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Abstract
The first full genome sequences were established in the mid 1990s. Shortly thereafter, genome-
scale metabolic network reconstructions appeared. Since that time, we have witnessed an
exponential growth in their number and uses. Here I discuss, from a personal point of view, four
topics: 1) the placement of metabolic systems biology in the context of broader scientific
developments, 2) its foundational concepts, 3) some of its current uses, and 4) some of the
expected future developments in the field.

1. Metabolic Systems Biology in the Grand Scheme of Things
Ever since Gregor Mendel discovered discrete quanta of information passed from one
generation to the next that determined form and function of an organism, the genotype-
phenotype relationship has been of fundamental importance in the life sciences. For
monogeneic traits, the genotype-phenotype relationship can be readily understood.
However, most phenotypic traits involve multiple gene products. This makes the genotype-
phenotype relationship a challenge to reconstruct and understand, given the complex
interactions that can form among the gene products.

With the publication of the first full genome sequences in the mid-1990s [1] it became
possible, in principle, to identify all the gene products involved in complex biological
processes in a single organism. The well-studied biochemistry of metabolic transformations
made it possible to reconstruct, on a genome-scale, metabolic networks for a target organism
in a biochemically detailed fashion [2,3]. Such metabolic network reconstructions can be
converted into a mathematical format yielding mechanistic genotype-phenotype
relationships for microbial metabolism [4]. The mathematical format of the underlying
biochemical, genetic, and genomic (BiGG) knowledge allows the formulation of genome-
scale models (GEMs). GEMs enable the computation of phenotypic traits based on the
genetic composition of the target organism [4,5].

Since the establishment of the first metabolic genome-scale reconstruction in 1999 and in
silico models thereof, many more have followed (Figure 1); perhaps most notably for human
metabolism in 2007. The scope and content of network reconstructions continues to grow,
for instance to include the entire transcription/translation apparatus of a cell [6] and the
structural information about the metabolic enzymes [7].
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2. Foundations of Metabolic Systems Biology
2.1 The basic paradigm

We can now enumerate various cellular components, describe their interactions chemically,
formulate a mathematical description of the totality of such interactions, identify the
constraints that the resulting network operates under, and apply optimality principles to
evaluate likely physiological functions in a given environment. These capabilities provide a
consistent framework on which a mechanistic basis for the microbial metabolic genotype-
phenotype relationship can be formulated. The underlying process is based on an emerging
paradigm to relate the genotype to the phenotype through reconstruction and in silico model
building (Figure 2) is comprised of four steps:

1. Generation of ‘omics’ and collection of literature data on the target organism;

2. Network reconstruction and the formulation of a BiGG knowledge base;

3. Conversion of the reconstruction into a mathematical format and the
implementation of in silico query tools; and

4. Enablement of a variety of basic and applied uses.

This fundamental paradigm allows for the first time the genome-scale computation of
phenotypic functions of an organism. The establishment of a mechanistic formulation of the
most fundamental relationship in biology - the genotype-phenotype relationship - for a
limited number of phenotypic functions, differs from that developed for the basic physical
laws about a century ago. This mechanistic description must account for both proximal and
distal causation. Proximal (or proximate) causation occurs against a fixed genetic
background i.e., an individual organism), while distal (or ultimate) causation results from
(genomic) changes that occur from generation to generation, i.e., evolution.

2.2 Some basic principles
This basic paradigm has been implemented for a number of organisms and a variety of
biological results have been obtained [8,9]. As a result of this successful reduction to
practice, one is tempted to try to determine and state the underlying reasons for this success.
Below, I attempt to start this process.

Axiom #1: All cellular functions are based on chemistry. A simple but consequential
statement, as it implies the fundamental events in a cell can be described by chemical
equations. These equations, in turn, come with chemical information and physico-chemical
principles.

Axiom #2: Annotated genome sequences along with experimental data enable the
reconstruction of genome-scale metabolic networks. The reconstruction process is a grand-
scale systematic assembly of information in a quality controlled/quality assured (QC/QA)
setting [10] that leads to a BiGG knowledge base, which is a collection of established
Biochemical, Genetic, and Genomic data represented by a network reconstruction. The
reconstruction process has been reviewed elsewhere [11,12], and a growing number of
reconstructions are available (Figure 1).

Axiom #3: Cells function in a context-specific manner. When a cell is placed in a particular
environment, it expresses a subset of its genes in response to environmental cues. The
abundance of cellular components can be profiled using ‘omic’ methods (ie. transcriptomics,
proteomics, metabolomics). Such omic data can be mapped onto a network reconstruction to
tailor it to the particular condition being considered.
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Axiom #4: Cells operate under a series of constraints. Factors constraining cellular
functions fall into four principal categories [4]: physico-chemical (see Axiom #5),
topological (molecular crowding effects and steric hindrance), environmental (Axiom #3),
and regulatory (basically self-imposed constraints, or restraints). These constraints cannot be
violated allowing the estimation of all functional (i.e., physiological) states that a genome-
scale reconstruction can achieve. Mathematically, such statements are translated into
fundamental subspaces associated with the stoichiometric matrix (S), whose properties can
be characterized [4]. In this so-called S matrix, where S stands for stoichiometric, the rows
correspond to the network metabolites and the columns to the network reactions. The
coefficients of the substrates and products of each reaction are entered in the corresponding
cell of the matrix.

Axiom #5: Mass (and energy) is conserved. This statement is one of the basic physical laws.
Since all proper chemical equations can be described by stoichiometric coefficients, and
since a set of chemical equations can be described by the stoichiometric matrix, S, this
means that all steady states (normally close to the homeostatic states of interest) of a
network can be described by a simple linear equation, S•v=0, where v is a vector of fluxes
through chemical reactions [4]. Thus, the computation of functional states of a network is
enabled based on the known underlying chemistry.

Axiom #6: Cells evolve under a selection pressure in a given environment. This Darwinian
statement has implicit optimality principles built into it. Consequently, if e know the
selection pressure, we can state a so-called objective function and determine optimal states
given a network reconstruction and governing constraints.

Each one of these statements by themselves is almost trivial and accepted in various
scientific disciplines as being fundamental. Taken together, though, they combine to form
the conceptual basis for constraint-based reconstruction and analysis (COBRA), and enable
the development of the mechanistic genotype phenotype relationship for metabolism. The
recent emergence of genome-scale reconstructions (axiom #2) has proven key to this
formulation.

2.3 Practicing COBRA
The COBRA approach [4,5] has been widely used to analyze network reconstructions. It
uses stoichiometric information about biochemical transformations taking place in a target
organism to construct the model. While a metabolic reconstruction is unique to the target
organism, one can derive many different condition-specific models from a single
reconstruction. This conversion of a metabolic reconstruction of an organism into models
requires the imposition of physicochemical and environmental constraints to define systems
boundaries. The conversion also includes the transformation of the reaction list into a
computable, mathematical matrix format (e.g., using the COBRA toolbox [13]).

Formulation of BiGG knowledge-bases—The four-step procedure to reconstruct
genome-scale metabolic networks has been detailed elsewhere [11,12,14]. Briefly, all
metabolic functions encoded by an organism’s genome are systematically retrieved, curated,
and translated into a list of biochemical reactions that comprise the network. The association
between the biochemical reactions and the catalyzing gene products is achieved using
Boolean logic through the gene-protein-reaction (GPR) associations [12]. Further metabolic
functions supported by experimental data can be included without gene association.
Extensive QA/QC procedures ensure that the BiGG knowledge base is self-consistent,
comprehensive, and exhibits similar physiological properties as the target organism [10]. A
BiGG knowledge-base effectively represents a 2- dimensional annotation of a genome [15]
and represents the implementation of axioms #1 and #2.
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From a knowledge-base to a GEM—BiGG knowledge-bases can be converted into
GEMs (genome-scale models) by implementing axioms #3, #4, and #5. While BiGG
accounts for genome-scale information, a GEM can represent the capacities of a cell in a
particular environmental and genetic state. Subsequently, there are different possible GEMs
that can be derived from a given organism’s reconstruction. In this conversion, the BiGG
knowledge-base is represented in a mathematical format, S.

System boundaries are defined around the entire reaction network. Exchange reactions are
added to all transportable extracellular metabolites and can be constrained in simulations to
represent different environmental conditions. Demand reactions are added, including the
biomass reaction, that details all precursors and their fractional contributions to a cell’s
macromolecular composition, as well as any maintenance energy requirements [16].

Computational tools—A broad spectrum of methods has been developed under this
umbrella [4,5,14], collectively called COBRA methods. Constraint-based Metabolic models
can be imported into Matlab in SBML format. COBRA methods can then be applied [13].
With a growing number of metabolic reconstructions available (see
http://systemsbiology.ucsd.edu/In_Silico_Organisms/Other_Organisms) and the
accessibility of COBRA tools, the number of practitioners in this field is growing.

In a recent review [8], the uses of the E. coli GEM were classified into five categories: 1)
metabolic engineering (i.e., genome-scale synthetic biology), 2) gap-filling (i.e., systematic
generation of hypothesis), 3) phenotypic screens (data analysis), 4) determining network
properties (in silico systems biology) and 5) evolutionary studies (i.e., COBRA methods can
analyze both proximal and distal causation). Similarly, a review of applications to other
organisms, [9], classifies them as: 1) contextualization of high-throughput data, 2) guidance
of metabolic engineering, 3) directing hypothesis-driven discovery, 4) interrogation of
multispecies relationships, and 5) network property discovery. Thus, the basic and applied
uses of reconstructions and associated GEMs are growing.

3. Biological Science in the Era of Systems Biology
Genome-scale reconstructions enable biological science to proceed in fundamentally new
ways. Here I discuss four new possibilities.

3.1 Integration of high-throughput data
Omics data can be analyzed using a reconstruction as a scaffold. As stated above, a
reconstruction is a BiGG knowledge-base, and if ‘omics’ data are mapped onto the
reconstruction, it enables the analysis of the ‘omics’ data against the curated knowledge
about the target organism as a context.

Several examples of this use of reconstructions have been demonstrated. Tissue-specific
expression profiling data has been mapped against the reconstruction of the global human
metabolic map [17] to yield draft reconstructions of tissue-specific metabolic networks in
humans. Proteomic data from the human cardiac mitochondria has been used to form tissue-
specific organelle models [18] and used for the analysis of SNPs through the use of cosets
[19]. The use of reconstructions to analyze expression-profiling data from E. coli in many
studies has been reviewed recently [20]. In a similar fashion, metabolomic and fluxomic
data can be analyzed, e.g., see [21].

Thus, curated genome-scale reconstructions provide a new way to analyze ‘omics’ data.
This ability is likely to help with revealing the information content in an ‘omics’ data set, as
purely statistical approaches have proven to be somewhat limited.
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3.2 Gap-filling
BiGG knowledge bases are not complete; they have ‘gaps’ in them. These gaps come in at
least two fundamental varieties. First, there can be a missing reaction or a path between two
metabolites in the reconstruction, and secondly, a metabolite can be detected that has no
connections to the network – representing an ‘island’ on the metabolic map. The former can
be filled with a gap-filling process [22]. Missing links have been discovered this way [23]
and the methods developed to date for gap-filling have been described [24]; the latter calls
for the discovery of a new pathway. Computational tools for suggesting missing pathways
have been recently described [25,26].

These methods may be viewed as representing interesting computational and algorithmic
challenges. However, these developments are more profound and fundamental. They
represent the computational generation of hypotheses using genome-scale BiGG knowledge-
bases. The reconstruction is used as a context for analyzing data and determining a candidate
explanation for discrepancies between experimental data and computational predictions. In
fact, mixed-integer linear programming (MILP) algorithms represent the generation of the
‘most parsimonious’ hypothesis as they can be used to grade the complexity of the candidate
explanations. In the initial study of this kind, the simplest explanation was always found to
be the correct one [22].

3.3 Understanding complex biological phenomena
Phenotypic functions rely on the coordinated and simultaneous action of multiple gene
products. This makes complex biological processes hard to comprehend. In addition, with
changes over generations, such comprehension may be even more challenging. COBRA
tools enable the computation of both proximal and distal causation at a genome-scale, and
thus possesses the potential to provide a framework for a deep understanding of complex
biological phenomena.

This expectation is perhaps being realized through work on bacterial adaptation. The ability
of GEMs to predict the outcome of bacterial adaptation to new nutritional environments
[27], even in the face of gene deletions [28], opens up new and fascinating avenues to study
fundamental biological phenomena. The network level predictions are made using GEMs
and phenotypic functions. Fortunately, the third generation sequencing methods enable the
full resequencing of microbial genomes following adaptation [29,30]. With available allelic
replacement methods the causality of the mutations can be assessed [30,31].

The convergence of these developments, COBRA, GEMs, cheap re-sequencing, and allelic
replacement, allows the study of evolution in a laboratory setting. This fascinating prospect
is likely to help us understand the plasticity and functions of bacterial genomes better than
before. For instance, the RNA polymerase has been shown to be a highly mutable enzyme
[31] and we are now beginning to determine the objective functions that wild type strains
seem to adhere to [32]. Taken together, this means that teleology could be studied in an
experimental setting.

Thus, metabolic systems biology is enabling a totally new scientific pursuit. Although the
application of COBRA methods has been to bacterial adaptation, one might expect similar
applications to pathogenic processes. For instance, carcinogenesis has been conceptualized
as the alleviation of a series of constraints [33] and metabolism is now seen as an integral
part of this process [34]. Thus, the analysis of the adjustment of metabolic processes to
enable this pathologic state is likely to be possible using COBRA methods.
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3.4. Metabolic engineering
Microbial metabolism has been and is being modified to achieve practical ends through
willful genetic manipulation of a wild type organism to generate a production strain. This
field is called metabolic engineering; with a foundational paper by JE Bailey appearing in
1991 [35]. A recent review describes three phases in the history of metabolic engineering
[36]: first is the use of random mutagenesis and screening; second, the use of targeted
genetic manipulations to achieve ‘local’ results in the function of a network; and third, the
use of GEMs to perform ‘global,’ or genome-scale analysis of genetic manipulations.
Algorithms have been developed to perform the computation of genetic changes to achieve
such global results [37–39].

The engineering dictum, ‘there is nothing more practical than reliable theory,” is at the
foundation of engineering design and practice. Good computational models accelerate
design processes, and minimize prototyping, testing, and experimentation. The fact that the
third phase in metabolic engineering has been ushered in through the use of GEMs signifies
that we are now beginning to contemplate and practice synthetic biology at the genome-
scale. Many commercial enterprises that are developing sustainable technologies benefit
from this capability.

4. Beyond Metabolism in Microbes
With the successes of metabolic systems biology in microbes and the statement of some of
its underlying axioms, it is natural to wonder what will happen next in this field. The foray
into human metabolism seems like an obvious extension with the clear challenges of greater
organismic complexity and function. i.e., what are the objectives of various metabolic
functions in man?

We have already shown that similar bottom-up reconstructions of the transcription-
translation machinery can be achieved [6]. Given the chemically detailed representation of
this process on a genome-scale, COBRA approaches could be used for the analysis of
systems properties. Several chemically detailed reconstructions of signaling systems have
appeared [6,40] that could be analyzed using COBRA tools. New genome-scale data types
(transcription start sites, tiled arrays for expression profiling, ChIP-chip, and proteomic
methods) are now yielding the data that is needed to reconstruct transcriptional regulatory
networks at a genome-scale [41]. Other data types, such as phosphoproteomics [42,43] and
rapid metabolic regulatory mechanisms [44] will expand the scope of reconstruction of
regulatory phenomena.

5. Closing
The emergences of mechanistic genotype-phenotype relationships that can account for dual
causality are likely to have a broad impact on the life sciences. A number of metabolic
networks have already been reconstructed for target organisms. New biological science is
being performed with these reconstructions. The new avenues that have been opened up by
COBRA tools and a growing number of GEMs are probably just at the early stages of their
exploration.

This piece is written as a personal account of the development of the field of genome-scale
systems biology of metabolism. It is not meant to be a comprehensive view of the field but a
discussion of the four topics stated in the summary. Although most of the references are to
the author’s own work, many of them are reviews citing the major developments in the field.

Palsson Page 6

FEBS Lett. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
The author is thankful of the many individuals that have entered the COBRA field and contributed significantly to
it. Early adopters include Jens Nielsen, Sang Yup Lee, Costas Maranas, Steve Oliver, Bas Teusink, George Church,
and Daniel Segre, entering the field in the early 2000s. Since then, many have followed, making this a vibrant and
growing field with an increasing list of accomplishments. The author has been supported by the NIGMS, NIAID,
NHRI, and the DOE, and is a co-founder of Genomatica.

References
1. Fleischmann RD, et al. Whole-genome random sequencing and assembly of Haemophilus

influenzae Rd. Science. 1995; 269:496–498. 507–512. [PubMed: 7542800]
2. Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype.

Journal of Biological Chemistry. 1999; 274:17410–6. [PubMed: 10364169]
3. Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: Its definition,

characteristics, and capabilities. Proc Natl Acad Sci U S A. 2000; 97:5528–5533. [PubMed:
10805808]

4. Palsson, BO. Systems biology: properties of reconstructed networks. Cambridge University Press;
New York: 2006.

5. Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: evaluating the
consequences of constraints. Nat Rev Microbiol. 2004; 2:886–897. [PubMed: 15494745]

6. Thiele I, Jamshidi N, Fleming RM, Palsson BO. genome-scale reconstruction of Escherichia coli’s
transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its
functional characterization. PLoS Comput Biol. 2009; 5

7. Zhang Y, Thiele I, Palsson BO, Ostermann A, Godzik A. Structural genomics provides an atomic
level view of the metabolic network of Thermotoga maritima. Science. 2009 Submitted.

8. Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic
reconstructions using Escherichia coli. Nat Biotech. 2008; 26:659–667.

9. Papin JA, Oberhardt M, Palsson BO. Applications of Genome-Scale Metabolic Reconstructions.
Molecular Systems Biology. 2009 In Press.

10. Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nature Protocols. 2009 In press.

11. Feist AM, Herrgard MJ, Theile I, Reed JL, Palsson BO. Reconstruction of biochemical networks in
microorganisms. Nat Rev Microbiol. 2009; 7:129–143. [PubMed: 19116616]

12. Reed JL, Famili I, Thiele I, Palsson BO. Towards multidimensional genome annotation. Nat Rev
Genet. 2006; 7:130–41. [PubMed: 16418748]

13. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ. Quantitative prediction of
cellular metabolism with constraint-based models: The COBRA Toolbox. Nat Protocols. 2007;
2:727–738.

14. Durot M, Bourguignon PY, Schachter V. Genome-scale models of bacterial metabolism:
reconstruction and applications. FEMS Microbiol Rev. 2009; 33:164–190. [PubMed: 19067749]

15. Palsson BO. Two-dimensional annotation of genomes. Nat Biotechnol. 2004; 22:1218–9.
[PubMed: 15470454]

16. Feist AM, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that
accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007; 3

17. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E. Network-based prediction of human
tissue-specific metabolism. Nat Biotechnol. 2008; 26:1003–10. [PubMed: 18711341]

18. Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human
mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem. 2004;
279:39532–40. [PubMed: 15205464]

19. Jamshidi N, Palsson BO. Systems biology of SNPs. Mol Syst Biol. 2006; 2:38. [PubMed:
16820779]

Palsson Page 7

FEBS Lett. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



20. Lewis NE, Cho BK, Knight EM, Palsson BO. Gene expression profiling and the use of genome-
scale in silico models of Escherichia coli for analysis: providing context for content. J Bacteriol.
2009; 191:3437–44. [PubMed: 19363119]

21. Jamshidi N, Palsson BO. Formulating genome-scale kinetic models in the post-genome era. Mol
Sys Biol. 2008; 4:171.

22. Reed JL, et al. Systems approach to refining genome annotation. Proc Natl Acad Sci U S A. 2006;
103:17480–4. [PubMed: 17088549]

23. Fuhrer T, Chen L, Sauer U, Vitkup D. Computational prediction and experimental verification of
the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in
Escherichia coli. J Bacteriol. 2007; 189:8073–8078. [PubMed: 17873044]

24. Breitling R, Vitkup D, Barrett MP. New surveyor tools for charting microbial metabolic maps. Nat
Rev Microbiol. 2008; 6:156–61. [PubMed: 18026122]

25. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ. Exploring the
diversity of complex metabolic networks. Bioinformatics. 2005; 21:1603–9. [PubMed: 15613400]

26. Kumar VS, Maranas CD. GrowMatch: An Automated Method for Reconciling In Silico/InVivo
Growth Predictions PLoS Comput Biol. 2009; 5

27. Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to
achieve in silico predicted optimal growth. Nature. 2002; 420:186–9. [PubMed: 12432395]

28. Fong SS, Palsson BO. Metabolic gene-deletion strains of Escherichia coli evolve to
computationally predicted growth phenotypes. Nat Genet. 2004; 36:1056–58. [PubMed:
15448692]

29. Shendure J, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science.
2005; 309:1728–32. [PubMed: 16081699]

30. Herring CD, et al. Comparative genome sequencing of Escherichia coli allows observation of
bacterial evolution on a laboratory timescale. Nat Genet. 2006; 38:1406–1412. [PubMed:
17086184]

31. Conrad T, Palsson BO. Whole-genome resequencing of Escherichia coli K-12 MG1655
undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of
adaptive mutations. Genome Biol. 2009 Accepted.

32. Fischer E, Sauer U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of
Bacillus subtilis metabolism. Nat Genet. 2005; 37:636–40. [PubMed: 15880104]

33. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100:57–70. [PubMed: 10647931]
34. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The

Metabolic Requirements of Cell Proliferation. Science. 2009; 324:1029–1033. [PubMed:
19460998]

35. Bailey JE. Toward a science of metabolic engineering. Science. 1991; 252:1668–75. [PubMed:
2047876]

36. Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid
production. Curr Opin Biotech. 2008; 19:454–460. [PubMed: 18760356]

37. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying
gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003; 84:647–57.
[PubMed: 14595777]

38. Patil KR, Rocha I, Forster J, Nielsen J. Evolutionary programming as a platform for in silico
metabolic engineering. BMC Bioinformatics. 2005; 6:308. [PubMed: 16375763]

39. Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of
microbial production systems. Genome Res. 2004; 14:2367–76. [PubMed: 15520298]

40. Papin JA, Palsson BO. The JAK-STAT Signaling Network in the Human B-Cell: An Extreme
Signaling Pathway Analysis. Biophysical Journal. 2004; 87:37–46. [PubMed: 15240442]

41. Cho BKKZ, Qiu Y, Knight EM, Park YS, Barrett CL, Gao Y, Palsson BO. Elucidation of Meta-
structure of a Bacterial Genome. Nat Biotechnol. 2009 Submitted.

42. Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles
and applications. Annu Rev Pharmacol Toxicol. 2009; 49:199–221. [PubMed: 18834307]

Palsson Page 8

FEBS Lett. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



43. Soufi B, Jers C, Hansen ME, Petranovic D, Mijakovic I. Insights from site-specific
phosphoproteomics in bacteria. Biochim Biophys Acta. 2008; 1784:186–92. [PubMed: 17881301]

44. Ralser M, Wamelink MM, Latkolik S, Jansen EE, Lehrach H, Jakobs C. Metabolic reconfiguration
precedes transcriptional regulation in the antioxidant response. Nat Biotechnol. 2009; 27:604–5.
[PubMed: 19587661]

Palsson Page 9

FEBS Lett. Author manuscript; available in PMC 2011 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Growth of genome sequences and genome-scale metabolic reconstructions. The number of
network reconstruction has grown exponentially, at a similar pace as genome sequences
have appeared [Prepared by Adam Feist and Ines Thiele].
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Figure 2.
The four-step paradigm for metabolic systems biology. Adapted from [4]. Prepared by
Adam Feist.
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