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Abstract
Aims/hypothesis—Rare mutations in the gene (HNF4A) encoding the transcription factor
HNF-4A account for ~5% of cases of maturity-onset diabetes of the young (MODY) and more
frequent variants in this gene may be involved in multifactorial forms of diabetes. Two low
frequency, non-synonymous variants in HNF4A (V255M, minor allele frequency [MAF] ~0.1%,
T130I, MAF ~3.0%), known to influence downstream HNF-4A target gene expression, are of
interest but previous type 2 diabetes association reports were inconclusive. We aimed to evaluate
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the contribution of these variants to type 2 diabetes susceptibility through large-scale association
analysis.

Methods—We genotyped both variants in at least 5745 cases and 14756 population controls
from the UK and Denmark. We also undertook an expanded association-analysis including
previously reported and novel genotype data obtained in Danish, Finnish, Canadian and Swedish
samples. A meta-analysis incorporating all published association studies of the T130I variant was
subsequently carried out in a maximum sample size of 14279 cases and 26835 controls.

Results—We found no association between V255M and type 2 diabetes in either the initial
(p=0.28) or expanded analysis (p=0.44). However, T130I demonstrated a modest association with
type 2 diabetes in the UK and Danish samples (additive per allele OR 1.17 [1.08-1.28];
p=1.5×10−4), which was strengthened in the meta-analysis (OR 1.20 [1.10-1.30]; p=2.1×10−5).

Conclusions/interpretation—Our data are consistent with T130I as a low frequency variant
influencing type 2 diabetes risk, but are not conclusive when judged against stringent standards for
genome-wide significance. This study exemplifies the difficulties encountered in association
testing of low frequency variants.
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Introduction
The heritability seen in type 2 diabetes remains largely unexplained, despite substantial
progress in identifying genetic variants conferring increased risk of this condition. To date,
~40 such variants have been identified, largely through genome-wide association studies
(GWAS) [1-8]. However, the sibling relative risk (λS) of type 2 diabetes conferred by all
these variants combined is ~1.15, well below the epidemiological estimate (~3.0) [8, 9]. Of
late there has been great interest in the potential role of low frequency (LF) variants in terms
of individual susceptibility to complex diseases such as type 2 diabetes. Since GWAS to
date have focused on the detection of common variant associations, the contribution to type
2 diabetes risk of variants with a minor allele frequency (MAF) below 5% remains largely
unexplored.

A logical place to initiate the search for LF variants influencing multifactorial type 2
diabetes lies in exploring those genes already implicated in diabetes pathogenesis because
they contain either rare mutations causal for monogenic forms of diabetes, or common
variants associated with multifactorial type 2 diabetes. In genes implicated due to their role
in monogenic diabetes, there is evidence that large-effect mutations are compatible with life,
and that they result in a phenotype with substantial similarities (and clinical overlap) to type
2 diabetes. It is likely therefore that variants with less dramatic effects on function and/or
expression, where they exist, result in less extreme clinical phenotypes including
multifactorial type 2 diabetes. Since existing GWAS and linkage study data argue against
the possibility of common variants (MAF>5%) of medium- to large-effect size, variants with
such effect sizes are also likely to be rare (MAF <0.1%) or of low frequency (MAF 0.1-5%).
Low frequency variants have been implicated in the pathogenesis of other complex diseases,
such as type 1 diabetes [10], although their contribution to type 2 diabetes predisposition is
as yet uncertain. Rare, highly-penetrant mutations in the gene (HNF4A) encoding the
transcription factor hepatocyte nuclear factor 4 alpha (HNF-4A) account for approximately
5% of cases of maturity onset diabetes of the young (MODY) [11]. Though HNF4A is
expressed in multiple tissues, its expression in the pancreatic beta cells and liver is of
particular interest. In pancreatic beta cells, HNF-4A is required for glucose metabolism as
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well as normal insulin gene expression and secretion [12]. In the liver, HNF4-A is required
for hepatic gluconeogenesis [13]. Several studies have shown linkage between multifactorial
type 2 diabetes and the region of chr20q where HNF4A is located [14-17]. Previous
candidate gene analyses have demonstrated weak evidence of association (p~0.01) between
common variants in the P1 and P2 promoters of HNF4A and multifactorial type 2 diabetes
[17, 18], but these have not been substantiated in genome-wide association studies to date
[1-5, 8]. Since common variants in HNF4A do not explain the findings of linkage studies, it
is possible that this region harbours more penetrant low frequency variants that might
explain this observation [19].

HNF4A has been extensively resequenced not least as part of clinical diagnostic screening
for MODY. These resequencing efforts have, inter alia, identified two LF coding non-
synonymous variants of particular interest: V255M (c.763G>A p.Val255Met) and T130I (c.
389C>T p.Thr130Ile, rs1800961). V255M was first described following resequencing of
Danish samples but no evidence of association to type 2 diabetes was seen in analysis of
1434 cases and 4790 controls [20]. T130I, positioned in the DNA binding domain of
HNF4A, showed modest (p=0.04) association with type 2 diabetes in the same sample [20],
though subsequent efforts at replication failed to confirm this [21]. One arm of a meta-
analysis of the association of HNF4A genetic variants to type 2 diabetes [22] also included
some previous association studies of T130I (by our estimation including approximately 3500
cases and 3700 controls for this variant), and demonstrated a modest association (p=0.045)
[22]. Most recently, and of particular interest, given the relationship between lipids and type
2 diabetes, a significant association between T130I and HDL-cholesterol levels has been
demonstrated (p=8×10−10) in a GWAS meta-analysis incorporating 30714 individuals [23].

Both variants have been shown to be functional based on studies of the transcriptional
regulation of HNF-4A target genes in a range of cell lines and primary mouse hepatocytes
[20, 24-26]. We therefore reasoned that they remain interesting candidates for assessment in
larger samples to more clearly establish their likely contribution to type 2 diabetes
susceptibility.

Methods
Subjects studied

Three categories of samples were included. Category 1 consisted of samples specifically
genotyped for this study. Category 2 was comprised of samples with previously reported
genotyping information for these SNPs. Category 3 included samples for which only
summary statistics were available from previous published reports.

Category 1 samples were derived from three sources (two UK samples and one Danish
sample). UK Sample 1 (“UK1”, n=4124 cases, 5126 controls) included the United Kingdom
Type 2 Diabetes Genetics Consortium (UKT2DGC) collection recruited in Tayside,
Scotland: these have been previously described [1, 27]. UK Sample 2 (“UK2”) comprised
type 2 diabetes cases (n=1853 for V255M; 1193 for T130I) ascertained from a subset of the
Diabetes UK Warren 2 repository [28]. The controls for UK2 were taken from the
population-based British 1958 Birth Cohort (n=7133), and the United Kingdom Blood
Service collection (n=3087) [27].

Danish Sample 1 (“DK1”, n=2646 cases) was also included in category 1 for the study of
T130I. DK1 represents samples collected in the Steno Diabetes centre and Danish samples
from the Anglo-Danish-Dutch study of Intensive Treatment in People with Screen-Detected
Diabetes in Primary Care (ADDITION) [20, 29]. The new samples in DK1 were combined
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with the previously reported case and control data from DK2 (described below) to generate a
combined DK analysis involving 3771 cases and 4727 controls.

Category 2 included samples from Denmark, Sweden, Finland and Canada. Danish Sample
2 (“DK2”, n=1397 cases, 4865 controls) was previously genotyped for T130I and V255M
[20]. Two samples from the Finland-United States Investigation of Non Insulin Dependent
Diabetes Mellitus Genetics (FUSION) study were included for T130I (FUSION Sample 1,
“FS1”, [n=1160 cases, 1173 controls] and FUSION Sample 2, “FS2”, [n=1211 cases, 1264
controls]) [4]. FS1 and FS2 represent the FUSION GWAS and replication samples
respectively and have been included in a type 2 diabetes [2] and a lipid GWAS [23] and
subsequent follow up of significant findings. Due to DNA availability, the withdrawal of
some individuals, and updated type 2 diabetes status of others, the numbers of individuals
quoted for FS1 and FS2 vary slightly to those in the reference article. The recruitment
criteria for these samples have been previously reported [4]. We also included samples from
The Metabolic Syndrome in Men (METSIM) study, (“MS1”, n=801 cases, 3043 controls)
recruited in Finland [30]. The T130I genotype data for MS1 were included as part of the
lipid GWAS follow up [23] though type 2 diabetes data have not been published. Previously
reported genotyping results for T130I from three samples from the Broad institute were also
included [21]. These comprised of a Canadian sample (Broad Sample 1, “BR1”, n=127
cases, 127 controls), a combined Swedish, Finnish sample (Broad Sample 2, “BR2”, n=490
cases, 490 controls) and a Swedish sample (Broad sample 3, “BR3”, n=514 cases, 514
controls).

All studies were approved by local ethics committees and were performed in accordance
with the principles of the Helsinki Declaration II. Informed consent was obtained from all
subjects before participation. Detailed descriptions of category 1 and 2 samples are included
in the supplementary information. All subject characteristics are summarised in Table 1.

For a more complete study of T130I, the results from these category 1 and 2 samples were
included in a meta-analysis together with those from all previously published studies
(category 3) for which summary statistics were available. For these category 3 samples we
had no access to genotype information. These included a Pima Indian sample (“PI1”, n=573
cases, 464 controls) [31] and a Japanese sample (“JP1”, n=423 cases, 354 controls) [24]
included in the meta-analysis by Sookoian et al [22] in addition to a Mexican sample
(“MX1”, n=100 cases, 75 controls) [32].

Genotyping and Quality Control
Genotyping of T130I in the UK samples was carried out using a Taqman assay on the ABI
7900HT platform (Applied Biosystems, Warrington, Cheshire, UK). A KBioscience allele
specific PCR (KASPar) assay (KBioscience, Hoddesdon, U.K.) was utilised in the
genotyping of V255M in the UK samples and T130I in DK1. Quality of the genotyping was
assured by (a) assessing the genotyping pass rate (>96% globally), (b) evaluating the
estimated error rate based on completed duplicate pairs (UK samples: 0.00% for V255M,
n=314 duplicate pairs and 0.18% for T130I, 268 duplicate pairs; DK1: 0.20% based on 521
duplicate samples), and (c) assessing for departure (p<0.05) from Hardy Weinberg
Equilibrium (none detected). Genotyping methods and quality control measures for DK2
[20], Broad samples [21], FUSION samples [2, 23] and MS1 [23] have been previously
reported.

Statistical analysis
No heterogeneity of genotype counts was seen between category 1 cases when assessed by
an exact Pearson chi-square test using StatXact (v6.0: Cytel software corps, Cambridge,
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MA, USA). The same was true of controls. We subsequently carried out a primary
association analysis of category 1 samples (UK1, UK2, DK1 and DK2, for T130I, UK1 and
UK2 for V255M) (each as a separate stratum) followed by a secondary association analysis
including category 1 and category 2 samples (UK1, UK2, DK1, DK2, FS1, FS2, MS1, BR1,
BR2, and BR3 for T130I and UK1, UK2 and DK2 for V255M) as separate strata. We used
an exact Cochran-Armitage trend test (StatXact v6.0) for all association analyses in this
report. The ORs and sample sizes for each stratum from this study were subsequently used
in a meta-analysis of T130I incorporating the previously defined category 3 samples [22, 32]
utilising an additive model using GWAMA (Genome Wide Association Meta-Analysis)
software package (http://www.well.ox.ac.uk/gwama). Though these samples are
geographically disparate, a low level of heterogeneity of the T130I association effect sizes
was detected using GWAMA (I2= 61%; Q statistic P value= 0.10; quantified by the
comparison of the samples in category 1 and 2 to category 3 samples).

Power calculations derived from Quanto [33], using the previously reported OR for T130I
[20], indicated 99% power to detect an effect size of 1.3 (for α=0.001) for this variant in our
expanded association analysis incorporating UK, Danish, FUSION, METSIM and Broad
samples. Power for V255M is less (12% power to detect the same effect size [for α=0.001])
due to the much lower MAF. For this variant, we had 80% power to detect an effect size of
3.0 (for α=0.001).

Results
T130I was successfully genotyped in 7645 cases and 14756 controls in category 1. This
variant had an MAF of 3.76% in cases and 3.00% in controls. In category 1 samples, a
modest association with type 2 diabetes was conferred by the T allele of this variant
(additive per allele OR 1.20 [1.08-1.33]; p=5×10−4). The expanded association analysis
incorporating the category 1 and 2 samples marginally increased the strength of this
association (OR 1.17 [1.08-1.28]; p=1.5×10−4) (Table 2). The meta-analysis (Figure 1)
incorporating all available studies of T130I further increased the strength of this association
(n=14279 cases, 26835 controls; OR 1.20 [1.10-1.30]; p=2.1×10−5). There was no evidence
for heterogeneity in our meta-analysis (I2= 61%; Q statistic P value= 0.10).

The V255M variant was successfully genotyped in 5745 cases and 15044 controls in the UK
study. The MAF for V255M was far lower than for T130I (cases 0.08%, controls 0.10%),
and no type 2 diabetes association was observed in either the UK sample (p=0.28) or the
larger association analysis incorporating Danish genotyping data (p=0.40) (Table 3).

We did not find any evidence for linkage disequilibrium (r2<0.005) between either T130I or
V255M and the common variants in the promoter region of HNF4A that had previously
shown a weak association to type 2 diabetes susceptibility.

Discussion
When genes undergo monogenic screening, variants discovered tend to be put into two
categories: they are either considered to be causal for monogenic diabetes or neutral
“polymorphisms”. The latter group have been assumed to have no role in disease
susceptibility. With the large sample sizes now available, it is possible to go back to some of
these coding variants that are clearly not causal for monogenic diabetes and re-examine
whether they could nevertheless be influencing susceptibility to common forms of diabetes.
Previous functional and association studies had highlighted two coding LF variants within
HNF4A as interesting candidates in this respect and we have carried out the largest

Jafar-Mohammadi et al. Page 5

Diabetologia. Author manuscript; available in PMC 2011 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.well.ox.ac.uk/gwama


association analysis for the V255M and T130I variants of HNF4A to better understand their
role in type 2 diabetes pathogenesis.

We found no association between the V255M variant of HNF4A and type 2 diabetes risk in
the UK samples or in our larger analysis. It is worth emphasising that the low MAF of this
variant means that our power to detect association was limited to large effect sizes only.

In contrast, evidence of association between the T130I variant of HNF4A and type 2
diabetes risk was found in our analysis of category 1 and 2 samples. The evidence for
association was increased when we added category 3 samples reaching a P of 2.1×10−5. To
determine whether there was any additional evidence for association available from recent
large-scale GWA meta-analyses for type 2 diabetes, we examined data from the recently
published DIAGRAM+ meta-analysis [8], after excluding samples already in our meta-
analysis. T130I (rs1800961) is represented on Illumina arrays but is neither present on nor
can it be reliably-imputed into genome-wide genotypes obtained on early Affymetrix
platforms, limiting the data available from DIAGRAM+ to 3590 cases and 32326 controls.
In these samples, there was a directionally consistent but non-significant association with
T130I (P=0.13) such that the combined analyses (17869 cases and 59197 controls) reached a
P of 1.0×10−5.

This association however, fails by some margin, to reach widely-accepted thresholds for
genome-wide significance, which in the context of LF variants should be even more
stringent than those required for common variants (perhaps around α=5×10−9) given the
larger number of independent tests that are possible once lower-frequency variants are
considered. We estimate that to achieve this level of significance for T130I (using the effect
size [an OR of 1.20] observed in our expanded meta-analysis) would require almost 100,000
samples (in fact, 48697 cases and 48697 controls). Recent evidence (achieving such levels
of genome wide significance) that T130I is associated with altered HDL-cholesterol levels
raises the prior odds that the type 2 diabetes association we observe here is genuine, as does
the strong biological candidacy of this gene given its proven causal role in monogenic forms
of diabetes. The previously reported association with lipid levels also raises an interesting
question as to whether or not the type 2 diabetes association is mediated by a direct
influence of the variant (or a causal variant with which it is in linkage disequilibrium) on
beta cell function, or a primary effect on lipid physiology. The latter question could in
principle be answered by a suitably-scaled Mendelian randomisation experiment. The broad
transcriptional effects of HNF-4A would be consistent with pleiotropic effects of the variant
on multiple systems.

As efforts are increasingly aimed at understanding the full allelic spectrum of variants
involved in multifactorial disease pathogenesis, large-scale genotyping will be required to
clarify the role played by LF variants. As our results exemplify, the numbers required for
association testing of such variants are substantial when the effect size is modest. It is clear
that large collaborative efforts will be needed to maximise the samples available for any
such studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Meta-analysis of the association studies of the T130I variant to type 2 diabetes+

+ Plot generated using Comprehensive Meta Analysis software version 2.2050, Biostat Inc.,
NJ, USA
* CS: Current Study.

Jafar-Mohammadi et al. Page 10

Diabetologia. Author manuscript; available in PMC 2011 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Jafar-Mohammadi et al. Page 11

Ta
bl

e 
1

St
ud

y 
Su

bj
ec

t C
ha

ra
ct

er
is

tic
s

Sa
m

pl
e 

na
m

e
Sh

or
t 

fo
rm

Sa
m

pl
e 

na
m

e 
in

pr
ev

io
us

pu
bl

ic
at

io
ns

A

Su
bj

ec
ts

%
 M

al
e

M
ea

n 
A

ge
B

(y
ea

rs
) 

± 
SD

M
ea

n 
B

M
I

(k
g/

m
2 )

 ±
 S

D

C
on

tr
ol

s
C

as
es

C
on

tr
ol

s
C

as
es

C
on

tr
ol

s
C

as
es

C
on

tr
ol

s
C

as
es

U
K

 S
am

pl
e 

1
U

K
1

U
K

T
2D

G
C

 S
am

pl
e

51
26

41
24

51
55

60
 ±

 1
3

58
 ±

 1
2

27
 ±

 5
31

 ±
 6

U
K

 S
am

pl
e 

2
U

K
2

D
ia

be
te

s 
U

K
W

ar
re

n 
2

re
po

si
to

ry
, B

ri
tis

h
19

58
 b

ir
th

 c
oh

or
t,

U
K

 b
lo

od
 s

er
vi

ce
co

lle
ct

io
n 

of
co

m
m

on
 c

on
tr

ol
s

10
22

0
18

53
50

61
42

 ±
 7

52
 ±

 7
27

 ±
 6

C
32

 ±
 7

D
an

is
h 

Sa
m

pl
e 

1
D

K
1

In
te

r9
9,

 S
D

C
1,

SD
C

2
-

26
46

-
59

-
57

 ±
 1

0
-

31
 ±

 6

D
an

is
h 

Sa
m

pl
e 

2
D

K
2

SD
C

2 
an

d
A

D
D

IT
IO

N
48

65
13

97
47

60
46

 ±
 9

52
 ±

 1
0

26
 ±

 4
30

 ±
 5

FU
SI

O
N

 s
am

pl
e 

1
FS

1

St
ag

e 
1 

ge
no

ty
pi

ng
Sa

m
pl

e 
fo

r
D

IA
G

R
A

M
 m

et
a-

an
al

ys
is

11
73

11
60

49
56

64
 ±

 7
54

 ±
 9

27
 ±

 4
30

 ±
 5

FU
SI

O
N

 S
am

pl
e 

2
FS

2

St
ag

e 
2 

ge
no

ty
pi

ng
Sa

m
pl

e 
fo

r
D

IA
G

R
A

M
 m

et
a-

an
al

ys
is

12
64

12
11

61
60

59
 ±

 8
55

 ±
 9

27
 ±

 4
31

 ±
 5

M
E

T
SI

M
M

S1
M

E
T

SI
M

30
43

80
1

10
0

10
0

59
 ±

 6
58

 ±
 7

26
 ±

 4
30

 ±
 5

B
ro

ad
 S

am
pl

e 
1

B
R

1
C

an
ad

a 
Sa

m
pl

e
12

7
12

7
55

55
52

 ±
 8

52
 ±

 8
D

29
 ±

 4
29

 ±
 5

B
ro

ad
 S

am
pl

e 
2

B
R

2
Sc

an
di

na
vi

a 
Sa

m
pl

e
49

0
49

0
52

52
60

 ±
 1

0
60

 ±
 1

0D
27

 ±
 4

28
 ±

 5

B
ro

ad
 S

am
pl

e 
3

B
R

3
Sw

ed
en

 S
am

pl
e

51
4

51
4

52
52

66
 ±

 1
2

66
 ±

 1
2D

28
 ±

 4
28

 ±
 4

A
Fu

ll 
de

ta
ils

 a
va

ila
bl

e 
in

 S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n

B
M

ea
n 

ag
e 

re
fe

rs
 to

 a
ge

 a
t r

ec
ru

itm
en

t f
or

 c
on

tr
ol

s 
an

d 
ag

e 
at

 d
ia

gn
os

is
 f

or
 c

as
es

C
B

as
ed

 o
n 

th
e 

B
ri

tis
h 

19
58

 B
ir

th
 C

oh
or

t (
n=

71
33

) 
an

d 
Pa

ne
l 2

 o
f 

th
e 

U
ni

te
d 

K
in

gd
om

 B
lo

od
 S

er
vi

ce
s 

C
ol

le
ct

io
n 

(n
=

16
43

)

D
B

as
ed

 o
n 

ag
e 

at
 r

ec
ru

itm
en

t (
ag

e 
of

 d
ia

gn
os

is
 n

ot
 a

va
ila

bl
e)

Diabetologia. Author manuscript; available in PMC 2011 June 22.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Jafar-Mohammadi et al. Page 12

Ta
bl

e 
2

A
ss

oc
ia

tio
n 

te
st

in
g 

of
 th

e 
T

13
0I

 v
ar

ia
nt

 o
f 

H
N

F4
A

St
ud

y 
sa

m
pl

e

N
C

as
es

: 
G

en
ot

yp
e 

co
un

ts
(G

en
ot

yp
e 

fr
eq

ue
nc

ie
s)

C
on

tr
ol

s:
 G

en
ot

yp
e 

co
un

ts
(G

en
ot

yp
e 

fr
eq

ue
nc

ie
s)

St
at

is
ti

ca
l A

na
ly

si
s

C
as

es
/C

on
tr

ol
s

C
C

C
T

T
T

C
C

C
T

T
T

O
R

 H
et

(9
5%

 C
I)

O
R

 H
om

(9
5%

 C
I)

P
A

dd

U
K

1
40

40
/5

01
2

37
71

(9
3.

34
%

)
26

6
(6

.5
9%

)
3

(0
.0

7%
)

47
11

(9
4.

00
%

)
29

1
(5

.8
1%

)
10

(0
.1

9%
)

1.
09

(0
.9

2-
1.

29
)

1.
18

(0
.8

4-
1.

65
)

0.
33

3

U
K

2
11

58
A

/9
74

4
10

69
(9

2.
31

%
)

89
(7

.6
9%

)
0

(0
.0

0%
)

91
75

(9
4.

16
%

)
56

3
(5

.7
8%

)
6

(0
.0

6%
)

1.
32

(1
.0

4-
1.

66
)

1.
74

(1
.0

8-
2.

77
)

0.
02

0

D
K

1
24

47
/0

22
40

(9
1.

54
%

)
20

0
(8

.1
7%

)
7

(0
.2

9%
)

-
-

-
-

-
-

D
K

2
13

24
/4

72
7

12
16

(9
1.

84
%

)
10

6
(8

.0
1%

)
2

(0
.1

5%
)

44
12

(9
3.

33
%

)
30

5
(6

.4
5%

)
10

(0
.2

1%
)

1.
21

(0
.9

7-
1.

51
)

1.
47

(0
.9

3-
2.

29
)

0.
09

0

D
K

1 
an

d 
D

K
2

37
71

/4
72

7
34

56
(9

1.
65

%
)

30
6

(8
.1

1%
)

9
(0

.2
4%

)
44

12
(9

3.
33

%
)

30
5

(6
.4

5%
)

10
(0

.2
1%

)
1.

26
(1

.0
7-

1.
47

)
1.

57
(1

.1
5-

2.
16

)
0.

00
4

C
at

eg
or

y 
1

76
45

/1
47

56
1.

20
(1

.0
8-

1.
33

)
1.

44
(1

.1
7-

1.
77

)
5×

10
−

4

(U
K

1,
 U

K
2,

 D
K

1,
 D

K
2)

FS
1

11
60

/1
17

2
10

57
(9

1.
12

%
)

98
(8

.4
4%

)
5

(0
.4

3%
)

10
87

(9
2.

75
%

)
82

(7
.0

0%
)

3
(0

.2
6%

)
1.

24
(0

.9
3-

1.
66

)
1.

54
(0

.8
6-

2.
77

)
0.

13
4

FS
2

11
81

/1
23

7
10

69
(9

0.
52

%
)

10
9

(9
.2

3%
)

3
(0

.2
5%

)
11

42
(9

2.
32

%
)

93
(7

.5
2%

)
2

(0
.1

6%
)

1.
25

(0
.9

4-
1.

67
)

1.
57

(0
.8

9-
2.

78
)

0.
12

2

M
S1

77
4/

29
57

72
0

(9
3.

02
%

)
52

(6
.7

2%
)

2
(0

.2
6%

)
27

60
(9

3.
34

%
)

19
1

(6
.4

6%
)

6
(0

.2
0%

)
1.

05
(0

.7
7-

1.
43

)
1.

11
(0

.5
9-

2.
03

)
0.

75
8

B
R

1
11

1/
11

0
10

7
(9

6.
40

%
)

4
(3

.6
0%

)
0

(0
.0

0%
)

10
6

(9
6.

36
%

)
4

(3
.6

4%
)

0
(0

.0
0%

)
0.

99
(0

.1
8-

5.
46

)
-

1.
00

0

B
R

2
48

8/
48

3
46

0
(9

4.
26

%
)

26
(5

.3
3%

)
2

(0
.4

1%
)

45
1

(9
3.

37
%

)
31

(6
.4

2%
)

1
(0

.2
1%

)
0.

90
(0

.5
4-

1.
51

)
0.

81
(0

.2
9-

2.
29

)
0.

71
1

B
R

3
50

0/
50

0
46

1
(9

2.
20

%
)

36
(7

.2
0%

)
3

(0
.6

0%
)

45
9

(9
1.

80
%

)
39

(7
.8

0%
)

2
(0

.4
0%

)
0.

98
(0

.6
3-

1.
52

)
0.

96
(0

.3
9-

2.
31

)
1.

00
0

C
at

eg
or

y 
1 

an
d 

2
(U

K
1,

 U
K

2,
 D

K
1,

 D
K

2,
FS

1,
 F

S2
, M

S1
, B

R
1,

B
R

2,
 B

R
3)

13
18

3/
25

94
2

1.
17

(1
.0

8-
1.

28
)

1.
38

(1
.1

7-
1.

63
)

1.
5×

10
−

4

C
at

eg
or

y 
1,

 2
 a

nd
 3

(U
K

1,
 U

K
2,

 D
K

1,
 D

K
2,

FS
1,

 F
S2

, M
S1

, B
R

1,
B

R
2,

 B
R

3,
 P

I1
, J

P1
,

M
X

1)

14
27

9/
26

83
5

1.
20

(1
.1

0-
1.

30
)

2.
1×

10
−

5

Diabetologia. Author manuscript; available in PMC 2011 June 22.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Jafar-Mohammadi et al. Page 13
C

C
: C

om
m

on
 H

om
oz

yg
ot

e;
 C

T
: H

et
er

oz
yg

ot
e;

 T
T

: R
ar

e 
H

om
oz

yg
ot

e

N
: T

ot
al

 n
um

be
r 

su
cc

es
sf

ul
ly

 g
en

ot
yp

ed
 o

nl
y

O
R

 H
et

: O
dd

s 
R

at
io

 f
or

 H
et

er
oz

yg
ot

e 
ca

rr
ie

rs
 c

om
pa

re
d 

to
 C

C
; O

R
 H

om
: O

dd
s 

R
at

io
 f

or
 r

ar
e 

al
le

le
 h

om
oz

yg
ot

es
 c

om
pa

re
d 

to
 C

C

P A
dd

: P
 v

al
ue

 f
or

 a
dd

iti
ve

 m
od

el

A
: F

ul
l s

am
pl

e 
se

t n
ot

 a
va

ila
bl

e 
in

 O
xf

or
d 

at
 th

e 
tim

e 
of

 g
en

ot
yp

in
g 

(n
=

11
93

 c
as

es
 a

va
ila

bl
e 

fo
r 

ge
no

ty
pi

ng
)

Diabetologia. Author manuscript; available in PMC 2011 June 22.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Jafar-Mohammadi et al. Page 14

Ta
bl

e 
3

A
ss

oc
ia

tio
n 

te
st

in
g 

of
 th

e 
V

25
5M

 v
ar

ia
nt

 o
f 

H
N

F4
A

St
ud

y 
sa

m
pl

e

N
C

as
es

 G
en

ot
yp

e 
co

un
ts

(G
en

ot
yp

e 
fr

eq
ue

nc
ie

s)
C

on
tr

ol
s 

G
en

ot
yp

e 
co

un
ts

(G
en

ot
yp

e 
fr

eq
ue

nc
ie

s)
St

at
is

ti
ca

l A
na

ly
si

s

C
as

es
/C

on
tr

ol
s

G
G

G
A

A
A

G
G

G
A

A
A

O
R

 H
et

(9
5%

 C
I)

P
A

dd

U
K

1
39

49
/4

92
5

39
42

(9
9.

82
%

)
7

(0
.1

8%
)

0
(0

.0
0%

)
49

11
(9

9.
72

%
)

14
(0

.2
8%

)
0

(0
.0

0%
)

0.
62

(0
.2

1-
1.

65
)

0.
38

U
K

2
17

96
/1

01
19

17
94

(9
9.

89
%

)
2

(0
.1

1%
)

0
(0

.0
0%

)
10

10
3

(9
9.

84
%

)
16

(0
.1

6%
)

0
(0

.0
0%

)
0.

76
(0

.0
8-

2.
99

)
0.

76

C
at

eg
or

y 
1

(U
K

1,
 U

K
2)

57
45

/1
50

44
0.

64
(0

.2
6-

1.
44

)
0.

28

D
K

 2
13

60
/4

79
1

13
57

(9
9.

78
%

)
3

(0
.2

2%
)

0
(0

.0
0%

)
47

81
(9

9.
79

%
)

10
(0

.2
1%

)
0

(0
.0

0%
)

1.
05

(0
.1

9-
4.

11
)

1.
00

C
at

eg
or

y 
1 

an
d 

2
(U

K
1,

 U
K

2,
 D

K
2)

71
05

/1
98

35
0.

73
(0

.3
4-

1.
47

)
0.

44

G
G

: C
om

m
on

 H
om

oz
yg

ot
e;

 G
A

: H
et

er
oz

yg
ot

e;
 A

A
: R

ar
e 

H
om

oz
yg

ot
e

N
: T

ot
al

 n
um

be
r 

su
cc

es
sf

ul
ly

 g
en

ot
yp

ed
 o

nl
y

O
R

 H
et

: O
dd

s 
R

at
io

 f
or

 H
et

er
oz

yg
ot

e 
ca

rr
ie

rs
 c

om
pa

re
d 

to
 G

G

P A
dd

: P
 v

al
ue

 f
or

 a
dd

iti
ve

 m
od

el

Diabetologia. Author manuscript; available in PMC 2011 June 22.


