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Abstract
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important
post-translational modifications and is a key regulator of cellular signaling of multiple biological
processes that require a strict control by protein kinases and protein phosphatases. Abnormal
protein phosphorylation has been associated with several human diseases including Alzheimer
disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles,
composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However,
several others proteins showed altered phosphorylation levels in AD suggesting that deregulated
phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained
attention as a valuable approach to analyze protein phosphorylation, both in a quantitave and a
qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins
that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control
(CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal
process such as energy metabolism or signal transduction. These phosphoproteome data may
provide new clues to better understand molecular pathways that are deregulated in the
pathogenesis and progression of AD.
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INTRODUCTION
Post-translational modifications are key modulators of protein structure and function [1].
Reversible protein phosphorylation of serine, threonine, and tyrosine residues is the most
common peptide modification and plays a crucial role in controlling various cellular
functions in living cells. Phosphorylation is regulated by a highly dynamic network of
protein kinases and phosphatases and it is [2–4] estimated that at least one-third of
eukaryotic proteins are phosphorylated, however only a subset are modified by any given
stimulus [5–7].. Phosphorylation often occurs at multiple residues within a protein and by
different protein kinases allowing the protein to adapt to several different functions.
Complex cooperation between various classes of kinases and phosphatases triggers the
dynamics of phosphorylation cycles [8, 9].

Abnormal phosphorylation has been implicated in many human diseases such as cancer and
Alzheimer disease (AD) [5, 10]. Thus, analysis of the entire phosphoproteome and its
alterations is gaining interest and presently represents an attractive subject for researchers.

AD is the most common neurodegenerative disease affecting more than 20 million people
worldwide and the leading cause of dementia. Most cases of Alzheimer disease are sporadic
and idiopathic; however, mutations in three genes, APP, presenilin 1 and presenilin 2 have
been identified as being responsible for a small fraction of early-onset Alzheimer disease,
that accounts for approximately 5% of all Alzheimer disease cases. With increasing life-span
and in the absence of interventions to slow or arrest progression of AD, the number of
elderly people at risk of developing dementia is growing rapidly [11]. Large number of
studies proposed various hypotheses to explain the pathogenesis or progression of sporadic
AD that include the amyloid hypothesis, the oxidative stress hypothesis and APOE genotype
among others [12–17]. Although the initiating events are still unknown, it is likely that AD
is the consequence of the combination of genetic risk factors with different epigenetic
events. The neocortex, entorhinal cortex, and hippocampus brain regions of AD patients are
characterized by the presence of two principal histopathological hallmarks, extracellular
senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs). In addition, the above
mentioned brain regions are dramatically atrophied in AD compared to brains from non-
demented subjects [18]. SPs are composed of a core of amyloid β-peptide (Aβ) and exist as
either diffuse or neuritic variants. Neuritic plaques have dense fibrillary Aβ cores
surrounded by dystrophic axons and dendrites, activated microglia, and reactive astrocytes
[19–21]. NFTs consist as paired helical filaments composed of hyperphosphorylated tau
protein and occur in the cytoplasm of the soma and in neuritic projections [22–26]. Aberrant
phosphorylation of several other proteins such as neurofilaments and microtubule-associated
protein 1B have also been found to associate with AD pathogenesis, confirming that altered
phosphorylation is a common event during AD progression [10].

In the current study we used a proteomic approach to analyze alterations of the AD
phosphoproteome compared to control (CTR). Our method takes advantage of a fluorescent
phosphosensor, Pro-Q Diamond, capable of sensitive detection of phosphoserine-,
phosphothreonine-, and phosphotyrosine-containing proteins [8, 27, 28]. Total protein
phosphorylation levels are then normalized to total protein expression within the same gel
using multiplexed proteomics technology [29]. By following this approach, we identified
several proteins with altered phosphorylation in AD vs. CTR hippocampal samples.
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Materials and methods
AD and CTR subjects

Frozen hippocampal samples (n=6 each) from well-characterized subjects with AD and
respective age-matched controls (Table 1) were obtained from the University of Kentucky
Rapid Autopsy Program of the Alzheimer's Disease Clinical Center (UK ADC) with an
average PMI of about 3 h for AD patients and respective control subjects. All the subjects
were longitudinally followed and underwent annual neuropsychological testing, and
neurological and physical examinations. Control subjects were without history of dementia
or other neurological disorders and with intact activities of daily living (ADLs), and they
underwent annual mental status testing and semi-annual physical and neurological exams as
part of the UK ADC normal volunteer longitudinal aging study. The control subjects showed
no significant histopathological alterations and the average Braak score was II (range: I–III)
for the age-matched controls. AD patients diagnosis was made according to criteria
developed by the National Institute of Neurological and Communicative Disorders and
Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Association
(ADRDA) [30]. All AD patients displayed progressive intellectual decline. The mean Braak
score for AD patients was VI (range: V–VI), respectively. The demographic parameters of
controls and AD subjects are provided in Table 1.

Sample preparation
Hippocampal samples from control and AD subjects were sonicated in Media 1 lysis buffer
(pH 7.4) containing 320 mM Sucrose, 1% of 990 mM Tris-HCl (pH=8.8), 0.098 mM
MgCl2, 0.076 mM EDTA, proteinase inhibitors leupeptin (0.5 mg/mL), pepstatin (0.7 µg/
mL), aprotinin (0.5 mg/mL) and PMSF (40 µg/mL), phosphatase and kinase inhibitor
cocktail (Sigma-Aldrich). Homogenates were centrifuged at 14,000g for 10 min to remove
debris. Protein concentration in the supernatant was determined by the Pierce BCA method
(Pierce, Rockford, IL, USA).

2D electrophoresis
For the first-dimension electrophoresis, approximately 200 µg of sample solution were
applied to 110-mm pH 3–10 IPG® ReadyStrip (Bio-Rad, Hercules CA). The strips were
then actively rehydrated in the protean isoelectric focusing (IEF) cell (Bio-Rad) at 50 V for
18 h. The isoelectric focusing was performed in increasing voltages as follows; 300 V for 1
h, then linear gradient to 8000 V for 5 h and finally 20 000 V/h. Strips were then stored at
−80 °C until the second dimension electrophoresis was to be performed. For the second
dimension, the IPG® Strips, were thawed and equilibrated for 10 min in 50 mM Tris–HCl
(pH 6.8) containing 6 M urea, 1% (w/v) sodium dodecyl sulfate (SDS), 30% (v/v) glycerol,
and 0.5% dithiothreitol, and then re-equilibrated for 15 min in the same buffer containing
4.5% iodacetamide instead of dithiothreitol. Linear gradient precast criterion Tris–HCl gels
(8–16%) (Bio-Rad) were used to perform second dimension electrophoresis. Precision
Protein™ Standards (Bio-Rad, CA) were run along with the samples at 200 V for 65 min.

Gel Staining
For the detection of phosphoproteins, the gels were stained using a Pro-Q Diamond
phosphoprotein gel stain kit (Molecular Probes) according to the manufacturer’s protocol.
Briefly, 2-DE gels were fixed with 50% methanol and 10% acetic acid (100 mL per gel) for
30 min two times. Gels were then washed three times with ultrapure water (100 mL per gel)
for 30 min for each washing. Gels were incubated in Pro-Q Diamond phosphoprotein stain
solution (100 mL per gel) for 90 min, and destained by washing three times in 50 mM
sodium acetate, pH 4.0, 20% acetonitrile (100 mL per gel) for 30 min. Gels were then
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washed again three times with ultrapure water (100 mL per gel) for 30 min for each
washing. After the fluorescence scanning the gels were incubated in fixing solution (7%
acetic acid, 10% methanol) for 20 min and stained overnight at room temperature with 50
mL SYPRO Ruby gel stain (Bio-Rad). The SYPRO ruby gel stain was then removed and
gels stored in deionized water.

Image analysis
Pro-Q Diamond images were acquired using a Typhoon transilluminator (GE Healthcare)
with excitation/emission wavelength of 555/580 nm. SYPRO ruby-stained gel images were
obtained using a STORM phosphoimager (GE Healthcare). All the images were saved in
TIFF format. Gel imaging was software-aided using PD-Quest (Bio-Rad) imaging software.
Briefly, a master gel was selected followed by normalization of all gels (Control and AD)
according to the total spot density. Gel-to-gel analysis was then initiated in two parts. First,
manual matching of common spots that could be visualized among the differential 2D gels
was performed. After obtaining a significant number of spots the automated matching of all
spots was then initiated. Automated matching is based on user-defined parameters for spot
detection. These parameters are based on the faintest spot, the largest spot, and the largest
spot cluster that occur in the master gel and are defined by the user. Based on these
parameters the software defines spot centers for the gel. This process generates a large pool
of data, approximately 400 spots. Only proteins showing computer-determined significant
differential levels between the two groups being analyzed were considered for identification.
To determine significant differential levels of proteins, analysis sets were created using the
analysis set manger software incorporated into the PD-Quest software. The numbers of
pixels that occur in a protein spot were computed by the software corresponding to an
increase/decrease in protein level. The gel image analysis was conducted first on
phosphostained gels and then on Sypro Ruby-stained expression gels. The two analyses
were compared by software to normalize phosphorylation value to expression value for each
spot matched. A quantitative analysis set was created that recognized matched spots with
differences in phosphorylation intensity (normalized to expression intensity) that occur in
each spot and a statistical analysis set was created that used a Student’s t-test at 95%
confidence to identify spots with p-values of p < 0.05. Spots with p < 0.05 were considered
significant. A Boolean analysis set was created that identified overlapping spots from the
aforementioned quantitative and statistical sets. These spots were selected for subsequent
mass spectrometric analysis.

In gel trypsin digestion
Protein spots in AD gels statistically different than controls were digested in-gel by modified
trypsin using protocols previously described and modified by Thongboonkerd et al. [31].
Spots were taken from individual gels and not pooled for mass spectrometric analysis. The
amount of protein from one gel-spot is sufficient for identification. Briefly, spots of interest
were excised using a clean blade and placed in Eppendorf tubes, which were then washed
with 20 µL of 0.1 M ammonium bicarbonate (NH4HCO3) at room temperature for 15 min.
30 µL of 100% acetonitrile was then added to the gel pieces and incubated at room
temperature for 15 min. This solvent mixture was then removed and gel pieces dried in a
flow hood for 15 min. The protein spots were then incubated with 20 µL of 20 mM DTT in
0.1 M NH4HCO3 at 56 °C for 45 min. The DTT solution was removed and replaced with 20
µL of 55 mM iodoacetamide in 0.1 M NH4HCO3. The solution was then incubated at room
temperature for 30 min. The iodoacetamide was removed and replaced with 0.2 mL of 50
mM NH4HCO3 and incubated at room temperature for 15 min. Acetonitrile (200 µL) was
added. After 15 min incubation, the solvent was removed, and the gel spots were dried in a
flow hood for 30 min. The gel pieces were rehydrated with 20 ng/µL-modified trypsin
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(Promega, Madison, WI) in 50 mM NH4HCO3 with the minimal volume sufficient to cover
the gel pieces. The gel pieces were incubated overnight at 37 °C in a shaking incubator.

Mass spectrometry
The resulting tryptic peptides were analyzed with an automated nanospray Nanomate
Orbitrap XL MS platform. The Orbitrap MS was operated in a data-dependent mode
whereby the 8 most intense parent ions measured in the FT at 60,000 resolution were
selected for ion trap fragmentation with the following conditions: injection time 50 ms, 35%
collision energy. MS/MS spectra were measured in the FT at 7500 resolution, and dynamic
exclusion was set for 120 seconds. Each sample was acquired for a total of ∼2.5 minutes.
MS/MS spectra were searched against the ipi_Human Database using SEQUEST with the
following criteria: Xcorr > 1.5, 2.0, 2.5, 3.0 for +1, +2, +3, and +4 charge states,
respectively, and P-value (protein and peptide) < 0.01. IPI accession numbers were cross-
correlated with SwissProt accession numbers for final protein identification.

Statistical analysis
All statistical analysis was performed using a two-tailed Student’s t-test. P < 0.05 was
considered significantly different from control.

RESULTS
Proteomics analysis

In this study we used multiplexed proteomics technology that couples the classic proteomics
approach with Pro-Q diamond fluorescent staining allowing the parallel determination of
protein and phosphorylation levels within a single experiment. The Pro-Q Diamond
phosphoprotein dye technology is reliable for the fluorescent detection of phosphoserine-,
phosphothreonine-, and phosphotyrosine-containing proteins directly in sodium dodecyl
sulfate (SDS)-polyacrylamide gels and two-dimensional (2-D) gels. The staining is rapid,
easy to perform, readily reversible, and fully compatible with modern microchemical
analysis procedures, such as MS/MS. The specificity and sensitivity of Pro-Q Diamond
phosphoprotein stain has been previously confirmed by several authors [32]. Fluorescence
signal intensity correlates with the total number of phosphorylated residues on the protein.
Through combination of Pro-Q Diamond phosphoprotein stain with SYPRO Ruby protein
gel stain, multiplexed proteomics technology permits quantitative, fluorescence detection of
proteins in 2-D gels permitting the determination of altered post-translational modification
patterns normalized for protein expression level changes within a single 2-D gel experiment
[28, 29]. Our samples had an average PMI of about 3h, a short time and an advantage in this
study since previous studies showed that the level of protein phosphorylation might be
reduced by the activities of phosphatases during extended postmortem intervals. Our
analysis reveals a total of 17 proteins differentially phosphorylated in AD hippocampus
compared with age-matched controls (Table 2; Figures 1, 2, 3). Nine of these show
increased phosphorylation in AD: gamma enolase (ENOG) and alpha enolase (ENOA)
(29.6- and 2.5-fold), guanine nucleotide-binding protein G (o) subunit alpha (GNAO1)
(16.4-fold), fructose-bisphosphate aldolase C (ALDOC) (4.1-fold), dihydropyrimidine
related protein 2 (CRMP2) (2.5-, 7.1-, 5.6-fold), 6-phosphogluconate dehydrogenase,
decarboxylating (6PGD) (10.1-fold), glial fibrillary acidic protein (GFAP) (1.3-fold),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1.4-fold) and mitogen activated
protein kinase kinase 1 (MEK 1) (2.1-fold). Multiple spots for CRMP2 were found
suggesting that differential post-translational modification of this particular protein affects
the isoelectric point (pI) of CRMP2. In contrast to the above results, eight of the identified
phosphoproteins showed decreased phosphorylation in AD hippocampus: NADH
dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial (NDUFS3) (0.12-fold),
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creatine kinase B-type (CKB) (0.25-fold), NAD-dependent deacetylase sirtuin-2 (SIRT2)
(0.63-fold), Rab GDP dissociation inhibitor beta (GDI2) (0.61-fold), glyoxylate reductase/
hydroxypyruvate reductase (GRHPR) (0.12-fold), mitochondrial inner membrane protein
(IMMT) (0.2-fold), transitional endoplasmic reticulum ATPase (VCP) (0.1-fold) and
dihydropteridine reductase (QDPR) (0.55-fold). In Table 2 we show the number of known
and predicted phosphoserine, phosphothreonine and phosphotyrosine residues confirming
that all the proteins identified are well-known or putative phosphoproteins and that our
methods are appropriate and reliable. Moreover, we have previously shown the
phosphorylation levels of biliverdin reductase (BVR-A) in AD hippocampus by either Pro-Q
diamond or Western blot with specific anti phospho- ser/thr/tyr antibodies. Both methods of
analysis showed the same results, consistent with the robustness of our data [33].

DISCUSSION
Increasing evidence indicates that aberrant protein phosphorylation occurs in AD, resulting
from the concomitant alteration of protein kinase and phosphatase machinery [34, 35]. In
AD brain, protein kinases such as glycogen synthase kinase cyclin-dependent kinase 5, dual-
specific tyrosine regulated kinase and mitogen-activated protein kinases (MAPKs) are
increased in expression and/or activity, whereas decreased activity was observed for protein
phosphatases such as PP1, PP2A and PP5 [36, 37]. The hyperphosphorylation of Tau is one
of the most extensively studied abnormal phosphorylation in neurodegenerative disease and
has been a major focus of research and drug development [38]. The level of Tau
phosphorylation is regulated dynamically by several kinases and phosphatases and any
imbalance between these enzymes cause Tau hyperphosphorylation affecting its biological
function [39–42]. Recent studies suggest that alterations of phosphorylation occurs on
several brain proteins other that tau affecting their functionality and contributing to AD
progression [34]. Altered phosphorylation of neurofilaments, microtubule-associated
proteins 1B, APP, PS1, syntaxin 1 and amphiphysin II, have been associated with AD
pathogenesis [10, 43, 44].

The use of proteomics coupled with Pro-Q Diamond staining allow the identification of
phosphorylated proteins and the corresponding changes in their phosphorylation levels
(normalized to expression levels). This is the first study on the identification of brain
proteins with quantitative modification of ser/thr/tyr phosphorylation in AD hippocampus
compared to normal brain. We recently reported the phosphorylation levels of BVR-A in
AD hippocampus confirming the specificity of the of the Pro-Q diamond staining by
immunochemical methods [33]. We referred to Uniprot and Phosida internet database
(www.uniprot.org; 141.61.102.18/phosida/index.aspx) [45, 46] to obtain detailed
information on type and numbers of phosphorylated residues of the protein identified in this
work. Some of the proteins identified are not documented as phosphoproteins. For this
reason, NetPhosK (www.cbs.dtu.dk/services/NetPhosK), a software tool for potential
phosphorylation sites recognition, was also consulted [47]. We grouped the identified
proteins based on their biological and functional activity to link phosphoprotein alteration
with the possible failure of molecular pathways in AD (Figure 4).

Signal transduction
The MAP kinase cascade plays a central role in integrating the signals from a diverse group
of extracellular stimuli and proto-oncogenes to the nucleus where activation of specific
transcription factors elicits cellular responses. Map kinase kinase 1 (MEK1) is a dual-
specificity protein kinase that functions in a mitogen activated protein kinase cascade.
Factors that activate MEK1 include growth factors like NGF, cytokines, chemokines, and
phorbol ester, resulting in cellular proliferation and survival. Phosphorylation and
autophosphorylation have been shown to play a central role in the activity of protein kinases
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such as MEK 1/2. Active forms of MEK1/2 and ERK1/2 were found to be co-distributed
with the progressive accumulation of neurofibrillary changes in several AD brain regions
comprise hippocampus [48–50]. The neurofibrillary pathology positive for active forms of
MEK1/2 and ERK1/2 was also found to occur prior to the deposition of A β [48, 49].
Among the pharmacological agents used to inhibit several kinase cascades, only MEK-
ERK1/2 inhibition significantly attenuated A β 42 oligomer-induced toxicity [51].

G proteins and their receptors (GPCRs) form one of the most prevalent signaling systems in
mammalian cells, regulating systems as diverse as sensory perception, cell growth and
hormonal regulation. The alpha subunit and the beta/gamma dimer go on to activate distinct
downstream effectors, such as adenylyl cyclase, phosphodiesterases, phospholipase C, and
ion channels [52].

GDI2 constitute a small family of highly conserved proteins. Rab-GDP dissociation
inhibitor is a member of the GDP dissociation inhibitor (GDI) family that controls the
recycling of the Rab GTPases involved in membrane trafficking of molecules between
cellular organelles. GDIs slow the rate of dissociation of GDP from rab proteins and release
GDP from membrane-bound rabs [53, 54]. We previously found a decrease of Con-A-
associated GDI levels in AD hippocampus [55].

Altered phosphorylation levels of proteins involved in signal transduction pathways could
impair their functionality leading to profound consequences on neuronal survival.

Energy metabolism
A significant fraction of the proteins identified in this study with altered phosphorylation are
involved in energy metabolism such as glycolysis or the pentose shunt. Previous proteomics
studies from our lab reported significant increase in the oxidation of proteins involved in
glycolysis and the TCA cycle, and a significant decrease in TCA enzyme levels in AD brain
[56, 57]. In the current study we show changes in phosphorylation of four glycolytic
proteins in AD hippocampus: alpha- and gamma-enolase, fructose bisphosphate aldolase and
glyceraldehyde 3-phoshate dehydrogenase. All of these enzymes are well known
phosphoproteins.

GAPDH, as a key enzyme in glycolysis, catalyzes the NAD-mediated oxidative
phosphorylation of glyceraldehyde 3-phosphate to 1,3- diphosphoglycerate. However, it is
also involved in several biological functions, including the organization of the cytoskeleton
and regulation of endocytosis, binding and transport of tRNA, and regulation of translation,
transcription, replication, DNA repair, cell proliferation, and apoptosis [58, 59]. GAPDH
could be phosphorylated by several kinases such as PKC or AMPK and it can undergo
autophosphorylation [60, 61]. Previously it has been reported that GAPDH is the GABA
receptor endogenous kinase, providing a direct functional link between glycolysis and
neurotransmission [62].

Enolase is a key glycolytic enzyme that catalyzes the dehydration of 2-phosphoglycerate to
phosphoenolpyruvate, which in turn is converted by pyruvate kinase to pyruvate for entry
the TCA cycle. Alpha-enolase is found in almost all human tissues, whereas gamma-enolase
is only found in neurons and neuroendocrine tissues. Recently, accumulating evidence
revealed that, in addition to its innate glycolytic function, enolase plays an important role in
several biological and physiological processes [63], including activation of the ERK 1/2-
associated pro-survival pathway. Consistent with our present results, alpha and gamma
enolase were found with altered phosphorylation in the hippocampus of an AD mouse model
[64]. Previous studies demonstrated that both GAPDH and enolase are oxidatively modified
in AD brain samples compared with CTR [65].
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ALDOC catalyzes the reversible aldol cleavage of fructose-1,6-biphosphate and fructose 1-
phosphate to dihydroxyacetone phosphate and either glyceraldehyde-3-phosphate or
glyceraldehyde, respectively. ALDOC is expressed specifically in the hippocampus and
Purkinje cells of the brain and its hyperphosporylation related to AD progression has not
been observed yet.

We found the altered phosphorylation of the iron-sulfur protein (IP) components 3 of
mitochondrial NADH:ubiquinone oxidoreductase (complex I). Complex I is the "entry
enzyme complex" of oxidative phosphorylation in the mitochondria, located in the inner
mitochondrial membrane where it catalyzes the transfer of electrons from NADH to
coenzyme Q (CoQ). A generalized depression of all electron transport chain complexes
occurs in AD brain mitochondria [66][67]. Defects in the expression of mitochondrial
subunits of NADH dehydrogenase enzyme complex in the AD brain were reported [68], and
there are evidences that Complex I defects may play a role in the etiology of
neurodegenerative disease possibly because of the formation of reactive oxygen species. Of
course in AD brain extensive oxidative stress is found [12, 56].

The creatine kinase BB system is the most important immediate energy buffering and
transport system in neuronal tissue with kinase activity toward creatine and phosphocreatine.
CKs are primary targets of oxidative damage, and is also well established that oxidative
modification of CK-BB decreases its activity in AD and other neurodegenerative diseases
[69–71]. Hemmer et al. proposed CK autophosphorylation [72] and in vitro phosphorylation
of CK BB by protein kinase C has been shown. The observations of altered CK activity in
the AD brain are supported by a number of reports in the literature [73, 74] contributing to
decreased neurotransmission and neuronal loss observed in the AD brain [73, 74].

Taken together, these results suggest that the altered phosphorylation of proteins involved in
energy metabolism might be one of the main events associated with AD leading to reduced
activity of metabolic pathways and therefore decreased ATP production, as is well known in
AD.

Anabolic pathways
Dihydropteridine reductase (QDPR) participates in the pathway that recycles
tetrahydrobiopterin (BH4) an essential cofactor for the synthesis of dopamine,
noradrenaline, adrenaline and 5-hydroxytryptophan. Barford et al. and Jeeps et al. have
described disturbed BH4 metabolism in several neurological diseases, including AD, [75,
76]. Katoh et al. showed that QDPR undergo phosphorylation by Ca2+-activated kinases
consistent with our data [77].

6-Phosphogluconate dehydrogenase (6PGD) is an oxidative carboxylase that catalyzes the
decarboxylating reduction of 6-phosphogluconate into ribulose 5-phosphate in the presence
of NADP. This reaction is a component of the hexose mono-phosphate shunt and pentose
phosphate pathways (PPP) essential for formation of the cellular reducing agent, NADPH
[78]. G6PD is considered an early marker of oxidative stress because it is capable of
responding rapidly to the increased demand of NADPH required for the maintenance of the
cellular redox state. Phosphogluconate dehydrogenase activity is up-regulated in pertinent
cortical regions of AD brains as a compensatory reaction to highly oxidative environments
[79]. Phosphorylation of 6PGD has been previously demonstrated [80].

In addition to 6PGD, glyoxylate reductase also is involved in oxidoreductase reactions
specifically those acting on the CH-OH group of donors with NAD+ or NADP+ as
acceptors. The glyoxylate cycle describes an important subset of reactions involved in
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biosynthesis of carbohydrates from fatty acids or two-carbon precursors which enter the
system as acetyl-coenzyme A [81].

We speculate that alteration in these systems due to changes in phosphorylation observed in
the current study in AD could affect important intermediary metabolic pathways and be
detrimental to neurons.

Neuronal structure and trafficking
CRMP2 is involved in the formation, outgrowth and guidance of neurites. CRMP2 has been
shown to be phosphorylated by cyclin-dependent kinase 5, glycogen synthase kinase 3β and
by Rho kinase II, thereby mediating neurite retraction [82–84]. Phosphorylation of CRMP2
disturbs its association with tubulin heterodimers that cannot be transported to the plus ends
of microtubules for assembly. CRMP2 localizes with neurofibrillary tangles in human AD
cortex and is considered an early event in the pathogenesis of the disease [85, 86].
Interestingly, CRMP2 is hyperphosphorylated at the Cdk5 and GSK3 sites like tau protein,
in brain tissue from human AD subjects and in some mouse models of AD [85]. CRMP2 is
also an oxidatively modified protein in AD brain [87].

The mitochondrial inner membrane protein (IMMT) is an integral component of the inner
mitochondrial membrane with role in the regulation of the architecture of mitochondrial
cristae. Down-regulation of IMMT resulted in a drastic change in the organization of the
inner membrane. A study in cortical brain samples of fetal Down syndrome showed a
double-fold reduction of IMMT, highlighting its importance for normal mitochondrial
function [88]. IMMT is phosphorylated at several serine residues [89].

GFAP is the major constituent of glial intermediate filaments that form the cytoskeleton of
mature astrocytes. Its expression is greatly increased during chronic inflammation in the
brain. The self-assembly and degradation of GFAP is strictly regulated by phosphorylation
and dephosphorylation, and soluble phosphorylated GFAP is thought to increase
maintenance of the equilibrium with polymerized nonphosphorylated GFAP [90, 91].
Hyperphosphorylation of GFAP has been detected in rat hippocampus after ischemic insult
[92]. Phosphorylation has been suggested to be protective against the degradation of GFAP
[90] and during neurodegeneration may reflect increased neuroinflammation.

The transitional endoplasmic reticulum ATPase (VCP) is an essential component of a
complex of proteins involved in the ATP-dependent formation of transition vesicles from
the transitional endoplasmic reticulum [93]. VCP is also involved in a wide variety of other
cellular activities, including Golgi reassembly after mitotic division, endoplasmic reticulum-
(ER-) associated degradation (ERAD), ubiquitin-proteasome-mediated proteolysis. VCP is a
mediator of ER stress-induced cell death [94]. It is a phosphoprotein and several ser/thr/tyr
residues are known to be involved in its activity [95]. Several studies showed its
involvement in the neurodegeneration process characterized by protein misfolding and
aggregation, in particular linked to frontotemporal dementia [96].

Sirtuins possess either histone deacetylase or mono-ribosyltransferase activity and are a
conserved class found in organisms ranging from bacteria to humans. Phosphorylation, on
several residues, plays a key role in regulating the biological function of a human sirtuin 2
[97], controlling its expression levels and activity [98]. Sirtuin 1, the most closely related
homologue of Sirtuin 2, is phosphorylated on several sites by cyclinB/Cdk1, and this
phosphorylation regulates its deacetylase activity and affects cell proliferation [99].
Furthermore, SIRT1 also induces the Notch signaling pathway, involved in repairing
neuronal damage in the brain [100]. SIRT2 knockdown mice showed impaired cell motility
by deacetylating α -tubulin, influencing microtubule dynamics and inhibiting neurite
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outgrowth [97, 101, 102]. SIRT2 may interact with and modulate other cytoskeletal proteins
that participate in axonal transport deficits characteristic in neurons exhibiting AD
symptoms [103].

Altered phosphorylation of these structural proteins, as observed in the present study, could
be related to the known altered neuronal architecture and the altered neurotransmission in
AD.

Several hypotheses have been proposed to clarify the altered phosphorylation events in AD.
A role has been suggested for insulin signaling that appears impaired in AD brain. The
binding of insulin to insulin receptor leads to its autophosphorylation and activation of its
kinase activity, and this in turn phosphorylates different substrates activating various
downstream signaling partners and signaling cascade like MAPK [104]. In other recent
studies has been suggested that the impairment of brain glucose metabolism contributes to
the pathogenesis of Alzheimer’s disease also through altered phosphorylation. Impaired
brain glucose metabolism decreases HBP flux and, consequently, decreases O-
GlcNAcylation, leading to abnormal phosphorylation [105]. Interestingly, O-linked
glycosylation occurs on cytoplasmic and nucleoplasmic proteins through the addition of a
single N-acetylglucosamine (O-GlcNAc) to Ser/Thr residues. Several studies suggest that
nucleoplasmic and cytoplasmic O-linked glycosylation work in concert with
phosphorylation to regulate proteins [106, 107]. A reciprocal relationship between O-
GlcNAcylation and phosphorylation has been observed in many proteins and the eminent
example of this fact is the alteration of Tau o-glycosylation/phosphorylation status during
AD with the decrease of the former and the increase of the latter [108]. Liu et al showed that
total levels of glycosylation decrease in cerebrum but not in the cerebellum in AD, linking
this status with the pathologic condition [108]. We previously analyzed the glycosylation
status of brain proteins in AD through fractionation of the proteome with ConA and WGA
lectins that allow the identification of proteins with N- and O- linked glycosylation [55,
109]. Comparing this current study with our previous investigation, we observe only for
gamma enolase the interchange between O-glycosylation and phosphorylation in AD
hippocampus [109]. Given the pleiotropic nature of gamma enolase [63], this interplay may
be profound for AD.

CONCLUSIONS
Our proteomics study shows that altered phosphorylation in AD samples compared to CTR
occurs on proteins that are involved in energy metabolism and ATP production, signal
transduction and neuronal structure. Alterations in functions of such proteins with altered
phosphorylation status conceivably could compromise various neuronal functions, though
additional studies would be necessary to prove this notion. Indeed, a more specific and
detailed picture of AD altered phosphorylation events would need additional studies focused
on the effects on the molecular pathways involved and the primary mechanisms controlling
the activities of both protein kinases and phosphatases. Within this frame it is expected that
the list of altered phosphorylated proteins, protein kinases and protein phosphatases in AD
would continue to rise, increasing the importance of altered phosphorylation in the
pathogenesis of AD. A potential approach for the treatment of AD over the past decade has
been focused on abnormal Tau hyperphosphorylation by inhibiting the activity of Tau
kinases or by increasing phosphatase activity in the brain [34]. Hence, targeting protein
kinase/phosphatase might represent a promising treatment strategy for AD as has already
been suggested in cancer treatments. In this perspective, a better understanding of
phosphorylation events is hoped to eventually lead to the development of novel therapeutic
strategies for AD.
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Figure 1.
Representative 2D phosphorylation maps of AD (top) and CTR (bottom) hippocampus. Gels
were stained using Pro-Q Diamond fluorescent dye. The spots showing altered
phosphorylation levels between AD and control are labeled. Relative change in
phosphorylation, after normalization of the immunostaining intensities to the protein
content, was significant for 17 spots.
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Figure 2.
Representative 2D protein expression maps of AD (top) and CTR (bottom) hippocampus.
Gels were stained using Sypro Ruby fluorescent dye. The spots showing altered
phosphorylation levels between AD and control are labeled.
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Figure 3.
Representative enlarged images of selected spots from CTR and AD hippocampus showing
the altered phosphorylation of two selected proteins: GAPDH and tER ATPase. In the figure
are shown the position of the respective protein spot in the gel in the 2D image, 3D density
graphs elaborated by PD-Quest software, and the histograms with phosphorylation (green
and red) and expression (blue) intensity bars of each of the 6 samples per group.
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Figure 4.
Representative scheme of pathologic implications of aberrant phosphorylation in AD.
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