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Abstract
Vitamin D is a multifunctional hormone that can affect many essential biological functions,
ranging from the immune regulation to mineral ion metabolism. A close association between
altered activity of vitamin D and vascular calcification has been reported in various human
diseases, including in patients with atherosclerosis, osteoporosis, and chronic kidney disease
(CKD). Vascular calcification is a progressive disorder and is a major determinant of morbidity
and mortality of the affected patients. Experimental studies have shown that excessive vitamin D
activities can induce vascular calcification, and such vascular pathology can be reversed by
reducing vitamin D activities. The human relevance of these experimental studies is not clear, as
vitamin D toxicity is relatively rare in the general population. Contrary to the relationship between
vitamin D and vascular calcification, in experimental uremic models, low levels of vitamin D were
shown to be associated with extensive vascular calcification, a phenomenon that is very similar to
the vascular pathology seen in patients with CKD. The current treatment approach of providing
vitamin D analogs to patients with CKD often poses a dilemma, as studies linked vitamin D
treatment to subsequent vascular calcification. Recent genetic studies, however, have shown that
vascular calcification can be prevented by reducing serum phosphate levels, even in the presence
of extremely high serum 1,25-dihydroxyvitamin D and calcium levels. This article will briefly
summarize the dual effects of vitamin D in vascular calcification and will provide evidence of
vitamin D-dependent and -independent vascular calcification.
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VITAMIN D
Vitamin D is a multifunctional hormone that exerts effects on most of the organ systems.1–7

Calcitriol or 1,25-dihydroxyvitamin D is the active form of vitamin D, formed by dual
hydroxylation in the liver and kidney (Figure 1). Active vitamin D metabolites exert
biological activities mainly through the vitamin D receptor (VDR).8 There are numerous
factors that can influence vitamin D production. For instance, parathyroid hormone induces
the synthesis of 1-α hydroxylase in proximal tubular epithelial cells to produce 1,25-
dihydroxyvitamin D. Similarly, low serum levels of phosphate can also induce the
biosynthesis of 1,25-dihydroxyvitamin D in the proximal tubular epithelial cells. Circulating
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1,25-dihydroxyvitamin D, acting through VDR, can enhance the intestinal absorption of
calcium and phosphate, while can also suppress the biosynthesis of parathyroid hormone.9
In bones, high levels of 1,25-dihydroxyvitamin D usually increases osteoclastic bone
resorption to mobilize calcium and phosphate into the circulation to ensure optimal serum
balance.

In contrast to the endocrine effects of VDR, the autocrine functions of VDR require local
generation of the active ligand (calcitriol). VDRs are present in most of the human tissues,
including endothelial and vascular smooth muscle cells (VSMCs).10,11 More importantly,
VSMCs also possess an enzymatically active 25-hydroxyvitamin D-1α-hydroxylase
system12 and can synthesize active vitamin D metabolites locally. Therefore, the circulating
levels of calcitriol may not always reflect vascular activities of vitamin D. Moreover, 1α-
hydroxylase activity was also detected in endothelial cells.13 Experimental studies have
shown that calcitriol can increase the expression of the VDR and decrease the proliferation
of VSMCs.11,14 Furthermore, calcitriol can accelerate cell migration and promote the
transition of contractile VSCMs into the osteoblast-like phenotype.15,16 It appears likely that
autocrine, paracrine, and endocrine functions of vitamin D can influence vascular structure,
functions, and remodeling. Importantly, the above mentioned effects of vitamin D on blood
vessels are in addition to the most commonly appreciated functions of vitamin D in active
regulation of mineral ion metabolism, such as facilitating intestinal calcium absorption, as
well as renal, and skeletal mobilization of phosphate.8,17,18 More importantly, vitamin D is a
strong inducer of fibroblast growth factor 23 (FGF23) and klotho, two important factors that
maintain physiologic calcium and phosphate balance.19,20 Of particular interest, loss-of-
function mutations of either FGF23 or klotho can induce ectopic calcification in the affected
patients.21–23 Because survival can be negatively influenced by vascular calcification,
minimizing the risk of such vascular pathology requires that the molecular mechanisms
involved in the tightly controlled regulatory pathways and cross talk between organ systems
be understood.

VASCULAR CALCIFICATION
Vascular calcification is a complex process that induces stiffening of the vessel wall and
reduces vascular compliance.24 The exact molecular mechanisms of vascular calcification is
not yet clear; it seems that an initial insult to the cellular components of the vessels can
function as a triggering event, which is further facilitated by the presence of calcifying-
promoting factors such as hypervitaminosis D, hyperphosphatemia, and hypercalcemia.25–28

Studies also suggested that reduction of the calcification repressor factors, such as
ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP-1), ANK (transmembrane
protein), and matrix Gla protein, can also propagate vascular calcification.29–31 For instance,
matrix Gla protein deficiency in humans (Keutel syndrome) and in genetically modified
mice (matrix Gla protein knockout) is associated with ectopic calcification.32,33 Matrix Gla
protein is thought to suppress vascular calcification partly through its Gla residues, which
have a calcium/hydroxyapatite-chelating ability. In a similar study, in vivo ablation of the
ANK gene from mice resulted in ectopic calcification.34 Interestingly, blocking the
pyrophosphate degrading action of alkaline phosphatase can reduce the calcification in
VSMCs obtained from genetically altered NPP-1- and ANK-deficient mice.35 Vascular
calcification was also detected in patients with loss-of-function mutations in the human
NPP-1 gene.36 Studies have shown that in the absence of calcification repressor factors,
calcification can occur at normal calcium and phosphate levels.

Vascular calcification was previously considered as a passive process related to non-specific
responses and had little clinical significance. However, availability of electron beam and
multidetector row computed tomography imaging helped clinicians to monitor the in vivo
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active progression of vascular calcification and predict consequences of acute and chronic
coronary events. Furthermore, recent identification of calcification-promoting and -
suppressing factors (Table 1) provided convincing molecular evidence that vascular
calcification is not only an active process, but one that may be reversible if manipulated in
early stages. For instance, hyperphosphatemia in dialysis patients correlates with vascular
calcification, and reducing phosphate levels can attenuate progression of vascular
calcification in these patients.37 Prevention of vascular calcification is of great clinical
importance, as it can induce fatal complications such as thrombosis, arterial rupture, and
myocardial infarction.

Vascular calcification often mimics certain molecular events including those seen in skeletal
mineralization.38 Alteration of mineral ion balance can induce both endothelial and VSMC
apoptosis, and facilitate phenotypic transformation of VSMCs into skeletal cells. Studies
have linked bone morphogenetic proteins, RUNX2, MSX2, and activation of wingless-type
MMTV integration site family member signaling to such cellular transformation
processes.27,39 Of relevance, MSX2 can not only promote osteogenesis but can also
suppress adipogenic differentiation of multipotent mesenchymal progenitors.40 Some
researchers believe that once vascular cells are transdifferentiated into skeletal cells,
subsequent mineralization processes lead to the development of vascular calcification. As
mentioned, vitamin D can induce transdifferentiation of VSCMs into the osteoblast-like
phenotype promoting the complex process of vascular calcification.15,16,41

VITAMIN D-DEPENDENT VASCULAR CALCIFICATION
Studies have linked vitamin D therapy to higher incidences of vascular calcification; in a
retrospective study, the severity and progression of vascular calcification correlated with the
plasma levels of vitamin D in chronic kidney disease (CKD) patients undergoing prolonged
dialysis treatment.42 A similar observation was also reported in young adults suffering from
CKD since childhood; the use of active vitamin D preparations has shown to be
independently associated with cardiovascular anomalies, including intima–media thickness
and coronary artery calcification.43 In accordance with the human observations, high doses
of vitamin D metabolites were shown to be associated with the experimental vascular
calcification in rats and other animals.44,45 Exogenous treatment of vitamin D and nicotine
can markedly increase the aortic calcium content, causing medial elastic fiber calcification
and arterial stiffness in experimental animals.46 A time-dependent aortic calcification was
also shown in calcitriol-treated rats with relatively normal renal function.44 In a separate
study, diffuse calcification involving the intimal and medial layers of the aorta was noted in
uremic rats that received relatively low doses of oral calcitriol (0.25 mg/kg per day).47 More
importantly, calcitriol-induced vascular calcification has been shown to be a reversible
process, by reducing vitamin D activities.44 Although the in vivo optimal levels are difficult
to estimate, it seems that a delicate balance of vitamin D is important for normal vascular
functions, as studies have shown that both low and high vitamin D levels are associated with
vascular calcification (a U-curve relationship) in pediatric patients undergoing dialysis
treatment.48

Vitamin D is a strong inducer of both FGF23 and klotho. 1,25-Dihydroxyvitamin D has
been shown to increase FGF23 promoter activity in osteoblasts through a vitamin D-
responsive element.49 In contrast, FGF23 can suppress 1,25-dihydroxyvitamin D activity by
reducing renal expression of 1α-hydroxylase, and increasing 24-hydroxylase.19 Recent
studies have elegantly demonstrated the importance of the FGF23–klotho system in the
regulation of calcium and phosphate balance.50,51
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Vitamin D-associated vascular calcification was also noted in various genetically modified
mouse models.51–55 For instance, genetic inactivation of either Fgf23 or klotho leads to
increased serum calcium, phosphate and 1,25-dihydroxyvitamin D levels in these mutant
mice; such abnormal mineral ion and vitamin D homeostasis in Fgf23- and klotho-knockout
mice are associated with widespread soft tissue and vascular calcifications.53,55 More
importantly, genetically reducing active vitamin D synthesis in either Fgf23- or klotho-
knockout mice can completely eliminate soft tissue and vascular calcifications in
Fgf23/1a(OH)ase and klotho/1a(OH)ase-double-knockout mice.20,28,51,52,54,56 However, it
should be mentioned that the loss of vitamin D-related processes, either from Fgf23 or
klotho mice resulted in a change from severe hyperphosphatemia to hypophosphatemia.
Whether biomineralization of the vascular wall through excessive deposition of
hydroxyapatite can occur without vitamin D-dependent processes is not yet clear, as
dissociating the in vivo effects of vitamin D from mineral ion dysregulation is difficult to
estimate. For instance, experimental calcification induced by extremely low doses of vitamin
D (0.04 μg/kg of calcitriol intraperitoneally three times/week for 1 month) resulted in a
marked increase in serum calcium, phosphate, and the calcium–phosphate (Ca × P)
product.57 Thus, it is difficult to determine in vivo whether calcitriol can directly induce
vascular calcification or if such vascular pathology is related to the altered mineral ion
balance and increased Ca × P product levels, as seen in these low vitamin D-treated
animals.57 Moreover, neither calcitriol nor its analogs (paricalcitol or doxercalciferol) (1–
100 nM) were able to induce mineralization in human VSMCs, whereas increasing
extracellular phosphate concentration induced mineralization in human VSMCs.58

Consistent with the in vitro studies, recent in vivo mouse genetic studies have provided
insights into vitamin D-independent vascular calcification.

VITAMIN D-INDEPENDENT VASCULAR CALCIFICATION
Studies have shown a negative correlation between serum 25-hydroxyvitamin D levels and
vascular calcifications,59 and that both serum 25-hydroxyvitamin D and 1,25-
dihydroxyvitamin D levels were also negatively correlated with aortic pulse wave
velocity.60 The endothelial functions (determined by flow-mediated vasodilatation) of type 2
diabetic patients with low levels of vitamin D were shown to improve with vitamin D
treatment.61 Similarly, vitamin D deficiency has shown to increase the hazard ratio of
incident cardiovascular diseases.62 Shoji et al.63 have shown lower risk for cardiovascular
mortality in CKD patients using oral 1α-hydroxy vitamin D3 (alfacalcidol) in a hemodialysis
population compared to non-users. In a similar study, Shoben et al.64 found improved
survival in non-dialyzed CKD patients receiving oral calcitriol therapy. Collectively, the
above mentioned studies clearly suggest that cardiovascular functions are impaired in
vitamin D-deficient states. Reduced serum levels of 1,25-dihydroxyvitamin D is one of the
major biochemical changes detected in patients with CKD. The current treatment approach
of providing vitamin D analogs in patients with CKD often poses a dilemma because studies
have linked vitamin D treatment to subsequent vascular calcification.65,66 Of particular
importance, 50% of mortalities in patients with CKD undergoing dialysis treatment were
shown to be related to vascular calcification.38,66

Vitamin D-independent vascular calcification was shown recently in genetically altered
mouse models. For instance, klotho-knockout mice have increased renal expression of
sodium/phosphate co-transporters (NaPi2a), associated with severe hyperphosphatemia
(Figure 2).20,53–55,67 Such serum biochemical changes in klotho-knockout mice led to
extensive soft tissue anomalies and vascular calcification. Interestingly, lowering the serum
phosphate levels in klotho-knockout mice reduced vascular calcification, despite the
presence of significantly higher serum calcium and 1,25-dihydroxyvitamin D levels.20,54

This study provides in vivo evidence of beneficial effects of reducing serum phosphate
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levels on preventing vascular calcification, even in the presence of extremely high serum
1,25-dihydroxyvitamin D levels (Figure 3).20,54 Such in vivo information may be of
particular importance in designing the therapeutic strategies for patients with CKD, in whom
low serum levels of vitamin D and phosphate toxicity have been shown to be associated with
high mortality. Phosphate retention in patients with CKD and dialysis-associated
inflammatory responses can accelerate VSMC apoptosis, as well as induce vascular
calcification and calcifying uremic arteriolopathy or calciphylaxis. In the experimental
animals, inflammation has shown to promote vascular calcification, as overexpression of
tumor necrosis factor-α in the vessels resulted in calcification, possibly by activating
wingless-type MMTV integration site family member activities in the VSMCs.27,39

Recently, other signaling pathways are also implicated in vascular calcification process. For
instance, phosphatidylinositol 3-kinase/Akt signaling pathway has shown to be involved in
VSMC calcification, induced by inflammatory mediators, such as interferon-γ and tumor
necrosis factor-α. Suppression of phosphatidylinositol 3-kinase pathway with wortmannin
(inhibitor of phosphatidylinositol 3-kinase) can increase inflammatory mediator-induced
VSMC calcification, along with the expression of alkaline phosphatase.68 In patients with
CKD, an inverse association is reported between serum levels of proinflammatory cytokines
(tumor necrosis factor-α, interleukin-1β, interleukin-6) and Fetuin-A (an inhibitor of
extraskeletal calcification).69 Fetuin-A can inhibit de novo precipitation of calcium–
phosphate, without exerting effects on already formed hydroxyapatite.70 Of relevance,
Fetuin-A-knockout mice develop severe ectopic calcifications in the heart, lung, kidney and
skin.71

Furthermore, hyperphosphatemia and hypercalcemia can induce cardiovascular calcification,
affecting the myocardium, and cardiac valves.72 Hyperphosphatemia (>6.5 mg/dl) and
elevated Ca × P product (>72) are known to be related to cardiovascular anomalies
associated with increased mortality in patients with CKD undergoing hemodialysis
treatment.73 Comparable results were also noted in the experimental model of CKD, in
which controlling serum phosphate levels prevented the development of vascular
calcification.74 Similarly, the administration of calcium carbonate delayed the progression of
aortic calcification in CKD-induced apolipoprotein-E-knockout mice, possibly by reducing
serum phosphate levels.75 Of relevance, high serum levels of phosphate and low serum
vitamin D levels have been identified as independent risk factors not only for rapid
deterioration in renal function but also for high mortality of the pre-dialysis phase in CKD
patients.62,63,76

CONCLUSIONS
Vascular calcification is a complex, ectopic biomineralization process, involving autocrine,
paracrine and endocrine interactions of numerous factors (Table 1). There is increasing
evidence suggesting that phosphate toxicity plays an important role in vascular calcification.
Phosphate toxicity can not only facilitate essential hydroxyapatite deposition in the
calcifying vessels but also initiate the early events by inflicting apoptotic cell death on both
endothelial cells and VSMCs (Figure 4). Moreover, reducing or eliminating vascular
calcification in klotho-knockout mice—by lowering serum phosphate levels—provides
compelling genetic evidence of vitamin-D-independent calcification, even in the presence of
extremely high serum calcium and 1,25-dihydroxyvitamin D levels.20,54,77 More
importantly, these results suggest that reducing ‘phosphate toxicity’ should be a critical
therapeutic priority for minimizing the risk of vascular calcification and disease
progression,78 Although there is no disagreement about the harmful effects of phosphate
toxicity on the survival of CKD patients, the survival advantage for hemodialysis patients
taking vitamin D was questioned in the recently published Dialysis Outcomes and Practice
Patterns Study.79 Analyzed data from 38,066 Dialysis Outcomes and Practice Patterns Study
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participants from 12 countries between 1996 and 2007 did not show any differences in
mortality in patients with or without vitamin D treatment in the adjusted baseline standard
regression models.79

Delineating the kidney-vascular axis in the context of regulating calcium, phosphate and
vitamin D metabolism in health and disease will help us not only to determine the molecular
mechanisms of vascular calcification but also in achieving therapeutic modulation of the
involved pathways and prevent/delay this deadly vascular disorder.
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Figure 1. Simplified diagram of the different stages of vitamin D synthesis
VDR, vitamin D receptor.
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Figure 2. Serum phosphate, calcium, and 1,25 dehydroxyvitamin D levels
Phosphate and calcium levels in wild-type (WT), klotho−/−, and NaPi2a−/−/klotho−/− double
knockout (DKO) mice. Serum phosphate, calcium, and 1,25 dehydroxyvitamin D levels
were higher in klotho−/ − mice compared with WT mice at 9 weeks of age. In contrast to
klotho−/ − mice, serum phosphate levels were markedly reduced in DKO mice. Note that in
contrast to the serum phosphate levels, serum calcium and 1,25 dehydroxyvitamin D levels
remained higher in DKO mice (*P<0.01, versus WT; **P<0.005, versus WT; ¶P<0.001,
versus klotho−/−; #P<0.05, versus DKO). 1,25 dehydroxyvitamin D3, 1,25(OH)2D3.
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Figure 3. Sections prepared from aortae of wild-type mice, klotho−/− mice, NaPi2a−/−/
klotho−/−double-knockout (DKO) mice, showing extensive calcifications in the aortic wall of
klotho−/− mice
Aortic calcification of klotho−/− mice is associated with increased serum calcium,
phosphate, and 1,25-dihydroxyvitamin D levels. No such aortic calcification was detected in
aortae obtained from DKO mice with reduced serum phosphate levels. Note that compared
with the klotho−/− mice, DKO mice had increased serum calcium, and 1,25-
dihydroxyvitamin D levels (von Kossa staining; × 60).
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Figure 4. Simplified schematic diagram outlining the possible pathological events that are
associated with vascular calcification
VSMC, vascular smooth muscle cell.
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Table 1

Partial list of known inducers and inhibitors of vascular calcification

Inducers

 BMP-2/4

 Calcium

 Hyperparathyroidism

 Inflammatory cytokines

 LDL

 Leptin

 MSX2

 Oncostatin

 Osteocalcin

 Phosphate

 Pit-1

 RUNX2

 TGF-β1

 TNAP

 Uremic toxins

 Vitamin D

Inhibitors

 Adiponectin

 ANK

 BMP-7

 Fetuin-A

 HDL

 IGF-1

 Insulin

 Klotho

 Magnesium

 Matrix Gla protein

 NPP-1

 Omega-3 fatty acid

 Osteopontin

 Osteoprotogerin

 PTH

 PTHrP

 Pyrophosphate

Abbreviations: ANK, transmembrane protein; BMP, bone morphogenetic protein; LDL, low-density lipoprotein; IGF-1, insulin-like growth
factor-1; NPP-1, pyrophosphatase/phosphodiesterase; PTH, parathyroid hormone; PTHrP, PTH-related peptide; TGF-β1, transforming growth
factor-β1; TNAP, tissue-non-specific alkaline phosphatase.
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