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Computational maps are of central importance to a neuronal repre-
sentation of the outside world. In a map, neighboring neurons
respond to similar sensory features. A well studied example is the
computational map of interaural time differences (ITDs), which is
essential to sound localization in a variety of species and allows
resolution of ITDs of the order of 10 ms. Nevertheless, it is unclear how
such an orderly representation of temporal features arises. We ad-
dress this problem by modeling the ontogenetic development of an
ITD map in the laminar nucleus of the barn owl. We show how the
owl’s ITD map can emerge from a combined action of homosynaptic
spike-based Hebbian learning and its propagation along the presyn-
aptic axon. In spike-based Hebbian learning, synaptic strengths are
modified according to the timing of pre- and postsynaptic action
potentials. In unspecific axonal learning, a synapse’s modification
gives rise to a factor that propagates along the presynaptic axon and
affects the properties of synapses at neighboring neurons. Our results
indicate that both Hebbian learning and its presynaptic propagation
are necessary for map formation in the laminar nucleus, but the latter
can be orders of magnitude weaker than the former. We argue that
the algorithm is important for the formation of computational maps,
when, in particular, time plays a key role.

Computational maps (1, 2) transform information about the
outside world into topographic neuronal representations.

They are a key concept in information processing by the nervous
system. Many results point to an ontogenetic development that
is critically driven by sensory experience (3). Here we focus on
the development of maps of exclusively temporal features (4–
10), where the time course of stimuli carries relevant informa-
tion, in contrast to previous studies that have shown the emer-
gence of orderly representations of spatial or spatiotemporal
features. A prominent example is the map of interaural time
differences (ITDs) that is used for sound localization (11–13).

Sound localization is important to the survival of many animal
species—in particular, to those that hunt in the dark. ITDs often are
used as a spatial cue. Because the range of available ITDs depends
on the size of the head, ITDs are normally well below 1 ms; they can
be measured with a precision of up to a few microseconds. In this
article, we address the question of how temporal information from
both ears can be transmitted to a site of comparison where neurons
are tuned to ITDs, and how those ITD-tuned neurons can be
organized in a map. A first step toward a solution was made by
Jeffress (1) as early as 1948. He proposed a scheme (Fig. 1A) that
combines axonal delay lines from both ears and neuronal coinci-
dence detectors to convert ITDs into a place code where a spatial
pattern of neuronal activity codes the ITD. His scheme has had a
profound impact on understanding sound localization. Neurons
tuned to ITDs and maps resembling the circuit envisioned by
Jeffress have been observed in many animals (10–18). However, the
mechanism that underlies fine tuning of delays during ontogenetic
development has remained unresolved.

In the barn owl (Tyto alba), an auditory specialist, the first
binaural interaction occurs in the third-order nucleus laminaris
(NL), where the responses of neurons are tuned to ITDs (10–13).
Laminar neurons receive bilateral input from afferents originat-
ing from the ipsilateral and contralateral nucleus magnocellu-

laris (NM), which enter the NL at opposite sides (Fig. 1 A). Each
NL neuron receives input from hundreds of NM cells, each of
which is connected to from one to four auditory nerve fibers
(19). Within the NL, magnocellular axons run almost parallel to
each other and run perpendicular to the NL borders. They act
as delay lines, interdigitate, and make synapses mainly on
somatic spines of the sparsely distributed laminar neurons (13,
19). The latter act as coincidence detectors (10, 12, 13, 20–22).

NM and NL are tonotopically organized in iso-frequency
laminae. Information is conveyed via phase-locked spikes for
frequencies as high as 9 kHz. The existence of an oscillatory field
potential, the ‘‘neurophonic’’ that arises at the NL borders (12),
suggests the almost coincident arrival of volleys of phase-locked
spikes in thousands of NM axons (10, 13, 23). In other words, the
average conduction times from the inner ear to the NL border
(called ‘‘NL delays’’ here) are almost equal. In an NL lamina with
best frequency f, NL delays may differ by multiples of the period
T 5 f21 (Fig. 1B). Because axonal conduction velocities are
almost identical within NL ('4 mys; ref. 13), spikes are trans-
mitted coherently throughout the nucleus. This is also reflected
in the neurophonic measured within the borders of NL.

The above observations on the timing of spikes hold for adult
owls. In young owls, e.g., 12 days after hatching (P12), spikes
arrive incoherently at laminar neurons (ref. 23; Fig. 1C). In the
first weeks after hatching, there is ongoing myelination of NM
axons (23). Therefore, no stable temporal cues are available for
NL neurons. Results in ref. 13 suggest that the distribution of NL
delays has a width of about 1 ms. To summarize, in young owls
there is neither an ITD tuning of single neurons nor a neuro-
phonic nor a map, all of which arise during ontogeny. The first
ITD-tuned neurophonic responses were recorded from a P21
bird, when myelination is almost finished. How, then, is the
selection of NM arbors with appropriate NL delays achieved?

In a previous modeling study (20), it has been shown that
spike-based Hebbian learning (refs. 24–31; reviewed in refs. 32
and 33) can lead to a selection of synapses from NM to NL in a
competitive self-organized process and to the development of
submillisecond ITD tuning of single laminar neurons. Here we go
an important step further and explain how an ITD map can be
formed in an array of neurons. A coordinated development of
ITD tuning requires an interaction mechanism between NL cells.
There are several possibilities. We have found that the only
feasible interaction mechanism is what is called ‘‘axonal prop-
agation of synaptic learning.’’ This means that spike-based
learning is not restricted to the stimulated synapse where it is
induced, but that it also gives rise to a factor that propagates
intracellularly along the presynaptic axon and affects the prop-
erties of synapses of neighboring neurons at the same axon (refs.
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34–38; presynaptic lateral propagation reviewed in ref. 39).
Long-range cytoplasmic signaling within the presynaptic neuron
can be responsible for the propagation of both long-term syn-
aptic depression (35–37) and long-term synaptic potentiation
(38). We call this mechanism ‘‘nonspecific axonal learning.’’
Spike-based Hebbian learning in combination with nonspecific
axonal learning can result in a selection of NM arbors with
proper delays to NL and suffices to explain both map formation
and the neurophonic.

Methods
Neuron Model. We have modeled N 5 30 laminar neurons as
integrate-and-fire units that are receiving input from a total of 500
magnocellular (NM) axons, 250 from each side. The mth input spike
arriving at time tk,n

(m) at synapse k (1 # k # 500) of neuron n (1 #
n # N) evokes an excitatory postsynaptic potential (EPSP) of the
form «k,n

(m)(t) 5 Jk,n(t) (t 2 tk,n
(m))t22 exp[2(t 2 tk,n

(m))/t] where t . tk,n
(m),

t 5 100 ms, and Jk,n(t) is the time-dependent synaptic strength.
Initially, synaptic strengths are uniformly distributed between 0.57
and 1.23. The EPSPs (a functions, half-width 250 ms) from all
synapses of a neuron add linearly and yield the membrane voltage.
A neuron fires if the membrane voltage reaches a threshold that is
96 times the EPSP amplitude for Jk,n 5 1. After firing, the
membrane voltage is reset to zero. Time is discretized in steps of
5 ms.

Neuronal parameters are chosen in accordance with available
data. The shape of an EPSP is determined both by the membrane
time constant and by the width of the synaptic input current, which
have been measured in NM and NL of chicken (40, 41). Data yield
membrane time constants near a threshold of about 165 ms, which
is caused by an outward rectifying current that is activated above
resting potential. Outward rectifying currents are commonly found
in phase-locking neurons of the auditory system (40–44). As a result
of the short time constants obtained in vitro, the full width at half
maximum of single EPSPs in NL neurons in chicken is about

500–800 ms (41). Considering the fact that in chicken phase locking
disappears above 2 kHz, whereas neurons in the barn owl exhibit
phase locking up to 9 kHz, we assume that NL neurons in vivo in
an auditory specialist such as the barn owl are at least twice as fast,
and therefore model EPSPs with a width of 250 ms.

Model of an NL Lamina. N 5 30 units are positioned regularly in a
row in the dorsoventral direction with a distance of 27 mm between
adjoining neighbors, reflecting the topography in NL (refs. 12 and
13; Fig. 1A). The number 30 corresponds to the mean number of
neurons contacted by a magnocellular arbor (19). In this way, we
simulate part of an iso-frequency lamina of NL.

Input Model. The input from NM to NL is described by a sequence
of phase-locked spikes. We simulate one frequency lamina at a
time. It is stimulated by a pure tone of frequency f 5 T21 5
3 kHz, unless stated otherwise.

Because of imperfect phase locking, spikes arrive at the
borders of NL with a temporal jitter of s 5 40 ms. The jitter
accounts for internal sources of variability and noise along the
auditory pathway, as well as the bandwidth of frequency tuning
(1y3 octave). The mean conduction time from the ear via NM
axon k to the border where it enters NL is called ‘‘NL delay
Dk.’’ NL delays Dk (1 # k # 500) are assumed to be fixed
and uniformly distributed in an interval between 2.5 ms and
3.17 ms; for T 5 333 ms, two periods are covered and, thus, no
phase is favored a priori. The axonal input spike trains are
generated independently for each NM afferent k by an inho-
mogeneous Poisson process with intensity Pk(t) 5 nT(s=2p)21

¥m52`
1` exp[2(t2mT2Dk)2y(2s2)], where n 5 2y3 kHz denotes

the firing rate of a NM neuron.
We have also tested input that was phase locked to 1.5 kHz and

5 kHz as well as white noise filtered to resemble the tuning of NM
fibers. In the latter case, the amplitude y of the basilar membrane
was obtained by convolving Gaussian white noise with the
integral kernel t3/tF

4exp(2t/tF) cos(2pfFt), where fF 5 3 kHz is
the center frequency of the filter and 1ytF 5 1 kHz adjusts the
temporal width of the filter kernel to 1 ms. To mimic the
behavior of an inner hair cell, we have fixed its firing rate to p 5
0.2 kHz for y # 0. As soon as y crosses zero with positive slope
we set p 5 1.8 kHz until y drops again below 0 or y has been
positive for more than 0.1 ms, whatever occurs first. In other
words, the width of 1.8-kHz regions is restricted to at most
0.1 ms. The above procedure accounts for the limited resources
of the cell. The spike autocorrelation function is that of the
Meddis hair cell model (45) with time running faster by a factor
of 10 to take into account phase locking for frequencies up to
10 kHz.

Besides the NL delay, there is an additional axonal delay of spikes
from the NL border to a specific NL neuron. The NL delay (from
ear to border) plus the axonal delay within NL (from border to
neuron) we call the total delay associated with a synapse. The
axonal delay of spikes within NL is the neuron’s spatial distance
from the border divided by the conduction velocity, which can be
assumed to be constant (4 mys) and identical for all axons within
the laminar nucleus, in accordance with experimental data (13). We
have also carried out simulations for a distribution of axonal
propagation velocities (4 6 0.5 mys) and verified robustness.

To take into account changing spatial positions of statistically
independent sound sources, we have sampled the applied ITD of
a stimulus from the interval [2Ty2,Ty2] and randomly initialized
the mean phase of the stimulating tone every 100 ms.

Model of Spike-Based Learning. In spike-based Hebbian learning at
the level of a single neuron (20, 26–33, 46–49), synaptic strengths
are increased or decreased if presynaptic spikes arrive before or
after, respectively, the postsynaptic neuron fires. The temporal

Fig. 1. Schematic diagram of the architecture of the nucleus laminaris (NL)
as a realization of the Jeffress idea (1, 11) that ITD is mapped along the
dorsoventral direction. (A) Part of a single frequency layer. Axonal arbors (full
lines) from the contralateral nucleus magnocellularis (NM) enter NL through
its ventral border (arrow and dotted line) whereas arbors from the ipsilateral
NM enter dorsally. They contact (small open circles) all laminar neurons (large
filled circles). Synaptic weights are assumed to be modifiable. We have sim-
ulated 30 laminar neurons (5 are shown) and 500 magnocellular afferents, 250
from each side (3 are shown). (B) In adult owls, we propose that, as a result of
learning, NL delays (from ear to border of NL) roughly differ by multiples of
the best frequency T21 in the considered NL layer [here T 5 (3 kHz)21,
horizontal bar]; cf. figure 9 in ref. 13. To this end, we assume that axonal arbors
whose synaptic weights vanish are eliminated during development. (C) In
young owls, the distribution of NL delays is assumed to be broad with respect
to T.
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constraint is implemented by means of a learning window W that
is several milliseconds wide (Fig. 2A),

W~u! 5 h5 expS 2 ~u 2 û!

t1
DF2S1 1 ~u 2 û!

t1 1 t2

t1t2
D

2 S1 1 ~u 2 û!
t0 1 t1

t0t1
DG for u $ û,

2 expSu 2 û
t2

D 2 expSu 2 û
t0

D for u , û,

[1]

where u denotes the time difference between presynaptic spike
arrival and the postsynaptic spike event; t0 5 0.025 ms, t1 5
0.15 ms, t2 5 0.25 ms, h 5 5 31024, û 5 20.005 ms. The time scale
of learning is set by h (46, 49). Existence and form of W have been
confirmed by experiment (26–31). Its shape, i.e., the structure near
zero, is important because there should be a maximum of W(s) for
s , 0, namely, maximal increase of the synaptic strength for a
presynaptic spike preceding a postsynaptic spike roughly by the rise
time of an EPSP (46, 49). Expanding the tails of the learning
window changes the mean output rate of the postsynaptic neuron.
Here the width of W is assumed to be reduced when compared with
so-called standard cases (26–31) by about an order of magnitude;
in this way, it is in agreement with the short time constants of NL
neurons (40, 41). We predict that synapses in the auditory system
can exhibit a radically faster form of plasticity timing.

To stabilize the mean input to a neuron, we use a weight
increment of win 5 hy50 following every presynaptic spike and a
decrement of wout 5 2hy4 of all synaptic strengths after each
postsynaptic spike (9, 39). The particular choice of the non-Hebbian
parameters win and wout is not critical for structure formation; they
determine the value and stability of the mean firing rate of the
postsynaptic neuron (refs. 46, 48, and 49). A stabilization of the
output rate is necessary to ensure that the neuron acts as a
coincidence detector (21). In addition, there is a lower bound of 0
and an upper bound of 2 for each individual synaptic weight.

We have implemented a nonspecific axonal learning rule (34–39,
50); a weight change DJ as described above also induces changes in
other synapses of the same magnocellular arbor, which change by
an amount rDJ. The interaction parameter r is small and positive.
Nonspecific axonal learning is confined to a magnocellular arbor
and does not extend to the whole axon. We have proven that our
results still hold, if we restrict the spatial range of the nonspecific
component to 200 mm along an arbor. Finally, if all synaptic weights
on an axonal arbor are zero, it is assumed to be eliminated.

Delay-Tuning Index. The degree of T-periodic tuning of a delay
distribution is quantified through a delay-tuning index, which is the
amplitude of the first Fourier component (period T) of the delay
distribution divided by the Fourier component of order zero. It is
a generalization of the “vector strength” (14). For a large number
of random delays, the delay-tuning index is close to its minimum of
0. For identical delays (modulo T), the delay-tuning index is at its
maximum of 1. We first consider delays from the ear to the synapses
of a single NL neuron. Given the synaptic weights Jk,n and the total
delays Dk,n through the kth (1 # k # 500) magnocellular afferent
to the nth (1 # n # 30) NL neuron, the Fourier transform of the
delay distribution of, e.g., ipsilateral synaptic weights of neuron n is
xn

ipsi(v) :5 ¥k
ipsiJk,n exp(2ivDk,n), where v is a frequency and i 5

=21. The sum is over all magnocellular afferents K from the
ipsilateral side. The delay-tuning index is the ratio uxn

ipsi(2p/T)u/
xn

ipsi(0), where T is the period of the stimulating tone. Next, we
consider the delay of magnocellular arbors at the border of NL (NL
delays). The tuning index of NL delays can be used as a measure of
the quality of the map. We define the strength or ‘‘axonal weight’’
of an NM arbor as the sum of its synaptic weights. One obtains the
delay-tuning index of the distribution of axonal weights similarly to
the single-neuron case above—by replacing both the synaptic
weights Jk,n by the axonal weights ¥nJk,n (for axon k) and the total
delays Dk,n to the synapses by the delay Dk to the NL borders.

Results
A typical numerical simulation of an array of 30 neurons that belong
to the 3 kHz layer in the laminar nucleus (Fig. 1A) is shown in
Fig. 3. We have started with a uniform distribution of synaptic
weights. After about 1,000 s of learning, the weights have arrived at
a stable state where each single neuron exhibits ITD tuning (Fig. 3
A–D). In other words, the cells have learned to detect coincident
arrival of ipsi- and contralateral activity. The maximum of the
tuning curve in Fig. 3B defines the best ITD of a neuron. It is
determined by the delay difference between the ipsi- and contralat-
eral synaptic structure appearing in Fig. 3 A and C. The quality of
the periodic synaptic structures, measured by the delay-tuning index
(see Methods), saturates at about 0.78 for each individual neuron,
regardless of ipsi- or contralateral origin (Fig. 3D).

As a result of the presynaptically nonspecific component of
synaptic modification (r 5 0.017; see Methods), best ITDs are
spatially ordered along the neuronal array. This means that neigh-
boring neurons give rise to similar best ITDs. The corresponding
structure of synaptic weights is shown in Fig. 3F. The slopes of the
diagonal red and green stripes, respectively, reflect the axonal
conduction velocity (4 mys). That is to say, the learning rule selects
arbors with the right delay Dk from the ear to the NL border (called
NL delay in what follows). The sum of the synaptic weights of an

Fig. 2. Spike-based learning. (A) Two plots of the learning window W in units
of the learning parameter h as a function of the temporal difference between
spike arrival at time t at synapse i (e.g., t 5 ti

(m), m 5 1, 2, 3; dotted lines) and
postsynaptic firing at times t(1) and t(2) (dashed lines). Scale bar 5 1 ms. (B) Time
course of the synaptic weight Ji(t) evoked through input spikes at synapse i and
postsynaptic output spikes (vertical bars in C). The output spike at time t(1)

decreases Ji by an amount wout. The input at ti
(1) and ti

(2) increase Ji by win each.
There is no influence of the learning window W because these input spikes are
too far away in time from t(1). The output spike at t(2), however, follows the
input at ti

(2) closely enough, so that, at t(2), Ji is changed by wout , 0 plus W(ti
(2) 2

t(2)) . 0 (double-headed arrow), the sum of which is positive (filled arrow-
heads). Similarly, the input at ti

(3) leads to a decrease win 1 W(ti
(3) 2 t(2)) , 0

(open arrowheads). The assumption of instantaneous and discontinuous
weight changes can be relaxed to delayed and continuous ones that are
triggered by spikes, provided weight changes are fast when compared with
the time scale of learning (46). If the integral *2`

1`W(s) ds is sufficiently nega-
tive, then one can drop wout (49).
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NM arbor is called its axonal weight. The ITD map is represented
by a T-periodic structure of axonal weights as a function of the NL
delay (Fig. 3 E and G). The relative shift of the distributions in Fig.
3 E and G depends on random initial conditions.

The final structure is consistent with Jeffress’ proposal (1) of
a place code. As the histogram in Fig. 3H shows for stimulation
of the array with fixed ITD 5 0, the neuron 54 mm to the right
of the center of NL fires with highest rate. The reason is that at
this position ipsi- and contralateral delay distributions in Fig. 3F
largely overlap. Because the cells act as coincidence detectors,

their firing rate is maximal when the green and red vertical lanes
in Fig. 3F overlap, or, equivalently, when the total delays from
right and left ear are equal modulo T 5 1y3 ms. As the overlap
is less, so the firing rate is lower, with a minimum at about
2300 mm in Fig. 3H. If the applied ITD is varied, the place of
maximum firing rate shifts proportionally (not shown).

A map’s quality, i.e., its degree of global order, depends on the
learning time t (Fig. 4A). The global order is quantified by the
delay-tuning index of axonal delay distributions (examples in Fig. 3
E and G). Before learning (t 5 0), axonal delay-tuning indices (filled
symbols in Fig. 4A) are zero and there is no map. As t grows, the
global order increases monotonically and saturates, because syn-
aptic weights reach upper or lower bounds. In Fig. 4A, we also have
indicated average synaptic delay-tuning indices (open symbols),
which measure the map’s local order or tuning of individual NL
neurons (see also Fig. 3D, horizontal dashed lines). As defined in
Methods, the local order is always larger than, or at least equal to,
the global order. Large identical values indicate that all neurons are
strongly coupled to the same set of axonal arbors. In this case, the
best ITD is a linear function of the neuron’s position on the dorso
ventral axis.

Fig. 3. Map of ITD-tuned neurons in the laminar nucleus (NL). Ipsi- and
contralateral synaptic weights after learning are coded by red and green,
respectively. (A) Ipsilateral weights of a single laminar neuron (abscissa) are
plotted as a function of the transmission delay (ordinate) from the ear to the
synapse, called total delay. Dots denote initial weights before learning. (B)
ITD-tuning curve of the neuron in A and C. (C) Same as A but for contralateral
afferents. Note the shift of the distribution compared with A. (D) Ipsilateral
(crosses) and contralateral (circles) tuning indices of the distributions of total
delays (see Methods) as a function of the neuron’s spatial position (same scale
as in H). Horizontal dashed lines denote mean values. The vertical dot-dashed
line indicates the position of the neuron shown in A–C. (E) Distribution of
ipsilateral axonal weights (abscissa) as a function of the transmission delay
(ordinate) from the ear to the dorsal NL border (NL delay). Dots denote initial
weights before learning. (F) Synaptic weights (brightness-coded, scale bars in
units of synaptic weights) are a function of the position of the neuron inside
NL (abscissa, same scale as in D and H) and of the total delay to a neuron
(ordinate, same scale as in E and G). Weights of a specific ipsilateral arbor are
represented by the diagonal solid black line with slope 4 mys, the axonal
conduction velocity. Summing synaptic weights along this line, we obtain an
axonal weight (horizontal black bar in E). (G) Same as E but for contralateral
axons. (H) Dependence of firing rate of laminaris neurons for ITD 5 0 on their
location (histogram). The maximum firing rate is where the overlap of delay
distributions in F is largest. Plus signs indicate rates for r 5 0 in Fig. 4B; there
is no map.

Fig. 4. Dependence of the quality of the map on parameters. Axonal (filled
symbols) and synaptic (open symbols) delay-tuning indices (averaged over N 5
30 neurons) have been plotted for ipsilateral (red squares) and contralateral
(green triangles) NM afferents. Insets (signatures as in Fig. 3F) show the map
at different stages. (A) Delay-tuning indices are a function of learning time t.
The interaction parameter is r 5 0.3yN; all other parameters and initial
conditions are the same as in Fig. 3. Because alignment is not perfect, synaptic
delay-tuning indices exceed the axonal ones. (B) Delay-tuning indices of the
final map are a function of the interaction parameter r. The same random seed
for all simulations gives a smooth dependence on r. Restricting the interaction
to 8 neighboring neurons (r 5 0.7y16) (C), filtered white-noise input (D), or a
distribution of axonal conduction velocities 4 6 0.5 mys (E) hardly changes the
final map.
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The tuning of the final map (after weights have saturated)
depends on the interaction parameter r (Fig. 4B). For r 5 0, the
global order is low (filled symbols), although individual neurons are
almost perfectly tuned and, thus, the local order is high (open
symbols). Nevertheless, a place code in the manner of Jeffress does
not exist (plus signs in Fig. 3H). Even for r 5 0, axonal delay-tuning
indices are nonzero, because for a finite number of tuned laminar
neurons, there is on the average an accidental global order (here
about 0.16). As r increases, so does the map’s quality. In this way,
nonspecific axonal learning is sufficient for map formation, despite
the surprising fact that it may be two orders of magnitude weaker
than homosynaptic Hebbian plasticity.

Nonspecific axonal learning as it has been used in these simula-
tions is local in the sense that it is restricted to an axonal arbor. It
does not apply to the whole axon, which may have many arbors that
branch off well outside NL. A local change within an arbor has not
been implemented because the range of the interaction reported in
refs. 34–38 is of the same order of magnitude as the spatial
extension of the laminar nucleus along the dorsoventral axis. We
have tested, however, that restricting the nonspecific weight change
to, for example, '200 mm or the neighboring eight neurons does not
change results. For instance, with r 5 0.7y16, we obtain global
tuning indices of 0.72 (ipsi) and 0.67 (contra), or 92% and 86% of
the average local indices, respectively (Fig. 4C).

We have also verified that similar results hold for the 1.5-kHz
and 5-kHz case (not shown), and we have checked that 3-kHz
tonal stimulation and white noise filtered to resemble the tuning
of NM fibers (see Methods) yield comparable findings (Fig. 4D;
r 5 0.7yN). In both the noisy and the tonal cases, the autocor-
relation functions of the input processes were almost identical on
a time scale of 1 ms, which corresponds to the width of the
important features of the learning window in Fig. 2. Thus, map
formation is robust against variations of the input to NL.

The order of the final map remains basically the same if we
start with a distribution of axonal propagation velocities (4 6 0.5
ms, Fig. 4E). The proposed learning algorithm can select arbors
with appropriate conduction velocities. An interaction strength
of r 5 0.7yN yields global tuning indices of 0.76 and 0.75; both
are about 97% of the average local indices.

During learning, the ITD is varied randomly every 100 ms to
mimic the naturally occurring variation of ITDs. On the much
larger time scale of learning, interaural phases within a fre-
quency channel are uncorrelated. Therefore, ipsi- and contralat-
eral synaptic weights evolve almost independently of each other
during spike-based learning. Because of this independence, an
increase in the range of available ITDs through a growth of the
size of the owl’s head does not necessarily impair map formation.
Owls grow a lot while the map develops (23).

Discussion
In the present article, we offer a solution to the longstanding
problem of how a map of ITD-tuned neurons in the barn owl’s NL
can be formed. Map formation requires a selection of magnocel-
lular arbors with appropriate delays, which can be driven by
spike-based Hebbian learning at the level of single synapses and the
propagation of spike-based Hebbian learning along the presynaptic
axon. Finally, only a subset of the initially present NM arbors
provide significant input to NL. Because map formation demands
phase-locked input, we predict a delay in the development of an
owl’s NL if the degree of phase locking is reduced, e.g., by means
of an ear occluder (51).

As for the time scale of map formation, the speed of learning
slows down if synaptic weight changes are reduced through a
reduction of h as it appears in Eq. 1 and Fig. 2. Then, 1,000 s of
learning (as in Fig. 4A) may become several days, which is a realistic
value for the development of the owl’s NL (23) but unrealistic for
a computer simulation that cannot work in real time yet.

To explain the neurophonic for which the afferent delay lines are
responsible (10, 12, 13, 23), we propose a morphological change
accompanying synaptic weight changes, i.e., an elimination of those
magnocellular arbors that merely have synapses with vanishing
weights. Finally, only axonal arbors survive that have spike latencies
(from the ear to the border where the arbors enter NL) roughly
differing by multiples of the period T, where T21 is an NL lamina’s
best frequency (Fig. 1B, Fig. 3 E and G).

Nonspecific axonal learning is sufficient for map formation in
NL, and the strength of the interaction can be orders of
magnitude weaker than long-term potentiation at the level of a
single neuron. We predict that blocking of nonspecific axonal
learning (cf. ref. 50) prevents formation of both map and
neurophonic but leaves the development of ITD tuning of single
neurons unaffected (Fig. 4B, r 5 0).

We can rule out other possibilities that have been suggested
for map formation in various systems. Factors one might think
of are (i) electrical coupling by gap junctions, (ii) electrical
crosstalk, (iii) extracellular diffusion of a messenger, and (iv)
recurrent synaptic coupling within NL, or (v) recurrent syn-
aptic coupling outside the laminar nucleus. Early in develop-
ment (P12 or later) gap junctions between almost nonover-
lapping dendritic trees are unlikely. The membrane
capacitance and resistance of the participating NL neurons,
however, would make such junctions act as low-pass filters that
delay a signal from one neuron to another by more than 100
ms. The timing constraint for spike-based learning imposed by
phase-locked input at 3 kHz, as analyzed in this article, cannot
be fulfilled; this is even more true for higher frequencies.
Recurrent (multi)synaptic loops are also too slow. Their delays
can, in principle, be very accurate (20). This high accuracy
would require many lateral connections at the level of the
young animal’s NL, which are not present either within or
outside. The central argument in the analysis of map formation
is a mechanism for the selection of axonal arbors. Spatially
more or less isotropic interactions such as extracellular diffu-
sion of a messenger and electrical crosstalk can, therefore, be
excluded. The only remaining interaction mechanism is non-
specific axonal learning. In the present context, all other
interaction mechanisms are unsuitable because of evidence of
nonexistence (i, iv), spatial isotropy instead of axonal selec-
tivity (ii, iii), lack of temporal precision of the signal (jitter) (iii,
v), and a delay of the order of at least hundreds of microsec-
onds (i, iii, iv, v) that by far exceeds the axonal conductance
time between neighboring NL cells and, thus, mixes up the
timing between their input and output spikes.

Lateral inhibition is a key ordering factor in many algorithms
of map formation. In the laminar nucleus, lateral inhibition is
most probably responsible for gain control (52, 53) but is not
needed for a diversity of ITD tuning. Diversity is a consequence
of the arrangement of laminar neurons along antiparallel axons
and a T periodic tuning of their delays (Fig. 1).

Besides our proposed delay-selection mechanism for map for-
mation, an alternative explanation might be the adaptation of
conduction velocity of presynaptic axons (47, 54). A possible target
for such a learning rule are portions of axons outside the NL,
because the conduction velocities within the nucleus are almost
identical (13)—which is as it should be to explain the neurophonic.
Appropriate changes of conduction velocities outside the NL might
have the advantage of making the elimination of certain arbors
superfluous because all arbors are retained; their conduction
velocity, however, has to be modified specifically. A disadvantage is
that it is not known whether and how learning at synapses affects
the conduction velocity, and how a map can be stabilized in this way.

In summary, we have studied map formation in a single
frequency lamina of NL because we intended to highlight the
issue of map formation in the time domain by means of
nonspecific axonal learning. The alignment of maps across
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different frequency layers is an interesting problem but is far
beyond the scope of the present article. Furthermore, the NL is
tonotopically organized before formation of the ITD map starts
(23). In simulating coupled frequency laminae, we would expect
no qualitative effect on the development of an ITD map within
one lamina.

We have shown that the formation of a temporal-feature map
with a submillisecond precision can be based on an interplay of local
time-resolved Hebbian learning (20, 24–31, 46–49) and its propa-
gation along a presynaptic axon (34–39, 50). Our results are in
agreement with physiological and anatomical data on the barn owl’s

laminar nucleus, and they explain the formation of a temporal-
feature map. It is tempting to apply the proposed mechanisms to
other modalities as well. We suggest that presynaptic propagation
of synaptic learning is important to the formation of computational
maps when, in particular, time plays a key role.
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