genome
affinities of species and chromosome pairing behaviour of the hybrids remains almost unknown. The present
work analyses the meiotic behaviour of interspecific hybrids by genomic in situ hybridization and cytologically
evaluates the genomic relationships among parental species.
† Methods Eight interspecific F1 hybrids of Paphiopedilum species in various subgenera or sections were inves-
tigated in this study. The chromosome behaviour in meiosis of these interspecific hybrids was analysed and sub-
jected to genomic in situ hybridization and fluorescent in situ hybridization.
† Key Results Genomic in situ hybridization was demonstrated as an efficient method to differentiate between
Paphiopedilum genomes and to visualize the chromosome pairing affinities in interspecific F1 hybrids, clarifying
the phylogenetic distances among these species. Comparatively regular chromosome pairing observed in the
hybrids of P. delenatii × P. bellatulum, P. delenatii × P. rothschildianum and P. rothschildianum ×
P. bellatulum suggested high genomic affinities and close relationships between parents of each hybrid. In con-
trast, irregular chromosome associations, such as univalents, trivalents and quadrivalents occurred frequently in
the hybrids derived from distant parents with divergent karyotypes, such as P. delenatii × P. callosum,
P. delenatii × P. glaucophyllum, P. rothschildianum × P. micranthum and P. rothschildianum ×
P. moquetteanum. The existence of multivalents and autosyndesis demonstrated by genomic in situ hybridization
in this study indicates that some micro-rearrangements and other structural alterations may also play a part in
differentiating Paphiopedilum species at chromosomal level, demonstrated as different chromosome pairing affi-
nities in interspecific hybrids.
† Conclusions The results indicate that genome homology and the interaction of genetic factors, but not chromo-
some number nor karyotype similarity, determine the chromosome pairing behaviour in Paphiopedilum hybrids.

Key words: Paphiopedilum, homeologous pairing, autosyndesis, genomic in situ hybridization, pollen
formation.

INTRODUCTION

The genus Paphiopedilum (known as the lady’s slipper orchid)
is one of the most popular orchid genera because of its distinc-
tive flower morphology. There are about 75 species occurring
in the tropical Asia (ranging from India, through southern
China and south-east Asia, to the Philippines and New
Guinea). Based on morphological characteristics, karyomor-
phology and molecular phylogenetic data, Paphiopedilum
species are grouped into three subgenera, including
Parvisepalum, Brachypetalum and Paphiopedilum (Cribb,
1998). Karyomorphological analysis in Paphiopedilum
revealed that, despite a variation in chromosome number
(2n ¼ 26–42), the total number of chromosome arms
(nombre fondamental or n.f.; Mathey, 1949) in a karyotype
is almost conserved as n.f. ¼ 52 (Karasawa and Saito, 1982).
The changes in chromosome number and karyotype symmetry
were considered as a consequence of Robertsonian centric

fission (Jones, 1998). The species with a chromosome comp-
lement of 2n ¼ 26 is suggested to be the basic number of
this genus. Chromosome numbers vary from 2n ¼ 28–42
and 2n ¼ 30–37 in the sections Barbata and Cochlopetalum
of subgenus Paphiopedilum. Moreover, there is an obvious
coincidence that those species with more telocentric
chromosome often contain more DNA in their genomes
(Cox et al., 1998).

During the past century, thousands of interspecific hybridiz-
ations have been made to combine various traits, such as the
colours, the multiflorous state and heavier flowers, to
improve the horticultural values of Paphiopedilum in cultiva-
tion. The progeny resulting from intercrossing species
between subgenera may be sterile or have low fertility due
to irregular chromosome pairing. Although detailed karyotype
data are available for Paphiopedilum species, virtually nothing
is known about genome affinity and chromosome pairing
between parental species of interspecific hybrids. Genome
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analysis provides valuable information about species relation-
ships and, therefore, plays an important role in plant breeding
programmes. The genome affinities between parental species
were conventionally appraised according to the chromosome
pairing behaviour observed at meiotic MI in F1 hybrids
(Singh, 2003). Recently, a molecular cytogenetic technique,
genomic in situ hybridization (GISH), has been effectively
performed for this purpose, allowing the ancestral genomes
to be distinguished, the pairing of homoeologous chromo-
somes at meiosis to be visualized and even chromosome
rearrangements detected (reviewed in Schubert et al., 2001;
Maluszynska and Hasterok, 2005). Numerous successful
examples have been reported; one of the most famous
studies was carried out in the Festuca–Lolium complex
(reviewed by Kopecký et al., 2008a). GISH, a method of
modified fluorescent in situ hybridization (FISH), uses the
total genomic DNA as a probe (Heslop-Harrison et al.,
1988; Schwarzacher et al., 1989) and usually with an excess
of unlabelled DNA from another species as blocking agent
for better differentiation (Anamthawat-Jonsson et al., 1990).

In this study, the efficiency of GISH to differentiate between
the parental genomes in meiotic chromosome pairing of the
Paphiopedilum F1 hybrids is demonstrated. The results give
direct evidence of genome homology between the parental
species, and thus provide useful information in the breeding
programmes.

MATERIALS AND METHODS

Plant materials

Seven species in various subgenera or sections in the genus
Paphiopedilum (Table 1) were taken from the living collection
in the greenhouse of the Botanical Garden of the National
Museum of Natural Science, Taiwan. Among them,
P. delenatii (subgenus Parvisepalum – the primitive group)
and P. rothschildianum (section Coryopedilum of subgenus
Paphiopedilum) were used as the pod parents. Eight inter-
specific hybrids of Paphiopedilum (Table 2) were produced
by hand pollination. The plants of interspecific F1 hybrids
were cultivated in the greenhouse of the National Museum
of Natural Science, Taiwan.

Pollen viability

The pollinia at anthesis were collected and stained with 1 %
aceto-carmine (1 % carmine in 45 % acetic acid) as previously
described (MacFarlane et al., 1989): pollen with positive stain-
ing was taken as indicating viability. At least three individuals
were analysed.

Chromosome preparation

To analyse chromosome pairing in these F1 hybrids, anthers
with pollen mother cells (PMCs) at meiotic MI were collected
and fixed in fresh prepared Farmer’s fluid (three parts of
ethanol to one part of glacial acetic acid). PMCs were macer-
ated with an enzyme mixture containing 6 % cellulose
(Onoauka R-10, Yakult Honsha, Japan) and 6 % pectinase
(Sigma Chemical Co., St Louis, MO.) in 75 mM KCl, pH 4.0
at 37 8C for 30 min then squashed in 1 % aceto-carmine
according to the method of Kao et al. (2006). Slides with
good quality MI spreads were stored at –80 8C for GISH
and FISH analysis.

GISH and 45rDNA FISH

Genomic DNA from young leaves of accessions was
extracted using a DNeasy Plant Mini Kit (Qiagen, Oslo,
Norway). Genomic DNA of the pod parents (P. delenatii or
P. rothschildianum) was labelled with biotin-16-dUTP by
nick translation (Roche Diagnostics GmbH, Penzberg,
Germany) and used as the probe. For use as unlabelled block-
ing, genomic DNA of each pollen parent was fragmented up to
100–300 bp in size by boiling in 0.4 M NaOH for 40 min
according to the previously described protocol (Cao et al.,
2000). The position of the 45S rRNA gene locus was detected
by FISH and mapped as the chromosomal landmark to target
the possible homeologous pairing between parental species.
Purified DNA of plasmid pTA71 containing a repetitive unit
of 45S rRNA gene (rDNA, approx. 9 kb) of Triticum aestivum
(Gerlach and Bedbrook, 1979) was labelled with
digoxigenin-11-dUTP by nick translation (Roche Diagnostics
GmbH) as the FISH probe. GISH and FISH were performed
together according to the protocols of Chung et al. (2008)
and Schwarzacher and Heslop-Harrison (2000) with minor

TABLE 1. The Paphiopedilum species used for interspecific crosses

Species Subgenus* Section* 2n
Karyomorphology†

V‡ I§

P. delenatii Parvisepalum – 26 26 –
P. micranthum Parvisepalum – 26 26 –
P. bellatulum Brachypetalum – 26 26 –
P. rothschildianum Paphiopedilum Coryopedilum 26 26 –
P. callosum Paphiopedilum Barbata 32 20 12
P. glaucophyllum Paphiopedilum Cochlopetalum 36 14 22
P. moquetteanum Paphiopedilum Cochlopetalum 34 16 18

* The taxonomic system follows Cribb (1998).
† Data adapted from Karasawa and Saito (1982).
‡ Metacentric chromosome.
§ Telocentric chromosome.
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modifications. Immediately after the slide was taken out of the
–80 8C deep freezer, the coverslip on the slide was removed
with a razor and the slide was dehydrated in a series of 70
%, 90 % and 100 % ethanol, then dried on a hot plate (60
8C) for 30 min. The chromosome preparations on the slide
were denatured in 70 % formamide (in 2× SSC) at 70 8C for
1 min and dehydrated in an ethanol series before the hybridiz-
ation mixture was applied. The hybridization mixture, 20 mL
per slide, contained 20 ng of biotin-labelled genomic DNA,
20 ng of digoxigenin-labelled 45S rDNA, 30–50 % forma-
mide, 10 % dextran sulfate, 2× SSC, 10 mg of salmon
sperm DNA and blocking DNA in suitable concentration.
The hybridization mixture was denatured at 90 8C for 10 min
and left on ice for 5 min before being applied to a slide with
denatured chromosome spreads. Hybridization was conducted
in a humid box at 37 8C overnight. Stringent washes were
done with 2× SSC at room temperature for 5 min, at 45 8C
for 10 min, then at room temperature for 5 min. The
digoxigenin-labelled probes were detected by

anti-digoxigenin-rhodamine (Roche Diagnostics GmbH). The
biotin-labelled probes were detected by fluorescein
isothiocyanate-conjugated avidin (Vector Laboratories,
Burlingame, CA, USA). Chromosomes were counterstained
with 4′, 6-diamidino-2-phenylindole (DAPI) in Vectashield
(Vector Laboratories). Images were acquired and processed
as previously described in Kao et al. (2006) and Chung
et al. (2008). For each accession, at least five chromosome
complements with good labelling signals were photographed
and analysed.

Phylogenetic analysis

To exhibit the relationships of species used in this study, a
phylogenetic tree was constructed, based on the nucleotide
sequences of 5.8S ribosomal RNA gene and the internal tran-
scribed spacers (ITS1 and ITS2) obtained from the GenBank
database. Sequence alignment and phylogenetic analysis
were performed with neighbor-joining estimation using
GrowTree in Wisconsin Package (SeqWeb 3.1.2)

RESULTS

Sporad types and pollen viability in the hybrids

At the end of meiosis, each PMC normally forms a tetrad with
four microspores (Fig. 1A). A considerable number of irregular
tetrads were observed in these eight interspecific hybrids
(Fig. 1B–D). In these eight hybrids, varying amounts between
60.2 % and 83.8 % of normal tetrads were formed. The tetrads
with micronuclei were frequently observed in all eight
hybrids, ranging from 10.2 % to 26.7 % (Table 2). The amount
of stainable pollen, including those which were obviously
small, ranged from 47.8 % to 74.1 % in these eight hybrids
(Table 3). Most of the unstained pollen was derived from
those irregular sporads. A large amount of small pollen which
derived from the micronuclei was usually unstained.

Chromosome pairing in the hybrids

The chromosome pairing behaviour at the meiotic MI stage
in eight interspecific hybrids was analysed by GISH in this
study (Figs 2 and 3). With the exception of P. delenatii ×
P. micranthum (intra-subgeneric hybrid), the parental
genome in the constitution of each of these hybrids could
clearly be distinguished by GISH and its configuration at the
meiotic MI stage was also revealed (Table 4).

TABLE 2. The number (percentage) of sporad types in eight Paphiopedilum interspecific hybrids

Hybrid Total sporads analysed Dyad (%) Dyad* (%) Triad (%) Triad* (%) Tetrad (%) Tetrad* (%)

P. delenatii × P. micranthum 216 4 (1.8) – 9 (4.2) – 181 (83.8) 22 (10.2)
P. delenatii × P. bellatulum 254 8 (3.1) 6 (2.4) 14 (5.5) 5 (2.0) 194 (76.4) 27 (10.6)
P. delenatii × P. rothschildianum 223 7 (3.1) – 16 (7.2) 5 (2.2) 158 (70.9) 37 (16.6)
P. delenatii × P. callosum 204 – – 12 (5.9) 7 (3.4) 135 (66.2) 50 (24.5)
P. delenatii × P. glaucophyllum 243 7 (2.9) 5 (2.1) 10 (4.1) 12 (4.9) 167 (68.7) 42 (17.3)
P. rothschildianum × P. micranthum 236 – – 21 (8.9) 10 (4.2) 142 (60.2) 63 (26.7)
P. rothschildianum × P. bellatulum 228 – – 18 (7.9) – 176 (77.2) 34 (14.9)
P. rothschildianum × P. moquetteanum 232 5 (2.2) – 12 (5.1) 6 (2.6) 164 (70.7) 45 (19.4)

* Sporads with micronucleus.

A B

C D

FI G. 1. Sporad types observed in the Paphiopedilum interspecific F1 hybrids
using a differential interference contrast microscope: (A) a normal tetrad is
enclosed in a thick callose wall; (B) a dyad is enclosed in a thick callose
wall; (C) a triad is enclosed in a thick callose wall; (D) an irregular tetrad

with a micronucleus (arrow). Scale bars ¼ 10 mm
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In the intra-subgeneric hybrid P. delenatii × P. micranthum
(2n ¼ 26), a high genome homology between two species was
demonstrated in chromosome pairing with an average of 3.1
univalents (I) and 11.6 bivalents (II) per PMC (Table 4). In
GISH experiments, the parental chromosomes could not be
clearly distinguished, even when an addition of 50×
unlabelled P. micranthum blocking DNA over the probe was
added to the hybridization mixture (Fig. 2A–C).

Chromosome pairing in the inter-subgeneric hybrid
P. delenatii × P. bellatulum (2n ¼ 26), with an average of
6.9 univalents and 10.7 bivalents per PMC, was relatively
lower than that in the intra-subgeneric hybrid P. delenatii ×
P. micranthum (2n ¼ 26) (Table 4). The 13 chromosomes
derived from P. delenatii could be distinguished as they dis-
played strong green hybridization signals when the 50×
unlabelled P. bellatulum blocking DNA over the probe was
added (Fig. 2D–F).

In the hybrid P. delenatii × P. rothschildianum (2n ¼ 26),
chromosome pairing ranged from seven to eleven bivalents
with an average of 9.7 per PMC. A mean of 5.6 univalents
and 0.5 trivalents (III) per PMC was scored (Table 4 and
Fig. 2G–I). The addition of 30× unlabelled
P. rothschildianum blocking DNA over the probe to the
hybridization mixture was sufficient to distinguish the parental
chromosomes. Autosyndesis could be observed in this hybrid
(Fig. 2H) with at least two P. delenatii autosyndetic pairs
and one P. rothschildianum autosyndetic pair detected.

In the hybrid P. delenatii × P. callosum (2n ¼ 29), chromo-
some pairing was poor, ranging from two to five bivalents with
an average of 3.5 per PMC (Fig. 2J–L). A relatively high fre-
quency of univalents (an average of 6.1 per PMC) and triva-
lents (an average of 5.3 per PMC) was observed in PMC of
this hybrid (Table 4). Only 10× unlabelled P. callosum block-
ing DNA over the probe to the hybridization mixture was suf-
ficient to distinguish the parental chromosomes. In this hybrid,
autosyndesis frequently occurred and was usually involved in
the formation of trivalents (Fig. 2K).

In the hybrid P. delenatii × P. glaucophyllum (2n ¼ 31),
the formation of bivalents between parental chromosomes
was relatively low, ranging from five to seven with an
average of 5.4 bivalents per PMC (Fig. 2M–O). The uni-
valents, trivalents (III) and quadrivalents (IV) occurred

frequently instead. The mean chromosome configuration of
this hybrid was 5.7I + 5.4II + 3.3III + 1.1IV per PMC
(Table 4). The addition of 10× unlabelled P. glaucophyllum
blocking DNA over the probe to the hybridization mixture
was enough to distinguish the parental chromosomes. This
hybrid also displayed a highly frequent autosyndesis in the
formation of trivalents (Fig. 2N).

In the hybrid P. rothschildianum × P. micranthum (2n ¼
26), meiotic pairing was characterized by a large number of
univalents with an average of 19.6 per PMC. No trivalents
or quadrivalents were observed (Table 4 and Fig. 3A–C).
The 13 chromosomes derived from P. rothschildianum were
identified displaying strong green hybridization signals when
the 30× unlabelled P. micranthum blocking DNA over the
probe was added (Fig. 3B). Figure 3B showed only three
homoeologous bivalents pairing at MI stage. Autosyndesis
was not observed in this hybrid.

GISH results readily revealed several bivalents at the MI stage
as heterogeneous pairing in the hybrid P. rothschildianum ×
P. bellatulum (2n ¼ 26) (Fig. 3D–F). A number of univalents
and trivalents were observed. The mean chromosome configur-
ation of this hybrid was 3.8I + 8.4II + 1.8III per PMC
(Table 4). The addition of 30× unlabelled P. bellatulum block-
ing DNA over the probe to the hybridization mixture was enough
to differentiate the parental chromosomes.

In the hybrid P. rothschildianum × P. moquetteanum (2n ¼
30), meiotic pairing ranged from four to nine bivalents with an
average of 6.4 per PMC (Fig. 3G–I). GISH results showed
that bivalents were mainly formed by heterogeneous pairing
between P. rothschildianum and P. moquetteanum, with only a
few bivalents derived from autosyndesis. Univalents, trivalents
and quadrivalents were also observed. The mean chromosome
configuration of this hybrid was 8.8I + 6.4II + 2.1III + 0.7IV
per PMC (Table 4). The addition of 30× unlabelled
P. moquetteanum blocking DNA over the probe to the hybridiz-
ation mixture was enough to differentiate the parental
chromosomes.

Homeologous pairing tracing by 45S rDNA-FISH

Each Paphiopedilum species used in this study has one
45S rDNA locus (Lee and Chung, 2008). In every hybrid

TABLE 3. The number (percentage) of stainable pollen and pollen types in eight Paphiopedilum interspecific hybrids

Hybrid Total pollen analysed

No. (%) of stainable pollen counted

Stained pollen* Large pollen† Small pollen‡

P. delenatii × P. micranthum 618 458 (74.1) 432 (69.9) 26 (4.2)
P. delenatii × P. bellatulum 623 427 (68.5) 379 (60.8) 48 (7.7)
P. delenatii × P. rothschildianum 620 376 (60.6) 308 (49.6) 68 (11.0)
P. delenatii × P. callosum 608 291 (47.8) 216 (35.5) 75 (12.3)
P. delenatii × P. glaucophyllum 622 349 (56.1) 291 (46.8) 58 (9.3)
P. rothschildianum × P. micranthum 618 362 (58.6) 301 (48.7) 61 (9.9)
P. rothschildianum × P. bellatulum 632 453 (71.7) 419 (66.3) 34 (5.4)
P. rothschildianum × P. moquetteanum 624 416 (66.6) 364 (58.3) 52 (8.3)

* Total number of pollen grains positively stained by aceto-carmine.
† The number of pollen grains positively stained ranged from 12 mm to 15 mm in size.
‡ The number of pollen that were positively stained and were smaller than 8 mm.
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FI G. 2. FISH and GISH analyses revealed the meiotic chromosome pairing of Paphiopedilum interspecific F1 hybrids. Meiotic chromosomes were
counterstained with DAPI in blue (A, D, G, J, M). Merged images of GISH/FISH results (B, E, H, K, N) show the chromosomes from P. delenatii (in
green) and the locations of 45S rDNA loci (in red) of each hybrid. Chromosomes in same/similar configurations were grouped and are separately indicated
by arrows in different colours (C, F, I, L, O). (A–C) Chromosome configuration (4I + 11II) at meiotic MI of the hybrid P. delenatii × P. micranthum (2n ¼
2x ¼ 26). In (B) two univalents (arrows) with an 45S rDNA cluster (red), which originated from each parental genome, are shown. The two univalents
without green signals indicated by arrowheads were from P. micranthum. (D–F) Chromosome configuration (8I + 9II) at meiotic late MI of the hybrid
P. delenatii × P. bellatulum (2n ¼ 2x ¼ 26). In (E) arrowheads indicate the univalents from P. delenatii and arrows indicate the univalents from
P. bellatulum. (G–I) Chromosome configuration (7I + 8II + 1III) at MI of meiosis in the hybrid P. delenatii × P. rothschildianum (2n ¼ 2x ¼ 26). Among
the eight bivalents shown in (H), one was the autosyndetic pair of P. delenatii (arrow), three were autosyndetic pairs of P. rothschildianum (arrowheads) and
four were homeologous pairs between parents (red arrows). One trivalent is indicated with a green arrow. (J–L) Chromosome configuration (6I + 4II + 5III)
at MI of meiosis in the hybrid P. delenatii × P. callosum (2n ¼ 2x ¼ 29). In (K) arrows indicate the trivalents and the arrowhead indicates one P. callosum auto-
syndetic pair. (M–O) Chromosome configuration (5I + 5II + 4III + 1IV) at MI of meiosis in the hybrid P. delenatii × P. glaucophyllum (2n ¼ 2x ¼ 31). In (N)

arrows indicate the trivalents and an arrowhead indicates the quadrivalent. Scale bars ¼ 10 mm
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investigated here, rDNA sites were detected at the distal
ends of two separated chromosomes by FISH. However, in
combination with the labelling signals of GISH, the chromo-
somes with 45S rDNA sites (nucleolar chromosomes) from
each parental species rarely paired as heterogeneous
bivalents at the MI stage in these eight F1 hybrids (Figs 2
and 3).

DISCUSSION

Sporad types and pollen viability in the hybrids

In Table 2, the percentages of abnormal sporad types varied in
the eight interspecific hybrids, which may be attributed to their
frequency of irregular meiotic pairing. The low percentages of
stainable pollen in the hybrids (Table 3) may be due to the

A B C

D E F

G H I

FI G. 3. FISH and GISH analyses revealed the meiotic chromosome pairing of Paphiopedilum interspecific F1 hybrids. Meiotic chromosomes were
counterstained with DAPI in blue (A, D, G). Merged images (B, E, H) showed the chromosomes from P. rothschildianum (in green) and the locations of
45S rDNA loci (in red) of each hybrid. Chromosomes in same/similar configurations were grouped, which were separately indicated by arrows in different
colours (C, F, I). (A–C) Chromosome configuration (20I + 3II) at MI of meiosis in the hybrid P. rothschildianum × P. micranthum (2n ¼ 2x ¼ 26). In (B)
arrows indicate the bivalents. (D–F) Chromosome configuration (7I + 8II + 1III) at MI of meiosis in the hybrid P. rothschildianum × P. bellatulum (2n ¼
2x ¼ 26). In (E) arrows indicate the trivalents and chromosomes with 45S rDNA from both parents were separated as univalents (arrowheads). (G–I)
Chromosome configuration (12I + 4 II + 2III + 1IV) at MI of meiosis in the hybrid P. rothschildianum × P. moquetteanum (2n ¼ 2x ¼ 30). In (H) arrows indi-
cate the trivalents, an arrowhead indicates the quadrivalent and the double arrowheads indicate two P. moquetteanum autosyndetic pairs. Scale ars ¼ 10 mm.

TABLE 4. Chromosome configurations of eight Paphiopedilum interspecific hybrids at metaphase I of meiosis

Hybrid 2n Total PMCs analysed

Mean (range) chromosome configuration per cell

I II III IV

P. delenatii × P. micranthum 26 20 3.1 (0–4) 11.6 (11–13) – –
P. delenatii × P. bellatulum 26 40 6.9 (2–8) 10.7 (9–12) – –
P. delenatii × P. rothschildianum 26 48 5.6 (4–8) 9.7 (7–11) 0.5 (0–2) –
P. delenatii × P. callosum 29 20 6.1 (3–9) 3.5 (2–5) 5.3 (4–6) –
P. delenatii × P. glaucophyllum 31 35 5.7 (4–8) 5.4 (5–7) 3.3 (3–4) 1.1 (0–2)
P. rothschildianum × P. micranthum 26 24 19.6 (18–22) 3.2 (2–4) – –
P. rothschildianum × P. bellatulum 26 36 3.8 (3–5) 8.4 (7–10) 1.8 (1–3) –
P. rothschildianum × P. moquetteanum 30 28 8.8 (6–12) 6.4 (4–9) 2.1 (1–3) 0.7 (0–1)
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subsequent degeneration of the sporads without balanced
genomes as previously reported in Phalaenopsis (Aoyama
et al., 1994) and in lily (Lim et al., 2001).

Genomic differentiation by GISH

The components and organization of repetitive sequences on
chromosomes determine the efficiency of GISH to differentiate
between the parental genomes (Anamthawat-Jonsson and
Reader, 1995). Therefore, an excess of unlabelled DNA from
the parental genome other than the probe-derived genome is
often needed as blocking agent for better differentiation
(Anamthawat-Jonsson et al., 1990). In this study, the chromo-
somal composition of the meiotic configurations in inter-
specific hybrids of Paphiopedilum could be successfully
identified by GISH with a suitable concentration of blocking
DNA in the hybridization mixture.

The phylogenetic distance between parental genomes (Fig. 4)
reflects the ratio of blocking DNA to probe needed in the hybrid-
ization mixture of GISH. The failure to discriminate parental
chromosomes in the hybrid P. delenatii × P. micranthum
(Fig. 2B) may be due to the close distance between both parental
genomes of this intra-subgeneric hybrid shown in Fig. 4. In the
inter-subgeneric hybrids P. delenatii × P. rothschildianum,
P. rothschildianum × P. micranthum, P. rothschildianum ×
P. bellatulum and P. rothschildianum × P. moquetteanum, par-
ental chromosomes were discriminated successfully using a 1 :
30 ratio of the probe and blocking DNA in the hybridization
mixture. An addition of 10× unlabelled P. callosum or
P. glaucophyllum DNA was sufficient to discriminate
the P. delenatii chromosomes from P. callosum or
P. glaucophyllum chromosomes in their hybrids. These results
demonstrate that P. delenatii, P. callosum and
P. glaucophyllum are remotely related species, which agreed
with the conclusions regarding the phylogenetic relationships
according to their rDNA ITS sequences (Fig. 4; Cox et al.,

1997). An addition of 50× unlabelled P. bellatulum DNA in
the hybridization mixture as blocking was needed to distinguish
P. delenatii chromosomes in the inter-subgeneric hybrid of
P. delenatii × P. bellatulum by GISH. Paphiopedilum bellatu-
lum is closer to P. delenatii than the other species investigated
(Fig. 4.). The subgenus Parvisepalum (P. delenatii) and the sub-
genus Brachypetalum (P. bellatulum) are closely related sister
groups (Cox et al., 1997) and possess comparable karyotypes:
26 meta- or sub-metacentric chromosomes (Karasawa, 1986).
These characteristics contribute to the heterogeneous pairing
between P. delenatii and P. bellatulum (Fig. 2D–F).

Karyotype variation and chromosome pairing

High irregularities in meiotic pairing were observed in the
hybrids of P. delenatii × P. callosum and P. delenatii × P. glau-
cophyllum (Table 4), reflecting the distant relationships between
their parental species (Fig. 4; Cox et al., 1997). In addition, the
divergent karyotypes of these parental species may also cause
high irregularity in meiosis. Species in sections Barbata and
Cochlopetalum depart from the constant karyotypic pattern,
ranging from 2n ¼ 28 to 42 (n.f. ¼ 52) in section Barbata,
and 2n ¼ 32 to 36 (n.f. ¼ 50) in section Cochlopetalum (Cox
et al., 1998). The increase in chromosome numbers in
Paphiopedilum species has been proposed to be the result of a
centric fission mechanism (Duncan and MacLeod, 1949,
1950; Jones, 1998). The low frequency of bivalents found in
these hybrids, suggesting that structural alterations in addition
to centric fission have occurred in P. callosum and
P. glaucophyllum, thus hindered their chromosomes from
homoeologous pairing with P. delenatii.

Meiotic pairing in the hybrid of P. delenatii × P. rothschil-
dianum is higher than that in the hybrid P. rothschildianum ×
P. micranthum (Table 4). Though both P. micranthum and
P. delenatii belong to subgenus Parvisepalum and demonstrate
a high homology between their genomes (Fig. 2A–C and
Table 4), they showed different meiotic chromosome configur-
ations and GISH performance when crossed with
P. rothschildianum (Figs. 2G–I and 3A–C and Table 4).
Breeding records also show that it is easier to get progenies
from the hybrid of P. delenatii × P. rothschildianum than
from the hybrid of P. rothschildianum × P. micranthum when
backcrossing to the parent. The success in genome differen-
tiation by GISH in the hybrid P. delenatii ×
P. rothschildianum (Fig. 2G–I) also reflects that the genomic
components and organizations of these two parental species
must be substantially different. In spite of their disparity in
genomic components and organizations, homoeologous
pairing frequency was high in their hybrids. These results
suggest that chromosome pairing in Paphiopedilum hybrids is
attributed to not only the genome homology but also to the inter-
action of genetic factors. One possible explanation is that the
genetic factors required for chromosome pairing in
P. micranthum and P. rothschildianum are incompatible.
Kopecký et al. (2008b) analysed meiotic behaviour of the
Lolium–Festuca hybrids by GISH and suggested that, although
the repetitive DNA sequences might diverge markedly during
evolution of the two genera, the sequences involved in chromo-
some pairing were conserved enough to facilitate regular pairing
partner recognition and crossing-over.

P. delenatii (Z78497)

P. micranthum (GU993849)

P. callosum (Z78457)

P. rothschildianum (AJ564370)

P. bellatulum (Z78492)

P. glaucophyllum (EF156105)

P. moquetteanum (EF156129)

10

FI G. 4. Phylogenetic tree of Paphiopedilum species based on nucleotide
sequences of 5.8S rDNA, ITS1 and ITS2 obtained from the GenBank database.
The accession number of the sequence used to represent each species is indi-

cated in parenthesis. Scale bar ¼ substitutions per 100 bases.
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Quadrivalents were found in the hybrids P. delenatii ×
P. glaucophyllum (Fig. 2M–O) and P. rothschildianum ×
P. moquetteanum (Fig. 3G–I). It is worthy to note that the
total number of chromosome arms of section Cochlopetalum
(P. moquetteanum and P. glaucophyllum) would account for
an n.f. of 50 rather than 52. It is proposed that the ‘ancestral’
karyotype has lost either a single metacentric or two telo-
centric chromosomes prior to divergence of extant species in
this section (Cox et al., 1998). The lack of a single metacentric
or two telocentric chromosomes in section Cochlopetalum
genomes may hamper the normal chromosome association
with the other species with an n.f. of 52 during meiosis.

Chromosome pairing of the hybrid progenies

Two kinds of homeologous pairing were displayed in these
Paphiopedilum hybrids by GISH. Most of the pairings
involved chromosomes from different parental genomes (allo-
syndetic pairing) and some involved chromosomes within the
same genome (autosyndesis). Depending upon the time of
evolutionary divergence, related species may have highly dif-
ferentiated homoeologous genomes. Therefore, the homoeolo-
gous chromosome pairings may be attributable to accumulated
changes in the chromosomal structure through evolution
(Armstrong and Keller, 1982) or to genetic regulations on
homoeologous pairing (Prakash, 1974), such as the Ph1
locus in wheat (Triticum aestivum) (Griffiths et al., 2006).
The homoeologous chromosome pairings indicate the relative
affinities between the parental genomes of the hybrids. Using
classical chromosome staining methods, it would not be poss-
ible to identify the origin of chromosomes involved in each
meiotic configuration (i.e. univalent, bivalent or other multi-
valents). GISH reveals the chromosomal composition of the
meiotic configurations and, thus, determines the actual
meiotic affinities of the respective genomic components
between parental species (allosyndesis) and may indicate the
existence of duplicated genomes in these species
(autosyndesis).

In this study, autosyndesis was observed in the hybrids
P. delenatii × P. rothschildianum, P. delenatii × P. callosum,
P. delenatii × P. glaucophyllum (Fig. 2H, K, M) and P.
rothschildianum × P. moquetteanum (Fig. 3H). Autosyndetic
pairing suggested the existence of genome duplication in
these Paphiopedilum species. Trivalents or quadrivalents
observed in these Paphiopedilum hybrids (Table 4) suggested
that translocations have been involved in the differentiation of
Paphiopedilum species.

The number and distribution of 45S rDNA loci may vary
among closely related species (see references in Chung
et al., 2008). According to a previous examination by FISH,
each parental species used in this study has one 45S rDNA
locus (Lee and Chung, 2008). Two rDNA loci in a separated
univalent were detected in each of Paphiopedilum interspecific
hybrids investigated here, suggesting that chromosomes with
45S rDNA loci in these Paphiopedilum species were less
homologous.

In conclusion, GISH analysis is an efficient method to visu-
alize cytologically the genomic affinities and homeologous
differentiations in Paphiopedilum species. Therefore, GISH
may help in studying the phylogenetic relationships among

Paphiopedilum species and in tracing the origin and the intro-
gression of parental genomes of interspecific hybrids. The
present results indicate that chromosome pairing in
Paphiopedilum hybrids is subject to genome homology and
the interaction of genetic factors, while chromosome number
and karyotype similarity are less involved. In addition to
centric fission, which is known as the major mechanism
involved in karyotype evolution in the genus Paphiopedilum,
the present results indicated that other structural rearrange-
ments may also play roles in differentiating Paphiopedilum
species at chromosomal level.
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