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Abstract
Aging, hypertension and fetal programmed cardiovascular disease are associated with a functional
deficiency of angiotensin (Ang)-(1–7) in the brain dorsomedial medulla. The resulting
unrestrained activity of Ang II in brainstem regions negatively impacts resting mean arterial
pressure, sympathovagal balance and baroreflex sensitivity for control of heart rate. The
differential effects of Ang II and Ang-(1–7) may be related to the cellular sources of these peptides
as well as different precursor pathways. Long-term alterations of the brain renin-angiotensin
system may influence signaling pathways including phosphoinositol-3-kinase and mitogen-
activated protein kinase and their downstream mediators, and as a consequence may influence
metabolic function. Differential regulation of signaling pathways in aging and hypertension by
Ang II versus Ang-(1–7) may contribute to the autonomic dysfunction accompanying these states.

Introduction
Functional deficiency of Ang-(1–7) within the nucleus of the solitary tract (nTS) leads to
impairment of baroreceptor reflex sensitivity (BRS) for control of heart rate that may be a
predictor of overall autonomic dysfunction, whether or not there is an accompanying
increase in resting mean arterial pressure (MAP). Moreover, there is evidence that long-term
alterations of the brain renin-angiotensin system (RAS) impact not only MAP and BRS, but
also metabolic function in rodents. The focus of this review is on recent insights into the
balance between brain Ang II and Ang-(1–7) in the dorsomedial medulla in terms of
cardiovascular and metabolic function, addressing three major questions: 1) is a brain Ang
II/Ang-(1–7) imbalance in the dorsomedial medulla associated with long-term impairments
in sympathovagal and metabolic balance?; 2) are there different cellular sources or
precursors for generation of Ang II versus Ang-(1–7) in brain medulla?; and 3) are signaling
pathways altered in brain medulla with long-term changes in angiotensin peptides?
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Is aging associated with a functional deficiency of Ang-(1–7) in brain
medulla?

Within the nTS, endogenous Ang II attenuates and Ang-(1–7) facilitates BRS in young
Sprague-Dawley (SD) rats as revealed using injection of AT1 or mas receptor antagonists
(Figure 1). During aging, MAP increases modestly in SD rats and BRS is impaired in both
conscious and anesthetized conditions [1–3]. Functionally, we know that nTS injection of
AT1 receptor antagonists increases BRS in old or young SD rats, but Ang-(1–7) receptor
blockers decrease BRS only in young SD animals. The inability of Ang-(1–7) blockade to
regulate BRS in older rats [2] can be interpreted as a deficiency of Ang-(1–7) in the nTS
with increased age. An associated reduction in neprilysin mRNA in dorsal medulla of older
SD rats may contribute to lower Ang-(1–7) levels [2], but protein or activity measures are
necessary to validate this concept. Functional data show that ACE2 inhibition in the nTS
impairs BRS to a similar level as Ang-(1–7) receptor blockade [4], suggesting reliance of
Ang-(1–7) formation in this brain region on ACE2,

Transgenic ASrAogen rats with targeted disruption of glial angiotensinogen (Aogen) are a
model of healthy aging with an extended lifespan [1;3;5]. AT1 receptor blockade in the nTS
does not alter the BRS in young ASrAogen rats, clearly demonstrating loss of Ang II tone in
the resting condition (Figure 1). Although a decline in BRS is detected in older conscious
ASrAogen rats [1], levels are similar in anesthetized younger and older animals [5;6]. In
both conscious and anesthetized states, the BRS is similar or higher in older ASrAogen
relative to SD rats. ASrAogen rats also maintain lower MAP relative to older SD rats during
aging [3]. Ang-(1–7) receptor blockade with D-Ala7-Ang-(1–7) (D-Ala) impairs baroreflex
function in both young and old ASrAogen rats to the same extent as young SD rats
indicating preservation of BRS modulation by endogenous Ang-(1–7) for in the healthy
aging rats [1;3;5;6]. In terms of brain RAS regulation, mas, ACE2 and neprilysin (NEP)
mRNA are similar in the dorsal medulla between strains, but mas and ACE2 mRNA are
lower in older versus younger ASrAogen rats [2;5;6]. This contrasts with our functional data
showing that maintenance of Ang-(1–7) facilitation of BRS in the older ASrAogen rats [5].
However, reductions in mas receptors and Ang-(1–7) synthetic enzymes may be secondary
to maintained levels of Ang-(1–7) and a ligand- or substrate-mediated feedback in older
ASrAogen rats.

Is genetic hypertension associated with a functional deficiency in brain
medullary Ang-(1–7)?

Early studies showed the importance of elevating brain Ang-(1–7) to reverse the impaired
BRS in genetic and experimental models of hypertension by demonstrating that the
improvement in BRS elicited by ACE inhibitors in spontaneously hypertensive (SHR) and
renal hypertensive rats is reversed by central blockade of Ang-(1–7)[7;8]. In contrast,
changes in the brain RAS that favor Ang II at the expense of Ang-(1–7) (e.g., increases in
AT1 receptor or decreases in ACE2, AT2 or mas expression) may contribute to the decline in
cardiovascular function associated with heart failure and hypertension [9;10]. In
hypertensive (mRen2)27 rats, overexpression of mouse renin leads to high brain Ang I/Ang
II/Ang-(1–7) in hypothalamic tissue, with high Ang II/low Ang-(1–7) in medullary tissue
[11]. MAP is highest in young animals and declines with age along with decreases in cardiac
function [3;12;13]. The BRS is impaired in young (mRen2)27 rats [14;15], and neither AT1
nor Ang-(1–7) receptor blockade in the nTS alters BRS or MAP (Figure 1). The reduced
Ang-(1–7) in the medulla of these animals [11] may leave Ang II actions to attenuate BRS
unopposed and explain the lack of response to Ang-(1–7) blockade. However, the lack of
responsiveness to AT1 receptor blockade in the nTS is surprising. These effects are not
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related to the hypertension per se, as SHR show the expected increase in BRS with AT1
receptor blockers and decrease in BRS with Ang-(1–7) receptor blockers injected into the
nTS [16]. Recent findings illustrate that ACE inhibition in the nTS of (mRen2)27 rats
returns BRS to normotensive levels over approximately two hours, without altering resting
MAP [17]. The effect was reversed by local Ang-(1–7) receptor blockade [17]. These
observations suggest that the long-term Ang II/Ang-(1–7) imbalance in the medulla of these
rats alters signaling pathways that require an increase in Ang-(1–7). However, the data in
SHR strongly suggest that a deficit in Ang-(1–7) is not the underlying mechanism in all
forms of hypertension.

Is fetal programmed hypertension associated with a deficit in brain Ang-(1–
7)?

Antenatal steroids provide great advantages in postnatal survival and current guidelines
support their use in threatened premature delivery. Thus, the incidence of steroid exposure in
the last trimester of gestation and those who subsequently proceed to full term has increased
[18]. However, it is unclear overall whether exposure to antenatal steroids itself mitigates or
aggravates the risk factors for early onset cardiovascular problems over the long term.
Emerging evidence suggests that antenatal glucocorticoid exposure is associated with
development of elevated MAP during adolescence [19] and disturbances of metabolism in
young adults [20;21]. Recent findings in a model of in utero exposure to betamethasone
(Beta) in sheep illustrate that Beta-exposure causes a shift in components of the RAS
favoring Ang II over Ang-(1–7) in the kidney [22;23], without altering circulating peptides.
Thus, local tissue effects may underlie the development of cardiometabolic dysfunction at
later time points, including elevated MAP, impaired BRS for control of heart rate, and
higher insulin, glucose and leptin at ~2 years of age [24]. Acute systemic AT1 antagonist
administration lowers MAP and improves BRS, while Ang-(1–7) receptor blockade reduces
BRS in control but not Beta-exposed animals [25], suggesting loss of the facilitation of the
baroreflex by endogenous Ang-(1–7). Preliminary studies further suggest that loss of brain
Ang-(1–7) may contribute to the BRS impairment at 6 wks of age given that nTS injection
of D-Ala fails to suppress the BRS in Beta-exposed animals [26]. These findings are similar
to observations in (mRen2)27 rats and older SD rats where apparent loss of Ang-(1–7)
facilitation of the BRS occurs. We hypothesize that Beta-exposure leads to postnatal
disturbances in the balance of Ang II and Ang-(1–7), resulting from changes in receptors,
enzymes or peptide levels in the nTS and leading to greater Ang II tone. The imbalance in
Ang peptides in the nTS contributes to elevated sympathetic and reduced parasympathetic
tone, associated with impairment in BRS, thereby reinforcing a progressive elevation of
MAP, impaired autonomic function and cardiac and renal injury as these animals age.

Do Ang II and Ang-(1–7) arise from different cellular sources to influence
MAP versus BRS?

ASrAOGEN rats with low glia-derived Aogen have modest hypotension and normal to
enhanced BRS. In these animals, there is no effect of nTS AT1 receptor blockade, but Ang-
(1–7) blockade still reduces the BRS (Figure 1). Thus, the Ang II - mediated suppression of
BRS within the nTS is dependent upon an intact glial source of Aogen, whereas Ang-(1–7)
arises from a different cellular source. This phenotype is opposite to transgenic mice with
overexpression of renin and Aogen in brain glia [27;28], where impairment of the BRS
accompanies modest hypertension. This contrasts with overexpression of the brain RAS in
neurons where elevated MAP is not associated with changes in BRS [27;28]. This implies
that neuronal elements influence the baroreceptor set point rather than BRS [27;28].
Hemizygous (mRen2)27 rats crossed with ASrAogen rats have significantly lower MAP
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than animals from the usual cross with SD rats [29]; however, this does not normalize
pressure suggesting sources of Ang peptides other than glia contribute to the hypertension.
These rats combine the traits of the transgenic mice with over-expression of both the glial
and neuronal RAS, having both elevated pressure and an impaired BRS. However,
(mRen2)27 rats have normal to high plasma Ang II and normal to low plasma Ang-(1–7)
[30]. Therefore, these animals also resemble neurogenic hypertension secondary to systemic
‘low-dose’ Ang II and the actions of Ang II and Ang-(1–7) may result from a circulating
source via vascular actions indirectly influencing nTS neurons [31].

Does Ang-(1–12) serve as a precursor to Ang II?
Ang-(1–12) was identified in plasma and tissues in 2007 and is present in brain in equal or
higher amounts than Ang II or Ang-(1–7) [32]. Ang-(1–12) would be cleaved from
angiotensinogen, the only known precursor for this 12 amino acid sequence, but the enzyme
responsible for generation of the peptide is unknown. Several enzymes could convert Ang-
(1–12) into either Ang II or Ang-(1–7) as illustrated in Figure 2. In SD rats, nTS injection of
Ang-(1–12) reduces BRS, an effect blocked by either an AT1 receptor antagonist or ACE
inhibitor [33;34]. These findings suggest that the preferred processing pathway in the nTS is
to Ang II. However, immunoneutralization of endogenous Ang-(1–12) in the nTS with a
highly selective antibody had no effect on BRS in the SD rats. Thus, while exogenously
administered Ang-(1–12) may be converted to Ang II to reduce baroreflex function, Ang-(1–
12) does not contribute to BRS in normal animals. In contrast, intracerebroventricular
administration of an antibody to Ang-(1–12) reduced MAP in (mRen2)27 transgenic rats,
suggesting that Ang-(1–12) serves as an intermediate precursor of Ang II in this model of
hypertension [35]. Since it appears that an Ang-(1–12) processing pathway exists in the
brain of hypertensive animals for the production of Ang II, further studies to identify the
enzyme(s) involved in formation of Ang-(1–12) and regulation of Ang-(1–12) levels in brain
are warranted.

Does an Ang II /Ang-(1–7) imbalance favoring Ang II in the dorsomedial
medulla impact signaling pathways involved in cardiometabolic function?

Phosphoinositol 3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) are key
intracellular signaling pathways for the cardiovascular actions of insulin, leptin and Ang II.
These kinase pathways are negatively modulated by protein tyrosine phosphatase (PTP) 1b
and dual specificity phosphatases (DUSP-1 or MKP-1), respectively (see reviews [36;37]).
Whether the local brain RAS contributes to regulation of these signaling pathways and how
that relates to the alterations in MAP, BRS and metabolic function within the nTS during
aging and hypertension is the subject of investigation (Figure 3). The concept is that kinase-
phosphatase signaling pathways are altered in the dorsal medulla, in part resulting from
imbalances in Ang II and Ang-(1–7) actions.

Leptin, insulin and Ang II activate PI3K and MAPK pathways to induce rapid signaling
responses and these hormones all impair BRS within the nTS [38] [39], [40–42;42]. Not
surprisingly, since they share common signaling pathways, cross-desensitization may occur
[43;44]. Leptin receptors are found in the nodose ganglion and on vagal afferents in the nTS
in normotensive rats [45], similar to the pattern for AT1 receptors, likely mediating
suppression of BRS [41]. Leptin increases PI3K and MAPK activity in normotensive rats
[46], and the PI3K inhibitors wortmannin and LY294002 prevent the effects of leptin on
food intake and renal sympathetic nerve activity [47;48]. The PI3K pathway is also involved
in maintenance of Ang II hypertension as PI3K blockade in the nTS of (mRen2)27 rats
decreases MAP and increases BRS [49]. However, chronic blockade of PI3K using a mutant
receptor expression in the nTS of SHR had the opposite effect [50] suggesting long-term
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interventions are needed to determine the overall effect of the system. How the brain PI3K
pathway contributes to the heavier body weight and development of insulin resistance in the
(mRen2)27 rats is also not known. In contrast, ASrAogen rats show high insulin and leptin
sensitivity throughout life indicating an important role of the brain RAS in mediating
cardiometabolic function during aging [3;41;51;51;52]. ASrAogen rats are at least 3-fold
more sensitive to BRS suppression by injections of leptin into the nTS [41]. The increased
sensitivity to exogenous leptin is associated with high levels of mRNA for the leptin
receptor and the p85 alpha subunit of PI3K, consistent with down-regulation of leptin.

The MAPK pathway is also implicated in the actions of Ang II and leptin as both increase
phosphorylation of ERK-1/2 in normotensive rats [46;53]. The MAPK pathway is actively
involved in control of resting MAP in the RVLM and mediates Ang II actions in this
nucleus in both normotensive and hypertensive rats, unlike recruitment of the PI3K
pathway. MKP-1 expression is higher in ASrAogen relative to (mRen2)27 rats [54]
supporting the hypothesis that Ang-(1–7) may counteract the actions of Ang II by
upregulating MKP-1 expression [55], as outlined in Figure 3.

PTP1b is known to limit the actions of insulin to phosphorylate eNOS via PI3K in the nTS
[56;57]. How an increase or decrease in nitric oxide regulates the BRS is, however,
controversial. Blockade of nitric oxide in the nTS impairs reflex function under normoxic
conditions [58]. A reduction in nitric oxide reportedly precedes the development of
hypertension and the BRS impairment in (mRen2)27 rats [59]. In the isolated working heart-
brain preparation, release of nitric oxide from the vascular endothelium by Ang II increases
GABA causing impairment of BRS through suppression of glutamate transmission in the
nTS [60]. Since these experiments were performed under high oxygen conditions of the
production of reactive oxygen species may participate in the BRS suppression. Stronger
evidence for endothelial derived nitric oxide suppression of BRS is provided in a chronic
study in vivo [57]. Ang-(1–7) releases nitric oxide, but whether this mechanism explains the
beneficial effect of the peptide on BRS is not known. Alterations in the RAS influence
indicators of reactive oxygen species with higher levels in (mRen2)27 versus ASrAogen rats
[54]. Ang-(1–7) also plays a role in the NADPH diaphorase – NADPH oxidase balance
[61;62]. AT1 receptors are linked to NADPH oxidase in the nTS and these signaling
pathways are important to sympathovagal balance [63;64].

Conclusions
A role of the brain RAS in the normal physiologic regulation of the autonomic nervous
system involving both cardiovascular and metabolic pathways is clear from comparative
studies of wild type and transgenic animals. Insights revealed during the aging process, in
hypertension or heart failure illustrate the potential importance of reductions in Ang-(1–7) in
dysregulation of autonomic and metabolic function. We concentrated in this review on the
role of the Ang peptides in the dorsomedial medulla where they have opposite actions for
BRS regulation. It is important to note that actions of Ang II and Ang-(1–7) to increase
MAP may be similar in the nTS, paraventricular nucleus and the rostral ventrolateral
medulla [5;6;65;66]. Thus, the role of phosphatases, reactive oxygen species and nitric oxide
in regulation of MAP and BRS within the nTS and their influence by Ang II versus Ang-(1–
7) requires further elucidation and may not extend to other brain sites. While acute
regulation of the kinase-phosphatase pathways is likely mediated by rapid phosphorylation
and dephosphorylation events, chronic regulation of the expression of protein kinases and
phosphatases by the RAS is also possible
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Figure 1.
BRS for control of heart rate in young SD, ASrAOGEN and (mRen2)27 animals before and
after treatment with the AT1 receptor antagonist candesartan (CV) and the Ang-(1–7)
receptor antagonist D-Ala7Ang-(1–7) [DALA]. Data replotted from references [6;14] and
unpublished data [AT1 receptor blockade in (mRen2)27 rats].
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Figure 2.
Proposed extracellular renin-independent pathway involving Ang-(1–12) conversion to Ang
II. Abbreviations: Aogen= angiotensinogen, ACE= angiotensin converting enzyme, ICV=
intracerebroventricular
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Figure 3.
Signaling pathways interacting with angiotensin peptides in dorsal medullary cardiovascular
nuclei. Proposed model: Ang-(1–7) up-regulates the MAPK phosphatase MKP-1 to
attenuate Ang II-stimulated MAPK signaling pathways and ROS (from cytoplasmic, nuclear
or mitochondrial sources), resulting in improved BRS and lower MAP. Abbreviations:
ROS= reactive oxygen species, MAPK-p= phosphorylated MAPK, MAP= Mean arterial
pressure, BRS= Baroreflex sensitivity
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