
Multivariate Exponential Survival Trees And Their Application to
Tooth Prognosis

Juanjuan Fan1,*, Martha E. Nunn2, and Xiaogang Su3

1 Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182,
USA
2 Department of Health Policy and Health Services Research, Goldman School of Dental
Medicine, Boston University, Boston, MA 02118, USA
3 Department of Statistics and Actuarial Science, University of Central Florida, Orlando, FL
32816, USA

SUMMARY
This paper is concerned with developing rules for assignment of tooth prognosis based on actual
tooth loss in the VA Dental Longitudinal Study. It is also of interest to rank the relative
importance of various clinical factors for tooth loss. A multivariate survival tree procedure is
proposed. The procedure is built on a parametric exponential frailty model, which leads to greater
computational efficiency. We adopted the goodness-of-split pruning algorithm of LeBlanc and
Crowley (1993) to determine the best tree size. In addition, the variable importance method is
extended to trees grown by goodness-of-fit using an algorithm similar to the random forest
procedure in Breiman (2001). Simulation studies for assessing the proposed tree and variable
importance methods are presented. To limit the final number of meaningful prognostic groups, an
amalgamation algorithm is employed to merge terminal nodes that are homogenous in tooth
survival. The resulting prognosis rules and variable importance rankings seem to offer simple yet
clear and insightful interpretations.
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1. Introduction
Accurate assignment of tooth prognosis is important to dental clinicians for several reasons.
Firstly, it is necessary for the periodontist to devise an appropriate periodontal treatment
plan to eliminate local risk factors and halt the progression of periodontal destruction.
Secondly, a general dentist needs an accurate tooth prognosis in order to determine the
feasibility for the long-term success of any extensive restorative dental work, such as
endodontic therapy (root canal), multiple crowns, or fixed bridges, all of which can be
prohibitively expensive, especially if the underlying periodontal outlook for the teeth
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involved is questionable. Lastly, insurance companies are increasingly relying upon various
indicators of tooth prognosis to determine the cost-effectiveness of benefits paid for
particular procedures.

The ultimate outcome for judging a tooth’s condition at any given time is the probability that
the tooth will survive in a state of comfort, health, and function in the foreseeable future.
Unfortunately, no universal system for assignment of tooth prognosis currently exists.
Hence, the assessment of a tooth’s condition can vary widely among dental professionals.
Typically, a dental clinician will record and weigh a myriad of commonly taught clinical
factors in the process of assigning a prognosis. The relative importance that a practitioner
assigns to each factor in assessing a tooth’s condition is based upon the clinician’s training,
past clinical experience, and the technical expertise of that particular dentist in treating any
condition or pathology present. The subjective nature of this sort of tooth assessment
presents difficulty not only for patients, insurance companies, and other third-party payment
systems in determining the cost-effectiveness of treatment, but it also creates confusion
among dentists since no clear, objective, evidence-based standards have ever been
established.

Since teeth within a person are naturally correlated, the resultant data involve multivariate
survival times, which require multivariate extensions of established statistical methodology
to accurately develop criteria for assignment of tooth prognosis. In addition, predictors of
tooth loss include tooth-level factors, such as the presence of calculus or a large amalgam
restoration; subject-level factors, such as smoking, poor oral hygiene, and diabetes; and
factors that can be considered on both a patient level and a tooth level, such as alveolar bone
loss or plaque.

Previous studies investigating tooth prognosis have focused on assessing which clinical
factors are statistically significant in predicting tooth loss as a result of periodontal disease.
For instance, in a longitudinal study of 100 well-maintained periodontal patients, McGuire
and Nunn (1996a, 1996b) found that many commonly taught clinical factors are
significantly associated with tooth loss from periodontal disease. In addition, periodontal
prognosis based on clearly defined, objective criteria were also significant predictors of
tooth loss from periodontal disease. However, assigned periodontal prognosis failed to
accurately account for a tooth’s future condition in many cases.

The tree-based method has a nonparametric flavor, making few statistical assumptions.
Among its many other attractive features, the hierarchical tree structure automatically
groups observations with meaningful interpretation, which renders it an excellent research
tool in medical prognosis or diagnosis. Tree-based methods for univariate (or uncorrelated)
survival data have been proposed by many authors. See, for example, Gordon and Olshen
(1985), Ciampi et al. (1986), Segal (1988), Butler et al. (1989), Davis and Anderson (1989),
and LeBlanc and Crowley (1992, 1993). More recently, multivariate (or correlated) survival
tree methods have also been proposed. In particular, Su and Fan (2004) and Gao,
Manatunga, and Chen (2004) proposed procedures that make use of the semi-parametric
frailty model developed by Clayton (1978) and Clayton and Cuzick (1985).

The Dental Longitudinal Study (DLS) contains a large database of subjects from various
socioeconomic backgrounds and differing access to medical and dental care, who have been
followed for over 30 years. These subjects are volunteers in a long-term Veterans
Administration (VA) study of aging health, but they are not VA patients and receive their
medical and dental care in the private sector. Such an extended time of follow-up provides a
unique opportunity to observe a large number of tooth loss events.
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In order to apply the recursive partitioning algorithms to such a large database,
computational efficiency becomes particularly challenging. In this article, we propose a
multivariate exponential survival tree procedure. It splits data using the score test statistic
derived from a parametric exponential frailty model, which allows for fast evaluation of
splits. We then adopt the goodness-of-split pruning algorithm of LeBlanc and Crowley
(1993) to determine the optimal tree size. In addition, variable importance rankings are
established using a novel random forest algorithm similar to Breiman (2001). We note that
(1) the proposed tree method can be viewed as a multivariate extension of the exponential
survival trees for independent failure time data studied by Davis and Anderson (1989), with
dependence among teeth from the same subject accouted for by a frailty term; (2) the semi-
parametric frailty model based tree method by Su and Fan (2004) generally does not work
for tooth loss data because such data typically contain many identical censoring times and
the frailty model estimation encounters convergence problems; (3) it is the fast computation
provided by the parametric multivariate exponential approach that allows us to run the
random forest algorithm on a large data set.

The remainder of the paper is organized as follows. In Section 2, the proposed tree and
random forest procedures are presented in detail. Section 3 contains simulation studies
designed for assessing the multivariate exponential survival tree method and the related
variable importance method. In Section 4, we apply the proposed tree and random forest
procedures to the analysis of the DLS data set for developing rules for assignment of tooth
prognosis and for establishing variable importance rankings for tooth loss. Section 5
concludes the paper with a brief discussion. The interested reader may contact Xiaogang Su
(xiaosu@mail.ucf.edu) or Juanjuan Fan (jjfan@sciences.sdsu.edu) for the R programs
developed for this paper.

2. The Tree Procedure
Suppose that there are n units (i.e., subjects) in the data, with the ith unit containing Ki
failure times (i.e., teeth). Let Fik be the underlying failure time for the kth member of the ith
unit and let Cik be the corresponding underlying censoring time. The data thus consist of
{(Xik, Δik, Zik): i = 1, 2,…, n; k = 1, 2,…, Ki}, where Xik = min(Fik, Cik) is the observed
follow-up time; Δik = I(Fik ≤ Cik) is the failure indicator, which is 1 if Fik ≤ Cik and 0
otherwise; and Zik ∈ ℛp denotes the p-dimensional covariate vector associated with the kth
member of the ith unit. The failure times from the same unit are likely to be correlated. In
order to ensure identifiability, we assume that the failure time vector (Fi1,…, FiKi)′ is
independent of the censoring time vector (Ci1,…, CiKi)′ conditional on the covariate vector

 for i = 1,…, n.

To build a tree model T, we follow the convention of classification and regression trees
(CART; Breiman et al., 1984), which consists of three steps: first growing a large initial
tree, then pruning it to obtain a nested sequence of subtrees, and finally determining the best
tree size via validation.

2.1. Growing a Large Initial Tree
We formulate the hazard function of failure time Fik for the kth member of the ith unit by the
following exponential frailty model

(1)
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for k = 1,…, Ki and i = 1,…, n, where exp(β0) is an unknown constant baseline hazard, β1 is
an unknown regression parameter, and zik = I(Zikj ≤ c) with I(·) being the indicator function.
For a constant change point c, Zikj ≤ c induces a binary partition of the data according to a
continuous covariate Zj. If Zj is categorical, then the form of Zj ∈ A is considered, where A
can be any subset of its categories. For simplicity and interpretability, we restrict ourselves
to splits on a single covariate.

The frailty wi is a multiplicative random effect term that explicitly models the intra-unit
dependence. It corresponds to some common unobserved characteristics shared by all
members in the ith unit. It is assumed that, given the frailty wi, failure times within the ith
unit are independent. The frailty term wi is assumed to follow the gamma distribution with
mean one and an unknown variance v. Namely, wi ~ gamma(1/v, 1/v) with density function

To split data, we consider the score test for assessing H0: β1 = 0. Estimation of the null
model (i.e., model (1) under H0) is outlined in Appendix A. Let l denote the integrated log-
likelihood function associated with model (1) and (β ̂0, v̂) the MLE of (β0, v) from the null

model. Also define θ = (β0, v)′ and . Then the score test statistic can be
derived as

(2)

where

In the above expressions, I0 is the Fisher’s information matrix for the null model (see
Appendix A for definitions of Δ.., Ai, and Bi). Since zik enters S only through mi, evaluation
of the score test statistic for each split is computationally fast. Note that, for a given split, S
follows a χ2(1) distribution.

The best split is the one that corresponds to the maximum score test statistic among all
permissible splits. According to the best split, the whole data is divided into two child nodes.
The same procedure is then applied to either of the two child nodes. Recursively proceeding
through these steps results in a large initial tree, denoted by T0.
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2.2. Split-Complexity Pruning
The final tree model could be any subtree of T0. However, the number of subtrees becomes
massive even for a moderately-sized tree. To narrow down our choices, we follow CART’s
(Breiman et al., 1984) pruning idea to truncate the “weakest link” of the large initial tree T0
iteratively. Since we employ the maximum score statistic criterion to grow the tree, which
provides a natural goodness-of-split measure of each internal node, this allows us to adopt
the split-complexity measure of LeBlanc and Crowley (1993):

(3)

where T ̃ denotes the set of all terminal nodes of tree T, T − T ̃ is the set of all internal nodes,
α is termed as complexity parameter, and G(T) = Σh∈T−T ̃ S(h) sums up the 7 maximum score
test statistic at every internal node of tree T. Here, G(T) provides an overall goodness-of-
split assessment, penalized by tree complexity, i.e., |T − T ̃| the total number of internal
nodes.

As the complexity penalty α increases from 0, there will be a link or internal node h that first
becomes ineffective because Th, the branch whose root node is h, is inferior compared to h
as a single terminal node. This link is then termed as the “weakest link” and the branch with
the smallest threshold value is truncated first.

We start with the large initial tree T0. For any link or internal node h of T0, calculate the
threshold

where S(i) represents the maximum score test statistic associated with internal node i. Then
the “weakest link” h★ in T0 is the internal node such that g(h★) = minh∈T0−T ̃0 g(h). Let T1 be
the subtree after pruning off h★, namely, T1 = T0 − Th*. Also, record α1 = g(h★). Then we
apply the same procedure to truncate T1 and obtain the subtree T2 and α2. Continuing to do
so leads to a decreasing sequence of subtrees T0 ≻ T1≻ ··· ≻ TM, where TM is the null tree
containing the root node only and the notation ≻ means “subtree”, as well as a sequence of
increasing α values, 0 = α0 < α1 < ··· < αM < ∞. Note that all the quantities S(i) have been
computed when growing T0, which makes the above pruning procedure computationally
very fast.

The optimality of this split-complexity algorithm is established by Breiman et al. (1984) and
LeBlanc and Crowley (1993). It can be shown that, for any given α > 0 and tree T, there
exists a unique smallest subtree of T that maximizes the split-complexity measure. This
unique smallest subtree, denoted as T(α), is called the optimally pruned subtree of T for
complexity parameter α. It has further been established that the subtree Tm resulting from the
above pruning procedure is the optimally pruned subtree of T0 for any α such that αm ≤ α <
αm+1. In particular, this is the case for the geometric mean of αm and αm+1, namely

.

2.3. Tree Size Selection
One best-sized tree needs to be selected from the nested sequence. Again, the split-
complexity measure Gα(T) in (3) is the yardstick for comparing these candidates. That is,
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tree T★ is the best sized if Gα(T)= maxm=0,…, m{(G(Tm) − α|Tm − T ̃m|}. LeBlanc and
Crowley (1993) suggests that, for selecting the best-sized subtree, α be fixed within the
range 2 ≤ α ≤ 4, where α = 2 is in the spirit of AIC (Akaike, 1974) and α = 4 corresponds
roughly to the 0.05 significance level for a split under the χ2(1) curve. However, due to the
adaptive nature of greedy searches, the goodness-of-split measure G(Tm) is over-optimistic
and needs to be validated to provide a more honest assessment. Two validation methods
have been proposed, the test sample method and the resampling method, depending on the
sample size available. In the following, the notation G(ℒ2; ℒ1, T) denotes the validated
goodness-of-split measure for tree T built using sample ℒ1 and validated using sample ℒ2.

When the sample size is large, the test sample method can be applied. First divide the whole
data into two parts: the learning sample ℒ1 and the test sample ℒ2. Then grow and prune
the initial tree T0 using ℒ1. At the stage of tree size determination, the goodness-of-split
measure G(Tm) is recalculated or validated as G(ℒ2; ℒ1, Tm) using the test sample ℒ2. The
subtree that maximizes the validated Gα is the best-sized tree.

When the sample size is small or moderate, one may resort to resampling techniques. We
adopt a bootstrap method proposed by Efron (1983) for bias correction in the prediction
problem (also see LeBlanc and Crowley, 1993). In this method, one first grows and prunes a
large initial tree T0 using the whole data. Next, bootstrap samples ℒb, b = 1, …, B, are
drawn from the entire sample ℒ. A rough guideline for the number of bootstrap samples is
25 ≤ B ≤ 100, following LeBlanc and Crowley (1993). Based on each bootstrap sample ℒb,
a tree  is grown and pruned. Let , m = 1, … , M, denote the optimally pruned
subtrees corresponding to the  values, where , m = 1, … , M, are geometric means of
the αm values respectively, obtained from pruning T0. The bootstrap estimator of G(Tm) is
given by

(4)

The rationale behind this estimator is as follows. The first part of (4), G(ℒ; ℒ, ), uses
the same sample for both growing the tree and calculating the goodness-of-split measure, so
the resulting estimate G is over-optimistic. The second part of (4) aims to correct this bias.
This part is an estimate of the difference between G’s when the same (ℒb) vs. different (ℒb
and ℒ) samples are used for growing/pruning the tree and for recalculating G, and it is
averaged over the B bootstrap samples.

2.4. Variable Importance Ranking via Random Forests
Variable importance ranking is another attractive feature offered by recursive partitioning. It
is a useful technique if one is interested in answering questions such as which factors are
most important for tooth loss/survival. Note that this question can not be fully addressed by
simply examining the splitting variables shown in one single final tree structure, as an
important variable can be completely masked by another correlated one. There are a few
methods available for extracting variable importance information. Here, we develop an
algorithm analogous to the procedure used in random forests (Breiman, 2001), which is
among the newest and most promising developments in this regard.

The multivariate exponential survival tree presented in previous sections searches for the
best split by maximizing between-node difference. In contrast to CART trees which
minimize within-node impurity at each split, this kind of trees constructed is generally
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termed as trees by goodness-of-split. To extend random forests to trees by goodness-by-
split, once again we make use of the goodness-of-split measure G(T) for tree T.

Let Vj denote the importance measure of the j-th covariate Zj for j = 1, …, p. We construct
random forests by taking B bootstrap samples ℒb, b = 1, …, B and based on each bootstrap
sample, growing trees with a greedy search over a subset of randomly selected m covariates
at each split. The resultant trees are denoted as Tb, b = 1, …, B. The random selection of m
covariates at each split not only helps improve computational efficiency but also produces
de-correlated trees. For each tree Tb, the b-th out-of-bag sample (denoted as ℒ − ℒb), which
contains all observations that are not in ℒb, is sent down to compute the goodness-of-split
measure G(Tb). Next, the values of the j-th covariate in ℒ − ℒb are randomly permuted. The
permuted out-of-bag sample is sent down Tb again to recompute Gj(Tb). The relative
difference between G(Tb) and Gj(Tb) is recorded. This is done for every covariate. The
procedure is repeated for B bootstrap samples. The importance Vj is then the average of the
relative differences over all B bootstrap samples. The rationale is that the j-th covariate of
the permuted sample contains no predictive value. Hence, a small difference between G(Tb)
and Gj(Tb) indicates small predictive power of the original j-th covariate whereas a large
difference suggests that the original j-th covariate has large predictive power and hence is
important. The complete algorithm is summarized in Appendix B.

3. Simulation Studies
This section contains simulation experiments designed to investigate the performance of the
splitting statistic as well as the tree and variable importance procedures under a variety of
model configurations. To facilitate the comparison with Su and Fan (2004), we have
employed similar model settings.

3.1. Performance of the Splitting Statistic
We first investigate the performance of the splitting statistic. We generated data from the
five models given in Table 1 with 4 correlated failure times per unit, i.e., Ki ≡ 4 for all i.
Each model involves a covariate Z simulated independently from a discrete uniform
distribution over (1/50, …, 50/50) and a threshold covariate effect at cutoff point c.

Model A is a gamma-frailty model. Model B is a lognormal frailty model. Models C and D
are marginal models, in which the correlated failure times marginally have the specified
hazard and jointly follow a multivariate exponential distribution (Marshall and Olkin, 1967).
This joint multivariate exponential distribution can be absolutely continuous or not, which
distinguishes Models C and D. One is referred to Su et al. (2006) on simulating different
types of multivariate failure times. Model E involves a baseline hazard function from the
Weibull distribution, i.e., a non-constant baseline hazard. Inclusion of Models B, C, D and E
is useful for investigating the performance of the splitting statistic under model
misspecification.

Two censoring rates were used, no censoring and 50% censoring. The 50% censoring rate
was achieved by generating the underlying censoring times from the same model as the
underlying failure times. We also tried out two different cutoff points: 0.5 (the middle point)
and 0.3 (a shifted one). Only one sample size n = 100 was considered. Each combination
was examined for 500 simulation runs and the relative frequencies of the best cutoff points
selected by the maximum score test (2) are presented in Table 2.

It can be seen that the maximum score test statistic does very well in selecting the correct
cutoff points, even under model misspecifications. The results are comparable to those
presented in Su and Fan (2004). It is not surprising that the performance deteriorates a little
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with heavier censoring. But the location of the true cutoff point does not seem to have much
effect.

3.2. Performance of the Tree Method
Next we investigate the efficiency of the proposed multivariate exponential tree procedure in
detecting data structure. Data were simulated from the five different models given in Table
3. Four covariates, Z1, …, Z4, were generated from a discrete uniform distribution over
(1/10, …, 10/10), where Z1 and Z3 are unit-specific (mimicking subject-level covariates) and
Z2 and Z4 are failure-specific (mimicking tooth-level covariates). Note that covariates Z3 and
Z4 do not have any effect on the failure times but are included in the tree procedure as noise.
Models A′ through E′ correspond to those in the previous section, except that each contains
two additive threshold effects on Z1 and Z2. Only one censoring rate, 50%, was used.

The five models were examined for a sample size of n = 300 and Ki ≡ 4, where the first 200
× 4 observations formed the learning sample ℒ1 and the remaining 100 × 4 observations
formed the test sample ℒ2. Three different complexity parameters (α = 2, 3, and 4) were
used. For each different model and complexity parameter combination, a total of 200
simulation runs were carried out.

Table 4 presents the final tree size (i.e., the number of terminal nodes) selected by the
multivariate exponential survival tree procedure. It can be seen that the proposed procedure
does fairly well in detecting the true data structure, even in the misspecified cases (models B
′ - E′). Also note that α = 4 yields the best performance under models A′ - D′ while values of
α = 2 and α = 3 do not seem to impose enough penalty for model complexity. In model E′, α
= 3 performs slightly better than α = 4 and both perform better than α = 2. We will use α = 4
when analyzing the DLS data.

3.3. Performance of the Variable Importance Procedure
We also evaluated the performance of the variable importance procedure under the same
five modles A′ - E′ as presented in Table 3. A sample size of n = 500 and Ki ≡ 4 was used to
generate data from each model. The same 50% censoring rate was applied. The algorithm in
Appendix B was run with B = 200 bootstrap samples and m = 2 randomly selected inputs at
each split. Note that only covariates Z1 and Z2 are involved in the five models in Table 3
with Z1 having a stronger effect than Z2: the β coefficients are respectively 2 and 1 for the
threshold effects based on Z1 and Z2. The covariates Z3 and Z4 are not involved in these
models. Hence, the true variable importance ranks (from most important to least important)
are Z1, followed by Z2, and followed by Z3 and Z4 (equally unimportant). The simulation
results presented in Figure 1 reflect the true variable importance ranks with Z1 having the
largest variable importance measure, Z2 having the second largest variable importance
measure, and Z3 and Z4 having near zero or negative importance measures. Near zero or
negative importance measures signify unimportant variables in our procedure.

4. Data Example
We now apply the proposed tree method to develop prognostic classification rules using the
VA Dental Longitudinal Study (DLS) data. We have compiled a subset of 6,463 teeth (from
355 subjects) that have complete baseline information. Tooth loss was observed for 1,103
(17.07%) teeth during the 30 year follow-up. Table 5 presents a description of 19 prognostic
factors that we use in the tree procedure.

Since the proposed tree method is computationally fast, the bootstrap method was used for
selecting the best-sized tree. A large tree was grown using the whole sample with the
minimum node size set at 50 teeth. This tree had 39 terminal nodes. Using the pruning
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algorithm described earlier, a set of 28 optimally pruned subtrees were identified. With tooth
as the sampling unit, 30 bootstrap samples were drawn from the data and, for m = 1, …, 28,
the goodness-of-split measure G(Tm) was evaluated using equation (4). To obtain a
parsimonious tree model, α = 4 was used as the complexity penalty and the G4(Tm) values
for the subtree sequence are presented in Figure 2. The plot of split-complexity statistics has
one peak and the tree with 7 terminal nodes has the largest G4(Tm).

The final tree is plotted in Figure 3, where boxes indicate internal nodes and ovals indicate
terminal nodes. Inside each box is the splitting rule for the internal node. Observations
satisfying this rule go to the left child node and observations not satisfying this rule go to the
right child node. The node sizes of internal nodes are omitted because they can be easily
calculated once the terminal node sizes are known. For each terminal node, the node size
(i.e., the number of teeth) is given within the oval, and the proportion of teeth that are lost is
given on the left of each oval.

The final tree in Figure 3 divides all the teeth into seven groups. However, some groups
have similar tooth loss rates. An amalgamation procedure similar to Ciampi et al. (1986)
was run to bring down the final number of prognostic groups. To do this, the whole sample
was sent down the best-sized tree in Figure 3 and the robust logrank statistics (Lin, 1996)
between every pair of the seven groups were computed. The two terminal nodes giving the
smallest robust logrank statistic were merged. This procedure was repeated until the smallest
robust logrank statistic was larger than the Bonferroni-adjusted critical value from a χ2(1)
distribution. When the algorithm stopped, the number of groups reduced down to five. The
amalgamation results are also included in Figure 3, with Roman numeral I indicating a
prognosis of “good”, II indicating a prognosis of “fair”, etc. Summary statistics of the five
prognostic groups and the pairwise robust logrank statistics among them are presented in
Table 6.

Although nineteen putative prognostic factors were included in the multivariate exponential
survival tree procedure, only three of them appeared in the final tree presented in Figure 3:
(1) tooth type: molar vs. non-molar, (2) alveolar bone loss, and (3) tooth-level DMF score:
the number of Decayed, Missing, and Filled surfaces for each tooth.

It is particularly interesting to note that the first split was on tooth type with molars having a
worse overall outlook than non-molars. This is similar to the results obtained in the studies
conducted by McGuire and Nunn (1996a, 1996b), who noted that periodontal prognosis was
far more difficult to predict in molars than in non-molars with molars generally having
worse overall prognosis than non-molars. One reason for molars having a worse outlook is
the potential for the development of furcation involvement. Furcation involvement refers to
the situation where alveolar bone loss has progressed to the point on the molar tooth where
the roots bifurcate. When furcation involvement develops in a molar, the patient cannot
provide adequate oral hygiene to the area which leads to an increased risk of further bone
loss as well as an increased risk for dental caries. This sort of furcation involvement only
occurs in molars which may explain the model’s distinction between molars and non-molars.
In addition, according to the study by McGuire and Nunn (1996b), furcation involvement
was one of the most significant factors for predicting tooth loss as a result of periodontal
disease. Unfortunately, no measures of furcation involvement were available from the DLS
so the only related measure available for the current analysis was tooth type. Hence, it is
likely that tooth type in the current study is a proxy measure for furcation involvement,
which has long been established to be a significant local etiological risk factor for tooth loss.

The next splits for both molars and non-molars were for average alveolar bone loss. In this
case, average alveolar bone loss refers to the subject-level average Schei score. Schei scores
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range from 0 for “no alveolar bone loss” to 5 for “>80% alveolar bone loss” with values
assigned to the mesial and distal areas of each tooth by a trained, calibrated examiner on the
basis of examination of the subject’s radiographs. The minimum, median, and maximum of
the average ABL score in these data are 0, 0.47, and 2.50, respectively. Three other
measures of bone loss that were considered for the model included maximum tooth-level
alveolar bone loss, subject-level average bone height, and tooth-level bone height. The
maximum tooth-level alveolar bone loss was the maximum Schei score for each tooth. In
other words, the maximum Schei score is the maximum of the mesial and distal Schei scores
for each tooth. In contrast, the subject-level average bone height and the tooth-level bone
height were based on digitized radiography. It is not surprising that alveolar bone loss is a
significant predictive factor for tooth loss. However, it is surprising that the “best” measure
of alveolar bone loss for predicting tooth loss was the average Schei score since a Schei
score has always been considered to be less accurate and more subjective than digitized
radiography. In addition, since the subject-level average Schei score was selected over the
maximum tooth-level Schei score, it would appear that overall bone loss across one’s mouth
is a far stronger predictor of tooth loss than an isolated area of vertical bone loss.

The next two splits for non-molars were for tooth-level DMF score. DMF score is actually
the number of Decayed, Missing, Filled surfaces for each tooth with values ranging from 0
for a completely sound tooth to 5 for a posterior tooth with all 5 surfaces exhibiting caries
experience. In the first split, non-molars with 3 or more surfaces with a positive DMF were
assigned a prognosis of “Poor” while non-molars with 1 or 2 surfaces with a positive DMF
were assigned a prognosis of “Fair”. Completely sound non-molars (i.e., DMF=0) were split
again according to average alveolar bone loss with sound non-molars with less average
alveolar bone loss assigned a prognosis of “Good” while sound non-molars with more
average alveolar bone loss were assigned a prognosis of “Fair”.

Finally, Figure 4 plots the variable importance scores from B = 200 bootstrap samples.
According to Breiman (2001), variable importance results are “insensitive” to the number of
covariates selected to split each node. A choice of m = 3 was used in our algorithm. It can be
seen that V9 ( abl) stands out as the most important, followed by V8 ( bonemm), V1 ( loc),
and V16 ( dmfscore). This matches well with the final tree structure presented in Figure 3,
except that V8 ( bonemm) has been masked out in Figure 3. Variables V9 ( abl) and V8
( bonemm) are both measures of average alveolar bone loss across the entire mouth and are
essentially different methods for assessing alveolar bone loss with V9 ( abl) being the
average Schei score that is assessed by a clinician examining a radiogaph and V8 ( bonemm)
being the average alveolar bone height from using digitized radiography. Hence, because of
the high correlation between V9 ( abl) and V8 ( bonemm), it is expected that only one of
these two variables to appear in the final “best tree” model.

From a clinical standpoint, three of the four measures that rank as the most important
variables in predicting tooth loss are good indicators of the breakdown of the tooth, as
represented by V16 ( dmfscore), and breakdown of the periodontium, as represented by V9
( abl) and V8 ( bonemm). Since it is well-known that the two leading causes of tooth loss are
dental caries and periodontal disease, the statistical importance agrees quite well with
widely-held beliefs about clinical importance. The importance of V1 ( loc) reinforces the
findings from studies by McGuire and Nunn that show molars are quite different from non-
molars when predicting tooth loss. Nevertheless, the method based on random forests
provides a more comprehensive evaluation of variable importance by automatically taking
into account both the linear and nonlinear effect of a variable and its interaction with others.

It is interesting to note that the two most important variables are both measures of subject-
level average alveolar bone loss while the two variables for tooth-level alveolar bone loss,
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V14 ( maxabl) and V19 ( ht), are much less important. From a clinical perspective, the fact
that subject-level average alveolar bone loss is substantially more important in predicting
tooth loss than tooth-level alveolar bone loss demonstrates that generalized periodontal
disease is a stronger predictor of tooth loss than isolated areas of periodontal involvement.
The greater importance of subject-level average alveolar bone loss compared to tooth-level
alveolar bone loss is also an indication that horizontal bone loss is a more important
etiological factor in tooth loss than vertical bone loss since subject-level average alveolar
bone loss is a reflection of horizontal bone loss while tooth-level alveolar bone loss is a
reflection of vertical bone loss.

5. Discussion
In this paper, we have proposed a multivariate survival tree method. It is an extension of the
exponential survival trees by Davis and Anderson (1989) for univariate survival data, but
uses a frailty term to adjust for the correlation among survival times from the same cluster.
The adoption of the exponential baseline hazard makes it possible to derive a closed-form
score test statistic for fast evaluation of tree performance. This paper builds on our work in
Su and Fan (2004), but the computational speed gained from the proposed approach is
essential for a frailty model based tree method to be applied to large data sets such as the
DLS data because the estimation of a general frailty model is slow and a tree algorithm is
feasible only if each model fitting is reasonably fast. Not to mention that it is the
computational efficiency achieved by the proposed method that affords the implementation
of the random forest algorithm. Though we assume a gamma frailty term and a constant
baseline hazard, simulation studies show that the proposed method works reasonably well
under departure from these assumptions.

The application of the proposed tree method to the DLS data yielded five prognostic groups.
Three factors were involved in the final tree structure: tooth type (molar vs. non-molar),
subject-level average alveolar bone loss score, and tooth-level DMF score. Molars were
found to have worse overall prognosis than non-molars. Greater alveolar bone loss was
associated with an increased risk of tooth loss. Similarly, the more broken down a tooth is
(i.e., the greater the DMF score is), the more likely that the tooth will be damaged further
and thus, eventually lost. The application of the variable importance algorithm to the DLS
data ranked the subject-level average alveolar bone loss score as the most important variable
in predicting tooth loss, followed by the average alveolar bone height, tooth type (molar vs.
non-molar), and tooth-level DMF score. The variable of average bone height is another
measure of average alveolar bone loss across the entire mouth and hence is masked out in
the final tree structure. From a clinical standpoint, the criteria for assignment of prognosis
and the variable importance rankings make sense.
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APPENDIX A

Estimation of the Null Model
Under H0: β1 = 0, the null frailty exponential model becomes

We first define

where , and .

Due to the parametric form of the model, the involved parameters (β0, v) can be estimated
by maximizing the following integrated likelihood

After integrating wi out, the resultant log-likelihood function for the null model can be
written as

(5)

Optimization of the log-likelihood is done using standard Newton-Raphson procedures. Its
gradient components are given by

The components in the Fisher’s information matrix, denoted as I0, are given by

where
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APPENDIX B

Algorithm for Computing Variable Importance via Random Forests
Initialize all Vj’s to 0.

For b = 1, 2, …, B, do

• Generate bootstrap sample ℒb and obtain the out-of-bag sample ℒ − ℒb.

• Based on ℒb, grow a tree Tb by searching over m randomly selected inputs at each
split and without pruning.

• Send ℒ − ℒb down Tb to compute G(Tb).

• For all predictors Zj, j = 1, …, p, do

• ○ Permute the values of Zj in ℒ − ℒb.

• ○ Send the permuted ℒ − ℒb down to Tb to compute Gj(Tb).

•
○ Update .

End do.

End do.

Average Vj ← Vj/B.
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Figure 1.
Variable importance measures based on a data set of 500×4 observations generated from
each of Models A′–E′: B = 200 bootstrap samples are used in random forests and m is set to
2.
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Figure 2.
Tree size selection for the DLS data: Plot of G(4) versus the tree size
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Figure 3.
The best-sized tree for the DLS data. For each internal node denoted by a box, the splitting
rule is given inside the box. For each terminal node denoted by an oval, the node size (i.e.,
number of teeth) is given inside the oval, and the percentage of lost teeth on the left.
Underneath terminal nodes in Roman numerals are the five assigned prognostic groups: I -
good, II - fair, III - poor, IV - questionable, and V - hopeless.

Fan et al. Page 17

Comput Stat Data Anal. Author manuscript; available in PMC 2011 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Variable importance measures in the DLS data obtained via random forests.
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Table 1

Models used for assessing the performance of the splitting statistic. The covariate Zik’s are generated from a
discrete uniform distribution over values (1/50, 2/50, …, 50/50) and c is the true cutoff point.

Model Form Name

A λik(t) = exp (2 + 1{Zik≤c}) · wi, with wi ~ Γ(1, 1) Gamma-Frailty

B λik(t) = exp (2 + 1{Zik≤c} + wi), with wi ~ N (0, 1) Log-Normal Frailty

C λik(t) = exp (2 + 1{Zik≤c}) not absolutely continuous Marginal

D λik(t) = exp (2 + 1{Zik≤c}) absolutely continuous Marginal

E λik(t) = λ0(t) exp (2 + 1{Zik≤c} · wi, with wi ~ Γ(1, 1), λ0(t) = αλtα−1, α = 1.5, and λ = 0.1 Non-constant Baseline
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Table 3

Models used for assessing the performance of the tree procedure. The covariate Zik’s are generated from a
discrete uniform distribution over values (1/10, 2/10, …, 10/10).

Model Form

A′ λik(t) = exp (−1 + 2 × 1{Zik1≤0.5} + 1{Zik2≤0.5}) · wi, with wi ~ Γ(1, 1)

B′ λik(t) = exp (−1 + 2 × 1{Zik1≤0.5} + 1{Zik2≤0.5} + wi), with wi ~ N (0, 1)

C′ λik(t) = exp (−1 + 2 × 1{Zik1≤0.5} + 1{Zik2≤0.5}), not absolutely continuous

D′ λik(t) = exp (1 + 2 × 1{Zik1≤0.5} + 1{Zik2≤0.5}), absolutely continuous

E′ λik(t) = λ0(t) exp (−1 + 2 × 1{Zik1≤0.5}) + 1{Zik2≤0.5} · wi, with wi ~ Γ(1, 1), λ0(t) = αλtα−1, α = 1.5, and λ = 0.1
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Table 5

Variable description for the baseline measures in the VA Dental Longitudinal Study (DLS).

Variable Name Description

V1 loc tooth type

V2 nteeth total number teeth present at baseline

V3 age patient age at baseline

V4 smoke smoking status

V5 education educational level

V6 ses socioeconomic level at NAS cycle

V7 endonum number of endodontic teeth

V8 bonemm average bone height (mm)

V9 abl average alveolar bone loss (ABL) score

V10 plaque plaque score

V11 mobile mobility score

V12 calc calculus score, max of above/below gum

V13 ging gingival score

V14 maxabl maximum tooth-level ABL score

V15 pocket probing pocket depth score, max per tooth

V16 dmfscore DMF score per tooth at baseline

V17 decay maximum decay at baseline

V18 endotrt endodontic treatment

V19 ht bone height (%)
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