Note

Tissue Specificity of *Caenorhabditis elegans* Enhanced RNA Interference Mutants

Jimmy J. Zhuang and Craig P. Hunter¹

Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 Manuscript received January 25, 2011 Accepted for publication February 23, 2011

ABSTRACT

Gene knockdown by RNA interference (RNAi) in *Caenorhabditis elegans* is readily achieved by feeding bacteria expressing double-stranded RNA (dsRNA). Enhanced RNAi (Eri) mutants facilitate RNAi due to their hypersensitivity to dsRNA. Here, we compare eight Eri mutants for sensitivity to ingested dsRNA, targeting a variety of tissue-specific genes.

THE effectiveness of double-strand RNA (dsRNA) delivery in *Caenorhabditis elegans* has made high-throughput RNA interference (RNAi) screens an essential research tool (MITANI 2009). For RNAi screens, dsRNA is usually administered via feeding RNAi, whereby worms ingest bacteria expressing gene-specific dsRNA (referred to as RNAi food). This is a less potent procedure than microinjecting dsRNAs, perhaps due to the lower amounts of internalized dsRNA (TIMMONS and FIRE 1998). The discovery of enhanced RNAi (Eri) mutants, which increases the sensitivity of worms to dsRNA, increases the discovery of RNAi phenotypes in large-scale screens. Nine Eri loci have been discovered thus far (SIMMER *et al.* 2002; KENNEDY *et al.* 2004; DUCHAINE *et al.* 2006; FISCHER *et al.* 2008; PAVELEC *et al.* 2009).

Although a variety of Eri mutants are used in RNAi screens, their selection has been *ad hoc*, as no systematic comparative analysis of the Eri strains has been reported. Such an analysis would provide a logical basis for selecting the most sensitive Eri mutant for general and tissue-specific screens. Here, we comprehensively characterize the tissue-specific RNAi sensitivities of eight Eri mutants. To characterize phenotypic differences among Eri mutants, we compared the relative penetrance of RNAi sensitivity at varying doses of dsRNA-expressing bacteria (REA *et al.* 2007). For each bacterial strain that expresses dsRNA targeting a *C. elegans* gene, we scored only one defined knockdown phenotype (supporting information, Table S1, Supporting Citations). A representative

dilution series is shown in Figure S1 (Table S2). We sought to use this dose-response data to compare the enhanced silencing for each Eri mutant. For all strains, the variability in penetrance is greatest at intermediate dsRNA doses, suggesting a threshold effect. This variability, best observed via coefficient of variations (Table S3), strongly interferes with determining the onset of silencing. In contrast, the trend toward reduced variability at higher dsRNA doses provides a means to discriminate among Eri mutants. On the basis of this analysis, we developed a criterion for selecting the "most effective" Eri's: one(s) that causes near complete (upper bound of 95% confidence interval at least 100% penetrant) and robust (<10% standard deviation) silencing at the lowest dsRNA dose.

We used the methods and criterion described above (File S1) to evaluate eight Eri mutants on 24 RNAi foods in either tissues (Table S1, Supporting Citations). The results of this analysis are presented in Figure 1 (Tables S4–S27). The majority of Eri mutants enhanced RNAi for nearly all tested tissues, but all showed relative differences in RNAi hypersensitivity for some foods. Our comprehensive phenotypic analysis of the Eri mutants indicates that they are not equivalent, consistent with the reported nonoverlapping expression profiles of *eri-1* and *rrf-3* mutants (LEE *et al.* 2006).

In all experiments, we observed a sigmoidal curve for silencing penetrance vs. RNAi concentration; at intermediate concentrations, the variance was highest. Therefore, to minimize variability associated with dose, all feeding RNAi assays should be preceded by a dilution series control to ensure that the RNAi food is not used at an "inflection point" concentration. When dsRNA doses cannot be controlled, using the most appropriate Eri mutant maximizes robustness and sensitivity.

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.111.127209/DC1.

¹Corresponding author: Harvard University, Biological Laboratories, Room 3044, 16 Divinity Ave., Cambridge, MA 02138. E-mail: hunter@mcb.harvard.edu

FIGURE 1.—Summary metric of tissue-specific Eri efficacy for the eight Eri strains tested on 24 RNAi foods representing eight tissues. A strain exhibiting significantly higher (*t* test, P < 0.05) penetrance than the N2 wild-type strain's penetrance (green), at any tested bacterial RNAi food concentration, is marked as Eri (yellow or red). Strains exhibiting an Eri phenotype that have an upper bound of 95% confidence interval at least 100% penetrant with a <10% standard deviation are marked as the "best" Eri (red). "T.S. sterile" indicates strains that exhibit temperature-sensitive sterility at 25°.

We selected RNAi targets on the basis of tissuespecific gene expression and/or phenotypes and interpreted the data based on these differences, but it is important to consider that the differences in responses might relate to unknown relationships between the genes. Consistent with our goal, most sets of tissuespecific genes show consistent phenotypes within Eri mutant classes. For *rrf-3* and *ergo-1/eri-8*, we analyzed a second independent allele, finding similar tissue specificity (Figure S2). Therefore, the observed tissue specificity is likely a property of the *eri* genes rather than a consequence of unique alleles.

To further document tissue-specific Eri phenotypes, we crossed all the Eri mutants into a *sur-5::gfp* strain that ubiquitously expresses GFP in all cells (GU *et al.* 1998). All the *eri(-);sur-5::gfp* doubles exhibited spontaneous transgene silencing (Figure S3), which interfered with the effect of *gfp* dsRNA. However, consistent with the tissue-specific effects described above, the relative differences in spontaneous *gfp* silencing in the intestinal nuclei among *eri-1;sur-5::gfp*, *rrf-3;sur-5::gfp* and *ergo-1/eri-8;sur-5::gfp* strains corresponded with their relative differences in RNAi efficacy against endogenous intestinal targets (Table S28).

A limited comparison of the Eri phenotypes of the retinoblastoma pathway mutants lin-15b(n744) and lin-35(n745) (WANG *et al.* 2005) with *eri-1* and *rrf-3* showed that their sensitivity and robustness were less than that of the Eri mutants (Figure S4).

We also found that all the Eri mutants show strong maternal rescue (Figure S5 and Figure S6 and Table S29, Table S30, Table S31, and Table S32). However, there is no maternal rescue for the temperaturesensitive (T.S.) sterility phenotype of T.S. Eri mutants (Table S33). This is not due to a perdurance problem in which the maternally loaded products are depleted before *eri*-related spermatogenesis begins because we utilized *bli-1* RNAi—whose target is expressed only during the fourth larval stage (PAGE and JOHNSTONE 1997) when spermatogenesis begins—and found penetrant maternal rescue of the Eri phenotype (Table S34). Eri maternal rescue could suggest that part of the maternal contribution to the embryo includes small RNAs or their associates.

The described tissue-specific RNAi sensitivities, T.S. sterility data, maternal rescue penetrance, brood size (Table S27), and effect on transgenes provide a practical guide to the selection of Eri mutants (File S2, Figure S7). There are other weaker enhanced RNAi mutants, including dcr-1/eri-4(mg375) (PAVELEC *et al.* 2009), tissue-specific *sid-1* overexpressers (CALIXTO *et al.* 2010), and transgene-specific silencers (KNIGHT and BASS 2002). Although these may not be versatile genetic tools, their future phenotypic analysis is equally important because understanding the interactions among all *eri* genes provides insights about small RNA pathways.

We thank D. Pavelec and S. Kennedy for providing strains and mapping data for the unpublished *eri-11* gene. We thank members of the Hunter lab for helpful discussions. This work was supported by National Science Foundation grant MCB 0744029 to C.P.H. and by a Graduate Research Fellowship to J.J.Z.

LITERATURE CITED

- CALIXTO, A., D. CHELUR, I. TOPALIDOU, X. CHEN and M. CHALFIE, 2010 Enhanced neuronal RNAi in *C. elegans* using SID-1. Nat. Methods **7:** 554–559.
- DUCHAINE, T. F., J. A. WOHLSCHLEGEL, S. KENNEDV, Y. BEI, D. CONTE et al., 2006 Functional proteomics reveals the biochemical niche of *C. elegans* DCR-1 in multiple small-RNA-mediated pathways. Cell **124**: 343–354.
- FISCHER, S. E. J., M. D. BUTLER, Q. PAN and G. RUVKUN, 2008 Transsplicing in *C. elegans* generates the negative RNAi regulator ERI-6/7. Nature 455: 491–496.
- GU, T., S. ORITA and M. HAN, 1998 Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol. Cell. Biol. 18: 4556–4564.
- KENNEDY, S., D. WANG and G. RUVKUN, 2004 A conserved siRNAdegrading RNase negatively regulates RNA interference in *C. elegans*. Nature **427**: 645–649.
- KNIGHT, S. W., and B. L. BASS, 2002 The role of RNA editing by ADARs in RNAi. Mol. Cell 10: 809–817.
- LEE, R. C., C. M. HAMMELL and V. AMBROS, 2006 Interacting endogenous and exogenous RNAi pathways in *Caenorhabditis elegans*. RNA 12: 589–597.
- MITANI, S., 2009 Nematode, an experimental animal in the national BioResource project. Exp. Anim. 58: 351–356.
- PAGE, A. P., and I. L. JOHNSTONE, 1997 The cuticle (March 19, 2007), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.138.1, http://www.wormbook.org.

- PAVELEC, D. M., J. LACHOWIEC, T. F. DUCHAINE, H. E. SMITH and S. KENNEDY, 2009 Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in *Caeno-rhabditis elegans*. Genetics 183: 1283–1295.
- REA, S. L., N. VENTURA and T. E. JOHNSON, 2007 Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in *Caenorhabditis elegans*. PLoS Biol. 5: 2312– 2329.
- SIMMER, F., M. TIJSTERMAN, S. PARRISH, S. P. KOUSHIKA, M. L. NONET et al., 2002 Loss of the putative RNA-directed RNA polymerase

RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12: 1317–1319.

- TIMMONS, L., and A. FIRE, 1998 Specific interference by ingested dsRNA. Nature **395**: 854.
- WANG, D., S. KENNEDY, D. CONTE, J. K. KIM, H. W. GABEL *et al.*, 2005 Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature **436**: 593–597.

Communicating editor: M. NONET

GENETICS

Supporting Information

http://www.genetics.org/cgi/content/full/genetics.111.127209/DC1

Tissue Specificity of *Caenorhabditis elegans* Enhanced RNA Interference Mutants

Jimmy J. Zhuang and Craig P. Hunter

Copyright © 2011 by the Genetics Society of America DOI: 10.1534/genetics.111.127209

FILE S1

Materials and Methods

Strains used

Strain	Allele	Reference
N2 Bristol	Wild type	
GR1373	eri-1(mg366)	Kennedy et al. 2004
NL2099	rrf-3(pk1426)	Simmer et al. 2002
YY13	rrf-3(mg373)	Pavelec et al. 2009
WM172	eri-3(tm1361)	Duchaine et al. 2006
WM171	eri-5(tm1705)	Duchaine et al. 2006
FX01917	eri-6/7(tm1917)	Fischer et al. 2008
YY168	eri-8(gg100)	Pavelec et al. 2009
WM158	eri-8(tm1860)	Pavelec et al. 2009
YY216	eri-9(gg106)	Pavelec et al. 2009
YY209	eri-11 (gg99)	Unpublished. S. Kennedy
MT2495	lin-15b(n744)	Wang et al. 2005
MT10430	lin-35(n745)	Wang et al. 2005
HC195	nrIs20[sur-5::gfp]	Jose <i>et al.</i> 2009
HC745	eri-1(mg366); nrIs20 [sur-5::gfp]	
HC746	rrf-3(pk1426); nrIs20 [sur-5::gfp]	
HC747	eri-3(tm1316);	
HC748	eri-6/7(tm1917); nrIs20 [sur-5::gfp]	
HC749	ergo-1/eri-8(gg100); nrIs20 [sur-5::gfp]	
HC750	eri-9(gg106); nrIs20 [sur-5::gfp]	
HC751	eri-11(gg99); nrIs20 [sur-5::gfp]	

All strains and their assays were maintained and performed at 20°C, except heat shift experiments for temperature-sensitive alleles, which were performed at 25°C.

Dilution series procedure

Single colonies from the Ahringer library (Kamath and Ahringer 2003) were inoculated and grown using previously described methods (Timmons *et al.* 2001). The final optical density (OD) of bacteria was determined by spectrometry at 600 nm. For dilution series, the bacteria were diluted in either LB media for final OD of 1.0 or greater, or in neutral carrier bacteria (*E.coli* HT115(DE3) containing an empty L4440 vector) to maintain a minimal total bacteria concentration of 1.0 OD. This minimal bacterial concentration was found necessary to maintain worm growth. In each case 20 μL of RNAi food (which is enough to support the progeny from one worm) at the desired concentrations were seeded onto and grown overnight at room temperature onto 1mM isopropyl-β-D-thiogalactopyranoside (GoldBio), 1mM carbenicillin (EMD Biosciences) NG plates (Brenner 1974) in 30mm petri dishes (Greiner Bio-One) to induce dsRNA production. Non-starved third-larval stage single *C. elegans* worms of the desired strain were placed onto each seeded plate at 20°C, with the exception of *fkh-6, gon-1*, and *gon-4* RNAi foods, which required first-larval stage single worms to be placed to ensure the elimination of the gonad.

Observed knockdown phenotypes were similar to previously observed RNAi experiments with the same gene targets, as reported in WormBase Release WS217. A single scored phenotype, as listed in Table S1, was scored for penetrance in the progeny generation of each plate's single worm four days later. HC196:*sid-1(qt9)* was used as a negative control and, as expected,

did not show any RNAi knockdown phenotypes across all foods tested (Winston *et al.* 2002). Each Eri strain on each concentration of RNAi food was replicated between five to 12 times, as indicated in Tables S2 & S4-S26.

Means and standard deviations were calculated for each Eri strain on each RNAi food concentration for nonlethal/non-growth-defective phenotypes. Normalized mean and standard errors of the mean were calculated for each Eri strain on each RNAi food concentration for lethal/growth-defective phenotypes, with brood sizes of each Eri strain feeding on vector RNAi food (Table S27) – which agreed very well with previously published data (Duchaine *et al.* 2006; Pavelec *et al.* 2009) – used for normalization. A *t* test analysis of the N2 wild-type response on each RNAi food concentration is the basis for determining an Eri phenotype on that RNAi food concentration, with a two-tailed p value less than 0.05 indicating significant difference. Coefficients of variation were tabulated by dividing the standard deviation by the mean.

Maternal rescue analysis:

Genetic cross analysis for an Eri phenotype on dpy-13 RNAi food was tested at OD_{600nm} 1.5, on *hmr*-1 RNAi food at OD_{600nm} 0.5, and on *unc*-73 RNAi food at OD_{600nm} 3.0, using the same aforementioned setup for inoculating, growing, and seeding the RNAi plates. The shift to 25°C to test for maternal rescue of temperature-sensitive sterility was made at the third-larval stage to ensure that spermatogenesis occurred at 25°C.

Imaging:

All images were initially analyzed on an Olympus dissecting scope, with Illumatool Tunable Lighting System, attached to an EXFO X-Cite Fluorescence Illumination System for fluorescent detection assays. All presented images were captured on a Zeiss Axiophot, attached to a Zeiss AttoArc for fluorescent detection assays, using a Hamamatsu Digital Camera, with Openlab software. Scale bar was measured using a 0.01 mm stage micrometer (Olympus). After initial image capture, all subsequent analysis of images was performed using ImageJ software (National Institutes of Health, USA).

Laser ablation:

The eri-8; sur-5::gfp strain underwent germline removal via laser ablation as described in Bargmann and Avery 1995.

FILE S2

Supporting Results and Discussion

As listed in Table S1, some RNAi foods had relatively extreme loss-of-function phenotypes scored for the sake of more explicit precision. For example, *unc-22* RNAi is usually scored just for the mere presence of twitching (Fire *et al.* 1991). However, *unc-22* RNAi still causes twitching down to a 1/200,000 dilution of bacterial RNAi food in both N2 and *eri-1* (data not shown), at which point, errors from dilution is probably more variable than the phenotypic penetrance. Therefore, the more extreme phenotype of twitching to the point of paralysis is more appropriate for our dilution series' scoring purposes. Knockdown assays in general should therefore similarly consider the relationship between expressivity and penetrance at the concentrations of RNAi foods used. Although expressivity is another factor usually considered for RNAi efficacy, it is much harder to quantify objectively. Penetrance of one very specific phenotype was therefore used as the sole measure of knockdown efficacy.

RNAi phenotypes were scored in the next generation for of three reasons. One, this practice is more common in the field for reverse genetics applications, so our method would serve as a more fitting guideline. Two, putting L3s on RNAi food and scoring the next generation versus putting embryos on RNAi food and scoring the same generation results in almost identical phenotypic penetrance (data not shown; Vastenhouw *et al.* 2006). Three, scoring in the next generation allows for a more consistent method across all the to-be tested RNAi foods, including those with germline phenotypes that cannot be assayed in the same generation.

The data in Figure 1 and Tables S2-S26 should not be construed as an absolute scale (that feeding a particular Eri mutant on a particular RNAi food concentration will result in the listed penetrance), due to differences between protocols. Rather, the relative differences between conditions (that one particular Eri mutant has different penetrance on different concentrations of an RNAi food) are the trends that should be robust.

Previous reports showed that a portion of the spontaneous transgene silencing is due to mobile silencing signals (Jose *et al.* 2009) and the silenced cells in the gut correspond to the position of the developing gonad, suggestive that silencing signals emanate from the germline. We tested this by ablating the gonad of L1 animals and found that the extent of silencing was unchanged (Figure S7). Thus the silencing is either entirely of somatic origin or is initiated in the embryo.

The strong germline-specific *eri-5(tm1705)* phenotype was unexpected. This may reflect the incomplete penetrance *eri-5* has on small RNA metabolism; *eri-5* mutants show reduced but not eliminated endo-siRNA processing (Duchaine *et al.* 2006). To date, no screens have been performed for germline-specific Eri mutants; such a screen could reveal the different requirements for endogenous small RNA pathways.

Duchaine *et al.* 2006 reported a rather weak Eri phenotype for *eri-5(mg392)* for some somatic targets, whereas we generally did not see a somatic Eri phenotype for *eri-5(tm1705)*. This difference could be due to the fact that we systemically enumerated the RNAi food concentrations at which we scored our animals, whereas Duchaine *et al.* did not; it is quite likely that

when they scored their animals, they were at a concentration of food that may have produced a weak Eri phenotype. Furthermore, we scored only penetrance of a strict phenotype, whereas Duchaine *et al.* scored a combination of expressivity and penetrance, also possibly accounting for our differences.

OD_{600nm} concentration of *ifc-2* RNAi food used in initial culture

FIGURE S1.—Dilution series of Eri responses by RNAi feeding against *ifc-2*. Single L3-stage larvae were placed on RNAi food targeting *ifc-2*; 4 days later, the percent of progeny showing the expected bent posterior and accompanying paralysis at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.1, 0.25, and 0.75), which produced similar Eri penetrances as adjacent concentrations, are not included. Error bars represent standard deviation.

FIGURE S2.—Dilution series of Eri responses of different *rtf-3* and *eri-8* alleles by RNAi feeding against *act-3*, *hmr-1*, and *vha-15*. Single L3-stage larvae were placed on RNAi food targeting *act-3* (A), *hmr-1* (B), and *vha-15* (C); 4 days later, the percent of progeny showing the expected knockdown phenotypes, as listed in Table S1, at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. Error bars represent 95% confidence intervals.

FIGURE S3.—All Eri mutants enhance transgene silencing. Eri mutants enhance transgene silencing in a *sur-5::gfp* background. GFP images were exposed for 100 milliseconds. Red scale bar indicates 0.2 mm.

FIGURE S4.—Dilution series of Eri responses of *eri-1* and *rrf-3* versus *lin-15b* and *lin-35* by RNAi feeding against *dpy-13*, *unc-22*, and *unc-73*. Single L3-stage larvae were placed on RNAi food targeting *dpy-13* (A), *unc-22* (B), and *unc-73* (C); 4 days later, the percent of progeny showing the expected knockdown phenotypes, as listed in Table S1, at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. Error bars represent 95% confidence intervals.

FIGURE S5.—Somatic maternal rescue of the Eri phenotype. An outcross between an Eri (e/e) hermaphrodite and a N2 wild type (+/+) male begets a 1:2:1 (e/e):(e/+):(+/+) genotypic ratio at the F₂. Assuming a single-locus recessive trait, the expectation is that one quarter of the F2 progeny should be Eri. (A) Out-crossed *eri-1* (which is sterile at 25°C), *eri-6/7*, and *eri-8* (which are not sterile at 25°C) show significantly lower than expected levels ($p < 10^{-9}$) of the Eri phenotype at the F₂. Similarly, the F₃ progeny of the F₂ show significantly higher than expected levels ($p < 10^{-9}$) of wild-type progeny. (B) Out-crossed *eri-1* and *rff-3* (which are both sterile at 25°C) show expected levels (p > 0.18) of the temperature-sensitive sterile progeny at the F₂. Figure S6 eliminates other possible parental rescue/effect mechanisms. Tables S29 and S32 show data used for p values.

FIGURE S6.—Somatic maternal rescue of the Eri phenotype. The progeny of a heterozygous Eri male crossed to homozygous Eri hermaphrodite versus a homozygous Eri male crossed to a heterozygous Eri hermaphrodite are compared for Eri phenotypes. Assuming a single-locus recessive trait, the expectation is that the F₁ should be 50% Eri in both reciprocal crosses. (A) The cross progeny of *eri-1*, *eri-6/7*, and *eri-8* show expected levels (p > 0.48) of Eri phenotype when the mother is homozygous Eri. (B) The cross progeny of *eri-1*, *eri-6/7*, and *eri-8* show significantly lower than expected levels ($p < 10^{-13}$) of Eri phenotype when the mother is heterozygous Eri. See Tables S30 and S31 for data used in determining p values.

eri-8; sur-5::gf pgermline laser ablated

eri-8; sur-5::gf pglp-1 RNAi

FIGURE S7.—Transgene silencing seen in Eri mutants is not from a germline source. *eri-8 (gg100); sur-5::gfp* animals exhibit spontaneous transgene silencing (A) even with a laser ablated germline (B) (see File S1). *eri-8 (gg100); sur-5::gfp* animals fed RNAi targeting *glp-1* still exhibit spontaneous transgene silencing (C), despite also lacking germlines (D). GFP images were exposed for 100 milliseconds. Red scale bar indicates 0.2 mm.

Phenotypes scored for RNAi foods

Tissue	Food	Phenotype	Reference
Epidermis	bli-1	Large blisters on animals	Myllyharju and Kivirikko 2004
Epidermis	dpy-11	Severely dumpy animals whose length is at most 3X its width	Ko and Chow 2003
Epidermis	dpy-13	Severely dumpy animals whose length is at most 3X its width	Bird 1992
C 1	al c	Brood size reduction in developed L3s or older worms	C_{1} (L_{2004}
Gonad	Jkh-0	Affected animals are lethally absent	Chang et al. 2004
C 1	1	Brood size reduction in developed L3s or older worms	T . IN. 1. 1. 0007
Gonad	gon-1	Affected animals are lethally absent	Tamai and Nishiwaki 2007
Gonad	gon-4	Severely protruding or absent gonad	Church and Lambie 2003
т., .:		Brood size reduction in developed L3s or older worms	M. O. (1.0005
Intestine	act-3	Affected animals are lethally absent	MacQueen <i>et al</i> . 2005
т., .:	114	Brood size reduction in developed L3s or older worms	V: (1.0000
Intestine	gtt-1 *	Affected animals are significantly smaller in morphology	Aing <i>et al.</i> 2008
Intestine	ifc-2	Bent posterior body morphology that paralyzes locomotion	Hüsken et al. 2007
Maaala	- 4 2	Brood size reduction in developed L3s or older worms	Mainman et al 2000
Muscle	<i>acı-3</i>	Affected animals are lethally absent	Meissner et al. 2009
Musala		Brood size reduction in developed L3s or older worms	Above and Fire 1004
WIUSCIE	myo-3	Affected animals are lethally absent	Annii and Fife 1994
Muscle	unc-22	Severe twitching that paralyzes locomotion	Fire et al. 1991
Nauron	<i>bbl_1**</i>	Dorohvig	Thompson-Peer, K.L. 2009
Neuron	<i>not-1</i>	1 at at ysts	(unpublished)
Nauron	hour 1*	Brood size reduction in developed L3s or older worms	Broadbant and Pattitt 2002
Neuron	11111-1	Affected animals are significantly smaller in morphology	broaubent and retult 2002
Neuron	unc-73	Paralysis	Vanderzalm et al. 2009
Pharupy	din_1*	Brood size reduction in developed L3s or older worms	McKov et al 2003
1 marynx	uit 1	Affected animals are significantly smaller in morphology	MCIXay & ul. 2003
Pharway	pps=6*	Brood size reduction in developed L3s or older worms	Wang et al. 2006
1 marynx	<i>pv</i> ³ 0	Affected animals are significantly smaller in morphology	Wang <i>tr ut</i> . 2000
Pharway	pha-4	Brood size reduction in developed L3s or older worms	Mango 2007
1 marynx	pna 1	Affected animals are lethally absent	Mango 2007
Ubiquitous	cdk-1	Brood size reduction in developed L3s or older worms	Sevdoux and Fire 1994
Obiquitous	ban 1	Affected animals are lethally absent	Seydoux and The 1991.
Ubiquitous	knl-3	Brood size reduction in developed L3s or older worms	Cheeseman et al. 2004
Obiquitous	Inter 5	Affected animals are lethally absent	
Ubiquitous	wha-15	Brood size reduction in developed L3s or older worms	Hunt-Newbury et al. 2007
Obiquitous	<i>Una</i> 15	Affected animals are lethally absent	
Germline	glp-1	Absent germline in adult hermaphrodites	Vought et al. 2005
Germline	bar-1	Brood size reduction in developed L3s or older worms	Bowerman et al 1997
Germanic	P ⁴⁰ 1	Affected animals are lethally absent	Dowerman to al. 1557

Germline	pos-1	Brood size reduction in developed L3s or older worms	Tabara <i>et al.</i> 1999
	<i>Г</i> -	Affected animals are lethally absent	

The tissue-specific phenotype for each of the genes targeted by RNAi foods in Figure 1 are listed and referenced. Single asterisk (*) indicates foods whose gene targets are grouped to a tissue due to high expression in that particular tissue. Double asterisks (**) indicate food whose gene target is grouped to a tissue due to phenotype scored resulting from defects within that particular tissue. The remaining foods are grouped to a tissue due to both expression and phenotype arising from a particular tissue's effects.

Dilution series results for *ifc-2* feeding

Strain	OD_{600}	Penetrance re	eadings						Avg	SD	Eri?
Wild type	0.5	0/22	0/27	0/20	0/23	1/60			0	0.01	
(N2)	1	1/24	3/22	1/26	0/23	0/24			0.04	0.06	
	2	0/20	3/59	3/31	2/24	2/32			0.06	0.04	
	3	2/27	2/30	1/35	4/36	0/23			0.06	0.04	
	4	5/36	2/26	4/30	4/33	8/39	2/31	2/31	0.11	0.05	
eri-1	0.5	3/20	1/22	2/32	2/16	10/48			0.12	0.07	Yes
(mg366)	1	6/21	8/34	5/29	4/33	5/24			0.20	0.06	Yes
	2	7/28	11/18	13/24	21/30	11/29			0.50	0.18	Yes
	3	17/24	20/31	19/32	22/29	23/29			0.70	0.08	Yes
	4	33/33	39/42	54/57	41/43	23/23	21/22	25/28	0.95	0.04	Yes
rrf-3	0.5	5/25	0/38	4/28	0/10	12/39			0.13	0.13	
(pk1426)	1	20/28	25/28	35/46	20/23	33/33			0.85	0.11	Yes
Best	2**	32/39	24/25	22/25	13/18	22/28			0.83	0.09	Yes
	3**	15/19	22/23	16/21	45/47	33/39			0.86	0.09	Yes
	4**	29/30	28/30	10/10	29/30	20/20	40/40	29/30	0.98	0.03	Yes
eri-3	0.5	6/80	2/90	5/60	1/20	2/40			0.06	0.02	Yes
(tm1361)	1	6/17	4/23	7/18	6/25	7/19			0.30	0.09	Yes
	2	12/16	5/14	12/30	7/16	6/16			0.46	0.16	Yes
	3	16/19	12/13	12/16	17/23	11/14			0.81	0.08	Yes
	4	15/20	17/19	11/17	12/15	8/17	17/26	16/20	0.72	0.14	Yes
eri-5	0.5	4/80	2/60	0/20	0/20	0/20			0.02	0.02	
(tm1705)	1	0/44	3/60	0/20	3/40	2/50			0.03	0.03	
	2	0/20	2/80	3/80	0/20	2/40			0.02	0.02	
	3	0/28	1/40	1/40	2/60	4/80			0.03	0.02	
	4	1/31	4/30	3/48	3/22	5/33	7/54		0.11	0.05	
eri-6/7	0.5	2/27	3/21	2/34	3/37	2/33			0.08	0.03	Yes
(tm1917)	1	13/26	8/26	6/25	5/19	9/27			0.33	0.10	Yes
	2	8/26	10/33	11/34	8/23	12/39			0.32	0.02	Yes
	3	9/22	13/22	16/30	10/20	13/25			0.51	0.07	Yes
	4	14/36	15/35	10/27	28/37	12/19	8/19	23/30	0.54	0.18	Yes
eri-8	0.5	3/23	2/28	4/42	2/39	2/39			0.08	0.03	Yes

2 9/23 12/26 13/27 10/23 11/23 0.45 0.04 3 11/23 20/24 10/23 12/20 36/47 0.62 0.17 4 17/24 24/27 24/28 20/30 31/36 31/34 45/48 0.83 0.10	Yes Yes Yes
3 11/23 20/24 10/23 12/20 36/47 0.62 0.17 4 17/24 24/27 24/28 20/30 31/36 31/34 45/48 0.83 0.10	Yes Yes
4 17/24 24/27 24/28 20/30 31/36 31/34 45/48 0.83 0.10	Yes
eri-9 0.5 2/26 6/26 2/32 5/39 1/35 0.04 0.08	
(gg106) 1 7/32 10/41 8/40 4/37 6/31 0.09 0.05	Yes
2 3/20 3/27 3/32 4/27 5/41 0.12 0.02	Yes
3 13/26 21/27 8/25 12/24 11/28 0.50 0.17	Yes
4 9/21 10/21 14/30 16/28 17/24 13/21 10/10 0.61 0.20	Yes
eri-11 0.5 0/32 1/30 2/30 2/45 3/31 0.05 0.04	
(gg ⁹⁹⁾ 1 6/25 6/29 3/24 10/37 5/27 0.21 0.06	Yes
2 13/31 13/26 13/28 11/23 10/24 0.46 0.04	Yes
3 12/20 23/29 14/23 23/37 21/30 0.66 0.08	Yes
4 18/26 24/25 30/35 19/27 21/30 22/28 18/28 0.76 0.11	Yes

Single L3-stage larvae were placed on RNAi food targeting *ifc-2*; 4 days later, the percent of progeny showing the expected bent posterior and accompanying paralysis at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.1, 0.25, and 0.75), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

17 SI

TABLE S3

Coefficient of variation for Eri responses by RNAi feeding against $\mathit{ifc-2}$

OD600	Wild type (N2)	eri-1 (mg366)	rtf-3 (pk1426)	eri-3 (tm1361)	eri-5 (tm1705)	eri-6/7 (tm1917)	eri-8 (gg100)	eri-9 (gg106)	eri-11 (gg99)
0.5	2.24	0.56	1.02	0.43	1.41	0.41	0.42	0.75	0.75
1	1.29	0.30	0.13	0.31	0.99	0.31	0.44	0.27	0.27
2	0.64	0.36	0.11	0.35	0.99	0.06	0.08	0.19	0.08
3	0.77	0.12	0.11	0.09	0.68	0.13	0.28	0.35	0.12
4	0.44	0.04	0.03	0.19	0.45	0.33	0.12	0.32	0.15

Corresponds with Figure S1

Dilution series results for *bli-1* feeding

Strain	OD_{600}						I	Penetrance i	readings						Avg	SD	Eri?
Wildtype	0.1	1/86	0/32	2 1	/64	2/80	0/20	0	/20	0/20	0/20	0/20	0/20	0/20	0	0.01	
(N2)	0.5	23/83	30/1	23 2	3/102	23/97	0/20	0	/20	0/20	0/20	1/45			0.11	0.13	
	1	24/124	2/18	6 6	/38	5/47	9/47	4	/26						0.15	0.04	
	2	81/163	98/1	78 7	8/164	46/134	39/11	3 4	5/109	45/107	19/40	27/41	9/26		0.45	0.10	
	3	16/27	131/	196 1	32/212	45/53	38/52	4	6/57	60/70	43/53				0.74	0.10	
eri-1	0.1	9/80	13/73	12/61	11/79	24/7	6	0/64	0/40	0/20	0/20	0/20	1/60	0/20	0.08	0.11	
(mg366)	0.5	37/82	12/29	37/90	59/11	6 51/9	3	48/90	23/58	10/34	10/38	12/51	21/34	6/23	0.41	0.13	Yes
Best	1	63/87	34/36	45/56	27/31	40/4	5	44/48	33/39						0.86	0.07	Yes
	2	71/84	59/73	43/60	69/82	86/1	02	44/51	31/37	44/53					0.82	0.05	Yes
	3**	57/59	95/110	66/80	68/74	20/2	0	84/92	68/85						0.90	0.07	Yes
rrf-3	0.1	6/48	0/2	20	0/20	0/20		0/20		0/20					0.02	0.05	
(pk1426)	0.5	83/115	55.	/108	14/27	28/5	4	21/46	5	20/45	21/43				0.52	0.09	Yes
	1	88/121	66.	/84	37/73	70/1	23	18/35	ò	60/70	58/84	45/6	50 78	/91	0.70	0.14	Yes
	2	102/104	74.	/87	34/42	33/4	2	45/56	5	28/38	44/51	7/9			0.83	0.07	Yes
	3	110/112	73.	/79	5/7	31/4	3	39/46	5	37/42	42/50	60/6	5		0.85	0.10	Yes
eri-3	0.1	16/81	23/69	22/92	5/87	16/1	19	17/58	7/57	1/40	0/20	0/20	0/20	0/20	0.12	0.12	
(tm1361)	0.5	88/128	63/64	97/139	32/93	66/1	26	26/76	24/65	1/30	7/20	10/31	30/47	17/30	0.49	0.25	Yes
	1	62/96	88/105	57/100	7/25	28/1	06	25/72	9/40	12/58	21/41	12/44	18/42	19/51	0.41	0.19	Yes
	2	76/102	54/68	84/108	41/54	51/5	5	27/30	35/43	40/45					0.83	0.07	Yes
	3	84/99	54/67	95/103	54/78	43/4	8	21/26	7/9	42/52	37/44				0.82	0.07	Yes
eri-5	0.1	3/80	2/80	0/23	1/50	0/20		0/20	0/20	0/20	0/20				0.01	0.01	
(tm1705)	0.5	3/63	5/25	0/20	1/60	6/50		5/50	0/20						0.07	0.07	

	1	80/168	60/159	70/184	4 13/46	41/96	9/24	8/26	2/33	3/49	8/40	4/52	23/109	0.27	0.15	
	2	59/146	60/166	63/162	2 25/62	10/26	21/63	18/45	15/41					0.38	0.02	
	3	42/54	59/66	47/66	29/44	29/38								0.76	0.09	
eri-6/7	0.1	20/138	14/1	15	7/59	0/20 0.	/20	0/20	0/20					0.06	0.07	
(tm1917)	0.5	46/146	74/1	191	14/59	22/53 1	1/54	14/49	1/7					0.28	0.10	Yes
	1	40/156	45/1	45	24/122	1/5 1	1/64	21/69	14/44	15/33	10/27	13/41	14/45	0.29	0.08	Yes
	2	79/121	29/4	40	16/35	17/34 10	6/36	1,00	,	10,00	10, 1,	10, 11	11, 10	0.56	0.13	Yes
	3	30/48	49/6	61	19/28	22/29 32	2/42							0.73	0.07	Yes
eri-8	0.1	6/90	12/120	24/123	3 11/120) 33/128	17/120	0 10/80	0/20	0/20	0/20	0/20	0/20	0.08	0.09	
(gg100)	0.5	51/134	54/130	54/120) 43/105	5 59/133	41/95	36/117	10/90	0/90	2/90	12/32		0.30	0.17	Yes
	1	76/164	84/188	94/193	3 48/142	2 100/181	34/88	5/11	38/79	14/52	3/18	4/19	9/19	0.39	0.12	Yes
	2	66/135	59/126	6/12	33/55	33/54	23/32	24/39	22/32					0.59	0.09	Yes
	3	34/44	29/34	29/39	24/32	39/48								0.79	0.05	Yes
eri-9	0.1	7/90	5/6	9	2/56	0/20	0/20	0/20	0/20	0/2	20			0.02	0.03	
(gg106)	0.5	90/202	51/	154	32/143	49/130	57/124	32/80	42/10	5 11/	34 19	9/45 6	5/22	0.37	0.08	Yes
	1	17/29	33/	52	31/48	19/28	33/45							0.66	0.05	Yes
	2	65/128	103	/181	86/172	46/52	53/60	48/57	32/42	24/	39			0.70	0.17	Yes
	3	40/44	54/	58	7/8	6/7	23/29							0.87	0.05	Yes
eri-11	0.1	6/95	2/107	16/132	2 13/97	16/75	3/90	11/105	0/20	0/20	0/20	0/20	0/20	0.06	0.07	
(gg99)	0.5	68/170	72/188	52/152	3 25/91	37/96	37/118	3 19/112	5/20	7/20	3/22	0/20	13/50	0.27	0.12	Yes
100 /	1	74/189	68/139	25/38	16/27	12/24	15/31	21/36	0, 10	., 40	0, 11	0, 20	10,00	0.53	0.09	Yes
	2	3/5	6/8	26/39	15/19	39/38	10/01	21750						0.76	0.09	Yes
	4	17/99	7/0	20/ 32	12/94	39/42								0.73	0.05	Vac
	3	1// 22	119	207.24	13724	32743								0.75	0.11	168

J. J. Zhuang and C. P. Hunter

Single L3-stage larvae were placed on RNAi food targeting *bli-1*; 4 days later, the percent of progeny showing the expected large blisters on the animals at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.025, 0.25, and 4), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text

is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *dpy-11* feeding

Strain	OD_{600}	Penetrance	readings						Avg	SD	Eri?
Wildtype	0.05	0/20	0/20	0/40	1/70	0/20	0/20	0/20	0	0.01	
(N2)	0.1	0/20	0/60	0/20	0/20	0/20	0/20	1/45	0	0.01	
	0.5	4/78	16/78	8/49	6/38	3/20	11/27	4/30	0.18	0.11	
	1	27/43	13/20	18/28	13/27	13/25	29/59	14/29	0.56	0.08	
	3	41/42	36/38	14/19	20/20	20/20	18/20	29/31	0.93	0.09	
eri-1	0.05	9/38	14/32	11/47	9/30	4/31	7/47	12/37	0.26	0.11	Yes
(mg366)	0.1	6/62	15/75	19/29	20/44	22/49	5/16	9/29	0.35	0.18	Yes
Best	0.5**	39/49	51/54	49/50	20/20	63/75	20/20	20/20	0.94	0.08	Yes
	1**	20/20	20/20	20/20	20/20	40/40	20/20	20/20	1.00	0	Yes
	3	20/20	20/20	20/20	20/20	59/60	20/20	20/20	1.00	0.01	
rrf-3	0.05	2/30	2/41	4/57	4/47	3/53	5/52	7/46	0.08	0.03	Yes
(pk1426)	0.1	31/82	35/96	9/35	14/46	11/32	14/39	10/28	0.34	0.04	Yes
	0.5	38/53	26/27	20/20	20/20	20/20	20/20		0.95	0.11	Yes
	1	20/20	20/20	30/30	20/20	20/21	20/20		0.99	0.02	Yes
	3	20/20	20/20	20/20	20/20	20/20	20/20		1.00	0	
eri-3	0.05	3/29	2/32	9/52	6/41	3/30	5/52	9/66	0.12	0.04	Yes
(tm1361)	0.1	5/25	6/74	14/60	11/35	23/71	9/39	7/39	0.22	0.08	Yes
	0.5	36/52	32/43	15/22	27/34	15/24	18/23	24/29	0.74	0.07	Yes
	1	20/20	20/20	20/20	20/20	29/30	20/20	20/20	1.00	0.01	Yes
	3	20/20	20/20	20/20	20/20	59/60	20/20	20/20	1.00	0.01	
eri-5	0.05	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0	0	
(tm1705)	0.1	0/60	0/60	0/28	0/20	0/20	0/30	0/20	0	0	
	0.5	18/69	10/74	11/34	7/25	10/28	14/37	13/40	0.29	0.08	
	1	15/29	25/40	11/38	11/19	12/26	14/40	15/31	0.47	0.12	
	3	79/80	80/80	20/20	20/20	20/20	39/40	54/60	0.98	0.04	
eri-6/7	0.05	2/40	0/20	0/20	9/70	3/30	0/20	7/40	0.06	0.07	
(tm1917)	0.1	0/8	16/35	8/35	7/27	9/27	6/24	9/29	0.26	0.14	Yes
	0.5	27/43	27/35	20/20	20/20	30/35	20/20	40/45	0.88	0.14	Yes
	1	20/20	20/20	60/60	30/30	39/40	77/80	20/20	0.99	0.02	Yes
	3	42/42	18/19	20/20	20/20	20/20	20/20	20/20	0.99	0.02	
eri-8	0.05	3/21	3/17	10/39	8/27	3/19	6/28	7/34	0.21	0.05	Yes

(gg100)	0.1	4/79	29/107	3/14	15/18	8/18	13/31	6/24	0.35	0.25	Yes
	0.5	65/82	44/58	20/20	20/20	20/20	20/20	36/40	0.92	0.11	Yes
	1	20/20	20/20	20/20	39/40	20/20	20/20	69/70	0.99	0.01	Yes
	3	20/20	20/20	20/20	20/20	20/20	20/20	20/20	1.00	0	
eri-9	0.05	9/24	8/21	6/29	4/15	2/35	11/34	17/37	0.30	0.13	Yes
(gg106)	0.1	19/84	4/73	12/21	23/33	20/34	13/26	24/38	0.47	0.24	Yes
Best	0.5**	50/59	38/38	20/20	19/20	20/20	20/20	40/40	0.97	0.06	Yes
	1**	20/20	20/20	20/20	74/80	20/20	20/20	20/20	0.99	0.03	Yes
	3	20/20	20/20	20/20	20/20	20/20	20/20	20/20	1.00	0	
eri-11	0.05	5/19	5/25	4/25	3/20	2/18	3/25	7/34	0.17	0.05	Yes
(gg99)	0.1	14/98	4/22	4/21	6/18	8/19	5/18	3/21	0.24	0.11	Yes
	0.5	27/37	20/26	20/20	20/20	20/20	20/20	48/53	0.91	0.12	Yes
	1	16/20	20/20	20/20	20/20	20/20	20/20	20/20	0.97	0.08	Yes
	3	20/20	20/20	20/20	20/20	20/20	20/20	20/20	1.00	0	

Single L3-stage larvae were placed on RNAi food targeting dpp-11; 4 days later, the percent of progeny showing the expected severe dumpiness, in which an animal's length is at most three times its width, at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, one bacterial culture concentration (OD_{600nm} of 4), which produced similar Eri penetrances as adjacent concentrations, is not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *dpy-13* feeding

Strain	in OD ₆₀₀ Penetrance readings												
Wildtype	0.04	0/20	0/20	0/20	0/20	0/20	0/20	0/20			0	0	
(N2)	0.1	0/20	0/20	0/20	0/20	0/20	1/37	0/20			0	0.01	
	0.25	0/20	0/20	0/20	0/20	0/20	0/20	0/20			0	0	
	0.75	0/20	0/20	0/20	0/20	1/105	0/20	0/20			0	0.01	
	3	5/98	22/122	4/84	14/165	4/131	4/103	1/112	3/119	6/116	0.06	0.05	
eri-1	0.04	0/12	0/8	0/36	0/73	0/20	0/20	0/20			0	0	
(mg366)	0.1	4/46	12/30	8/68	36/68	35/60	13/82	22/54	31/50		0.36	0.22	Yes
Best	0.25	17/28	44/44	9/19	67/78	60/73	4/5	20/20	20/20	20/20	0.84	0.19	Yes
	0.75**	34/35	20/20	58/60	51/51	20/20	20/20	20/20			0.99	0.02	Yes
	3**	9/9	6/6	12/12	58/58	20/20	20/22	20/20			0.99	0.03	Yes
rrf-3	0.04	0/20	0/20	0/20	0/20	0/20	0/20				0	0	
(pk1426)	0.1	0/20	0/20	0/20	7/62	10/96	2/44	4/54	2/50	2/61	0.05	0.04	Yes
	0.25	3/58	6/57	80/115	71/78	37/48	25/56	38/65	23/61		0.49	0.31	Yes
	0.75	51/80	36/56	43/100	44/45	20/20	20/20	66/70	56/57	58/59	0.84	0.21	Yes
	3	67/67	20/20	42/44	20/20	20/20	20/20	20/20			0.99	0.02	Yes
eri-3	0.04	0/20	0/20	0/20	0/20	0/20	0/20				0	0	
(tm1361)	0.1	3/62	0/55	3/77	13/88	5/80	3/44	1/14	7/55		0.07	0.05	Yes
	0.25	6/52	3/54	6/52	22/54	38/51	32/87	41/74	17/64	24/58	0.34	0.23	Yes
	0.75	37/75	64/80	48/81	76/89	87/94	94/101	62/84	86/90	43/52	0.79	0.16	Yes
	3	62/67	80/85	48/49	20/20	20/20	20/20				0.97	0.03	Yes
eri-5	0.04	0/20	0/20	0/20	0/20	0/20	0/20	0,	/20		0	0	
(tm1705)	0.1	0/20	0/20	0/20	0/20	0/27	0/20				0	0	

	0.25	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0		0	0	
	0.75	0/52	0/67	0/42	0/20	0/20	0/20	2/50	0		0.01	0.02	
	3	3/80	2/67	8/90	17/95	11/80	6/61	24/8	88	10/103	0.12	0.08	
eri-6/7	0.04	0/25	0/22	0/20	0/20	0/20					0	0	
(tm1917)	0.1	2/63	1/60	1/84	3/74	0/58	1/82	0/20			0.02	0.02	
	0.25	1/60	4/56	2/51	23/101	29/129	33/144	22/111	8/81	17/95	0.14	0.09	Yes
	0.75	102/103	30/87	75/102	71/80	136/154	94/105	125/155	80/126	70/137	0.74	0.21	Yes
	3	94/96	88/91	61/70	20/20	96/100					0.96	0.05	Yes
eri-8	0.04	0/29	0/33	1/120	0/20	0/20	2/100				0	0.01	
(gg100)	0.1	2/68	1/86	0/70	8/101	20/113	16/82	9/99	1/85		0.07	0.08	
	0.25	6/106	4/83	11/72	82/100	49/94	52/94	110/131	91/128	36/37	0.52	0.35	Yes
	0.75	55/60	57/80	52/57	118/120	117/120	20/20	20/20	114/161	20/20	0.91	0.12	Yes
	3	102/105	77/81	99/106	20/20	99/100					0.97	0.03	Yes
eri-9	0.04	0/64	0/55	0/57	0/20	0/20					0	0	
(gg106)	0.1	0/67	0/58	0/49	5/76	8/86	3/109	8/103	2/63	5/74	0.04	0.04	
	0.25	7/79	10/106	4/79	24/126	39/109	35/108	22/131	14/98	68/122	0.22	0.16	Yes
	0.75	76/114	81/108	82/130	20/20	20/20	103/108	116/120	80/95	95/103	0.86	0.14	Yes
	3	95/100	74/78	89/94	20/20	99/100					0.97	0.03	Yes
eri-11	0.04	0/20	0/20	0/20	4/77	2/70	0/20	0/20			0.01	0.02	
(gg99)	0.1	4/85	9/77	6/65	55/64	53/83	39/75	3/80	1/80		0.29	0.33	
Best	0.25	53/72	40/60	37/58	67/97	77/95	45/67	57/91	54/73	35/60	0.68	0.07	Yes
	0.75**	20/20	20/20	125/130	20/20	20/20	99/100	56/60	73/76		0.98	0.03	Yes
	3**	20/20	94/100	20/20	20/20	20/20	20/20	20/20	98/100	20/20	0.99	0.02	Yes

Single L3-stage larvae were placed on RNAi food targeting *dpy-13*; 4 days later, the percent of progeny showing the expected severe dumpiness, in which an animal's length is at most three times its width, at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, four bacterial culture

J. J. Zhuang and C. P. Hunter

concentrations (OD_{600nm} of 0.01, 0.02, 1.5, and 4), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *fkh-6* feeding

Strain	OD_{600}		Br	ood Size		Avg	SD	N.Avg	SEM	En?		
Wildtype	0.002	207	230	208	233	220		220	12	0.03	0.10	
(N2)	0.01	200	184	232	184	248	240	215	29	0.05	0.15	
	0.02	120	224	160	232	272	176	197	55	0.13	0.26	
	0.04	167	128	103	55	106	80	107	39	0.53	0.18	
	0.1	2	4	7	4	59	0	13	23	0.94	0.10	
eri-1	0.002	46	67	25	42	56		47	16	0.70	0.10	Yes
(mg366)	0.01	57	37	43	31	24	22	36	13	0.77	0.08	Yes
	0.02	38	21	1	27	23	22	22	12	0.86	0.08	Yes
	0.04	0	38	55	35	6	33	28	21	0.82	0.13	Yes
	0.1	3	0	6	28	8	4	8	10	0.95	0.06	
rrf-3	0.002	36	33	21	19	41	23	29	9	0.78	0.07	Yes
(pk1426)	0.01**	14	18	29	16	10	43	22	12	0.84	0.09	Yes
Best	0.02**	27	13	0	28	30	17	19	12	0.86	0.09	Yes
	0.04**	20	16	5	22	18	0	14	9	0.90	0.07	Yes
	0.1**	0	0	13	0	0	0	2	5	0.98	0.04	
eri-3	0.002	112	171	140	128	108	148	135	24	0.14	0.17	
(tm1361)	0.01	120	125	88	104	42	68	91	32	0.41	0.21	Yes
	0.02	15	96	15	41	46	15	38	32	0.76	0.20	Yes
	0.04	68	43	45	37	31	1	38	22	0.76	0.14	Yes
	0.1	26	2	16	0	0	9	9	10	0.94	0.07	
eri-5	0.002	152	154	192	184	203		177	23	0	0.17	
(tm1705)	0.01	188	199	184	205	152	167	183	20	0	0.16	
	0.02	148	120	112	114	125	137	126	14	0.26	0.11	
	0.04	70	97	71	79	112	84	86	16	0.50	0.11	
	0.1	1	17	5	3	33	4	11	12	0.94	0.07	
eri-6/7	0.002	184	156	184	160	148		166	17	0	0.14	
(tm1917)	0.01	75	90	144	160	88	168	121	41	0.22	0.27	
	0.02	192	160	64	45	92		111	63	0.29	0.41	
	0.04	80	58	27	81	105	20	62	33	0.60	0.22	
	0.1	0	0	0	0	0	0	0	0	1.00	0	
eri-8	0.002	215	162	162	182	160	152	172	23	0.23	0.11	Yes

(gg100)	0.01	148	160	203	154	159	158	164	20	0.26	0.09	Yes
	0.02	162	92	112	152	192	136	141	36	0.37	0.16	
	0.04	136	128	144	120	120	125	129	10	0.42	0.05	
	0.1	1	7	20	1	0	0	5	8	0.98	0.04	
eri-9	0.002	208	217	188	272	211	216	219	28	0.09	0.13	
(gg106)	0.01	175	216	180	184	171	153	180	21	0.25	0.10	Yes
	0.02	184	248	224	205	153	168	197	36	0.18	0.16	
	0.04	32	136	200	168	154	198	148	62	0.38	0.26	
	0.1	0	39	0	7	46	3	16	21	0.93	0.09	
eri-11	0.002	216	994	270	233	312		251	40	0.08	0.16	
(aa99)	0.01	100	221	115	120	102	159	128	38	0.53	0 14	Ves
(8855)	0.01	109	02	115	120	192	152	120	50	0.55	0.11	105
	0.02	86	85	156	160	64	96	108	40	0.61	0.15	Yes
	0.04	140	76	108	9	35	30	66	51	0.76	0.19	
	0.1	1	0	0	1	39	4	8	16	0.97	0.06	Yes

Single L1-stage larvae were placed on RNAi food targeting *fkh-6*; 5 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.25 and 0.5), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *gon-1* feeding

Strain	<i>OD</i> ₆₀₀				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.25	238	259	208	160	216	240	168	213	37	0.06	0.19	
(N2)	0.5	208	192	162	120	246	208	171	187	40	0.18	0.19	
	1	66	59	101	166	160	150	152	122	46	0.46	0.21	
	2	35	75	120	132	138	118		103	40	0.55	0.18	
	3	4	19	28	21	39	60	0	24	21	0.89	0.09	
									. –				
eri-1	0.25	102	72	20	32	43	11		47	34	0.71	0.22	Yes
(mg366)	0.5	2	4	11	42	25	2		14	16	0.91	0.10	Yes
<u>*Best*</u>	1**	0	5	14	1	1	3	9	5	5	0.97	0.03	Yes
	2**	1	2	1	10	3	11	1	4	4	0.97	0.03	Yes
	3**	4	3	1	0	20	20	2	7	9	0.95	0.06	
rrf-3	0.25	54	40	43	0	11	13		27	22	0.80	0.16	Yes
(pk1426)	0.5	53	31	40	15	8	2	11	23	19	0.83	0.14	Yes
Best	1**	1	0	0	1	1	11	2	2	4	0.98	0.03	Yes
	2**	1	5	1	0	1	18	2	4	6	0.97	0.05	Yes
	3**	0	0	0	0	0	2	0	0	1	1.00	0.01	Yes
eri-3	0.25	44	61	4	72	40	64		48	25	0.70	0.16	Yes
(tm1361)	0.5	95	72	5	49	37	18		46	34	0.70	0.22	Yes
	1	74	42	8	39	80	30		46	27	0.71	0.18	Yes
	2	54	64	8	36	33	13		35	22	0.78	0.14	Yes
	3	5	4	2	1	1	0	0	2	2	0.99	0.01	Yes
	0.05	150		100	100	105	100		140	17	0.10	0.10	
en-5	0.25	152	144	166	168	125	136		149	17	0.13	0.13	
(tm1703)	0.5	144	126	137	90	128			125	21	0.27	0.14	
	1	11	78	1	78	87	- 0		51	41	0.70	0.24	
	2	100	10	2	28	82	76	66	52	38	0.69	0.23	
	3	I	I	I	40	0			9	18	0.95	0.10	
eri-6/7	0.25	97	139	188	70	104	99		116	42	0.25	0.27	
(tm1917)	0.5	141	190	86	92	88	80	99	111	40	0.29	0.27	
	1	1	26	30	40	64	98	64	46	32	0.70	0.21	
	2	1	0	0	0	9	1	1	2	3	0.99	0.02	Yes
	3	0	2	2	2	1	2	2	2	1	0.99	0.01	Yes
eri-8	0.25	192	162	184	96	144			156	38	0.30	0.17	Yes

(gg100)	0.5	64	108	30	81	54	47	97	69	28	0.69	0.13	Yes
	1	2	0	4	80	56	43	52	34	32	0.85	0.14	Yes
	2	1	0	2	1	1	49	12	9	18	0.96	0.08	Yes
	3	30	0	1	0	2	3	0	5	11	0.98	0.05	
eri-9	0.25	144	160	148	88	97			127	33	0.47	0.14	Yes
(gg106)	0.5	114	120	80	71	94			96	21	0.60	0.09	Yes
	1	4	0	1	63	104	42		36	42	0.85	0.18	Yes
	2	1	0	1	42	58	0		17	26	0.93	0.11	Yes
	3	0	1	0	8	23	2	57	13	21	0.95	0.09	
eri-11	0.25	102	112	112	57	120	144		108	29	0.61	0.11	Yes
(gg99)	0.5	94	128	3	47	0	2		46	55	0.83	0.20	Yes
	1	1	60	62	46	47	85	87	55	29	0.80	0.11	Yes
	2	0	1	0	1	58	34	34	18	24	0.93	0.09	Yes
	3	1	0	34	0	0	0	0	5	13	0.98	0.05	Yes

Single L1-stage larvae were placed on RNAi food targeting *gon-1*; 5 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, one bacterial culture concentration (OD_{600nm} of 0.1), which produced similar Eri penetrances as adjacent concentrations, is not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *gon-4* feeding

Strain	OD_{600}			P	enetrance real	dings			Avg	SD	Eri?
Wildtype	0.5	1/29	1/39	0/40	0/20	0/20	1/40		0.01	0.02	
(N2)	1	0/22	0/18	2/43	0/20	2/40	0/20	1/30	0.02	0.02	
	2	2/24	2/30	2/21	0/20	2/60			0.06	0.04	
	3	6/19	5/24	1/18	5/56	0/47	2/28	5/64	0.12	0.11	
	4	1/6	11/76	2/30	1/5	1/20			0.13	0.06	
eri-1	0.5	2/22	3/32	1/23	0/	20	0/20	1/30	0.04	0.04	
(mg366)	1	9/18	6/30	3/28	0/	20	0/20	2/12	0.16	0.19	
	2	22/26	24/24	15/18	4/	25	0/20	6/18	0.53	0.42	Yes
	3	34/47	17/17	28/32	5/	12	7/17	7/21	0.63	0.28	Yes
	4	19/20	10/21	20/22	7/	16	11/13		0.72	0.25	Yes
rrf-3	0.5	2/20	1/20	0/20	1/	30	1/13	0/20	0.04	0.04	
(pk1426)	1	0/20	0/20	0/20	1/	20	0/20	0/20	0.01	0.02	
Best	2	21/40	21/25	18/32	11	/19	0/20	17/40	0.49	0.28	Yes
	3	28/35	29/34	29/41	17	/20	15/21	22/23	0.81	0.09	Yes
	4**	20/20	20/20	19/23	7/	9	20/20	17/19	0.92	0.10	Yes
eri-3	0.5	0/20	1/20	1/16	0/20	1/24	0/20		0.03	0.03	
(tm1361)	1	4/30	3/20	1/30	1/20	0/20	1/30		0.07	0.06	
	2	9/20	17/31	19/31	10/20	18/55			0.49	0.11	Yes
	3	27/30	27/28	17/20	5/15	9/20	18/20		0.73	0.27	Yes
	4	33/35	21/25	32/35	26/30	12/14	39/50	26/35	0.85	0.07	Yes
eri-5	0.5	2/20	2/20	3/20	0/20	0/8	0/62	0/20	0.05	0.06	
(tm1705)	1	3/40	6/50	0/20	0/20	0/20	1/40		0.04	0.05	
	2	3/22	10/25	6/21	0/20	0/20	1/20	0/20	0.12	0.16	
	3	3/15	8/24	8/34	4/39	0/20	0/20	11/56	0.15	0.12	
	4	0/20	5/34	4/42	0/20	0/20	4/20	3/42	0.07	0.08	
eri-6/7	0.5	2/33	2/26	2/43	0/20	0/20	1/40	1/50	0.03	0.03	
(tm1917)	1	2/40	1/80	3/27	0/20	4/60	13/34	11/80	0.11	0.13	
	2	3/31	2/22	6/30	2/40	14/90	11/80		0.12	0.05	
	3	5/14	8/20	10/19	2/8	13/18	8/22		0.44	0.17	Yes
	4	11/20	7/9	16/19	21/29	3/8			0.65	0.19	Yes
eri-8	0.5	0/20	0/20	1/40	0/20	2/40	0/20	0/20	0.01	0.02	

(gg100)	1	3/40	0/20	0/20	0/20	1/60	0/20	0/20	0.01	0.03	
	2	15/45	24/46	13/33	0/20	1/11	0/20	0/20	0.19	0.22	
	3	7/20	10/23	28/35	4/10	14/64	9/39		0.41	0.21	Yes
	4	8/12	9/19	19/24	12/15	5/8			0.67	0.13	Yes
eri-9	0.5	1/60	1/20	0/20	0/20	1/20	0/20	0/20	0.02	0.02	
(gg106)	1	1/20	4/30	0/15	2/8	12/90	2/30		0.11	0.09	
	2	14/17	11/15	15/19	11/19	20/35	30/65		0.66	0.14	Yes
	3	10/13	10/14	20/27	11/16	20/38			0.69	0.10	Yes
	4	24/35	24/36	20/25	10/14	11/15			0.72	0.05	Yes
ari_11	0.5	0/20	1740	1740	0./20	0.720	1/30	0730	0.01	0 02	
<i>en-11</i>	0.5	0720	1740	1740	0720	0720	1730	0720	0.01	0.02	
(gg99)	1	0/20	1/40	0/20	0/20	1/10	0/20		0.02	0.04	
	2	7/55	14/56	6/32	11/30	8/28			0.24	0.09	Yes
	3	6/29	7/27	12/36	6/12	15/40			0.33	0.11	Yes
	4	7/14	19/20	20/22	6/20	7/31			0.58	0.34	Yes

Single L3-stage larvae were placed on RNAi food targeting *gon-4*; 5 days later, the percent of progeny showing the expected severely protruding or absent gonads at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *act-5* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	En?
Wildtype	0.001	288	264	248	216	224	198		240	32	0	0.18	
(N2)	0.002	175	160	157	166	94	134	172	151	29	0.33	0.14	
	0.005	112	118	71	61	69	118	66	88	27	0.61	0.12	
	0.01	79	97	76	82	118			90	17	0.60	0.09	
	0.02	76	80	0	0	3	41		33	38	0.85	0.17	
eri-1	0.001	99	108	81	85	107	102		97	11	0.39	0.08	Yes
(mg366)	0.002	57	91	97	50	44	65	59	66	20	0.58	0.13	Yes
	0.005	65	77	23	41	24	86	65	54	25	0.66	0.16	
	0.01	18	29	26	23	25			24	4	0.85	0.03	Yes
	0.02	1	0	4	21	0	8		6	8	0.96	0.05	
rrf-3	0.001	66	85	89	76	115	88		87	16	0.35	0.13	Yes
(pk1426)	0.002	1	8	39	0	15	12	18	13	13	0.90	0.10	Yes
Best	0.005**	0	0	1	26	0	1	5	5	10	0.96	0.07	Yes
	0.01**	30	5	0	0	1	1	6	6	11	0.95	0.08	Yes
	0.02**	0	1	0	2	0	1	0	1	1	1.00	0.01	Yes
eri-3	0.001	47	84	51	80	69			66	17	0.57	0.11	Yes
(tm1361)	0.002	52	74	30	42	31	41	62	47	16	0.70	0.11	Yes
	0.005	40	18	26	6	40	54	27	30	16	0.81	0.10	Yes
	0.01	12	8	25	22	18	25		18	7	0.88	0.05	Yes
	0.02	0	2	1	1	22	14	15	8	9	0.95	0.06	
eri-5	0.001	192	168	180	164	204			182	17	0	0.15	
(tm1705)	0.002	168	87	142	164	134	144		140	29	0.18	0.19	
	0.005	73	92	108	93	78			89	14	0.48	0.10	
	0.01	114	17	17	69	92	89		66	41	0.61	0.24	
	0.02	55	39	0	0	0	18	3	16	22	0.90	0.13	
eri-6/7	0.001	158	151	189	157	144			160	17	0	0.14	
(tm1917)	0.002	85	90	61	109	119			93	23	0.40	0.15	
	0.005	40	99	111	55	46			70	32	0.55	0.21	
	0.01	17	3	20	11	26			15	9	0.90	0.06	Yes
	0.02	1	7	8	32	0	42	5	14	17	0.91	0.11	
eri-8	0.001	144	120	104	148	168	256	153	156	49	0.30	0.22	Yes

0.002	57	78	154	97	97	125		101	34	0.54	0.15	Yes
0.005	34	82	103	38	95	29	74	65	31	0.71	0.14	
0.01	28	1	38	16	17			20	14	0.91	0.06	Yes
0.02	1	67	37	0	9	27	0	20	25	0.91	0.11	
0.001								10.1	10			
0.001	128	128	138	103	125			124	13	0.48	0.06	Yes
0.002	125	118	99	69	109	110	95	104	18	0.57	0.08	Yes
0.005	42	140	84	97	47	100		85	37	0.65	0.15	
0.01	18	0	0	1	1	1		4	7	0.99	0.03	Yes
0.02	81	0	1	1	0	25	21	18	30	0.92	0.12	
0 001	198	216	159	020	140	168	919	178	41	0 35	0 16	Ves
0.001	120	210	152	232	140	100	212	170		0.55	0.10	105
0.002	75	111	99	88	98	176		108	36	0.61	0.13	Yes
0.005	68	62	71	18	52	122	97	70	33	0.74	0.12	
0.01	11	0	88	85	55	22		44	38	0.84	0.14	Yes
0.02	0	16	1	4	1	31	29	12	14	0.96	0.05	
	0.002 0.005 0.01 0.02 0.001 0.002 0.005 0.01 0.002 0.005 0.01 0.02	0.002 57 0.005 34 0.01 28 0.02 1 0.001 128 0.002 125 0.005 42 0.01 18 0.02 81 0.001 128 0.002 75 0.005 68 0.01 11 0.02 0	0.002 57 78 0.005 34 82 0.01 28 1 0.02 1 67 0.001 128 128 0.002 125 118 0.005 42 140 0.01 18 0 0.02 81 0 0.001 128 216 0.002 75 111 0.005 68 62 0.01 11 0	0.002 57 78 154 0.005 34 82 103 0.01 28 1 38 0.02 1 67 37 0.001 128 128 138 0.002 125 118 99 0.005 42 140 84 0.01 18 0 1 0.02 81 0 1 0.001 128 216 152 0.002 75 111 99 0.005 68 62 71 0.01 11 0 88 0.02 0 16 1	0.002 57 78 154 97 0.005 34 82 103 38 0.01 28 1 38 16 0.02 1 67 37 0 0.001 128 128 138 103 0.02 1 67 37 0 0.001 128 128 138 103 0.002 125 118 99 69 0.005 42 140 84 97 0.01 18 0 1 1 0.02 81 0 1 1 0.001 128 216 152 232 0.002 75 111 99 88 0.005 68 62 71 18 0.01 11 0 88 85 0.02 0 16 1 4	0.002 57 78 154 97 97 0.005 34 82 103 38 95 0.01 28 1 38 16 17 0.02 1 67 37 0 9 0.02 1 67 37 0 9 0.001 128 128 138 103 125 0.002 125 118 99 69 109 0.005 42 140 84 97 47 0.01 18 0 1 1 0 0.02 81 0 140 140 9 9 0.001 128 216 152 232 140 0.002 75 111 99 88 98 0.005 68 62 71 18 52 0.01 11 0 88 85 55 0.02 0 16 1 4 1	0.002 57 78 154 97 97 125 0.005 34 82 103 38 95 29 0.01 28 1 38 16 17 1 0.02 1 67 37 0 9 27 0.01 128 128 138 103 125 27 0.02 1 67 37 0 9 27 0.001 128 128 138 103 125 100 0.002 125 118 99 69 109 110 0.005 42 140 84 97 47 100 0.01 18 0 1 1 1 25 0.02 81 0 14 1 168 164 168 0.001 128 216 152 232 140 168 0.005 68 62 71 18 52 122 0.01 11 0 88	0.002 57 78 154 97 97 125 0.005 34 82 103 38 95 29 74 0.01 28 1 38 16 17 78 0 0.02 1 67 37 0 9 27 0 0.02 1 67 37 0 9 27 0 0.01 128 128 138 103 125 10 0 0.02 125 118 99 69 109 110 95 0.002 125 118 99 69 109 100 95 0.005 42 140 84 97 47 100 1 0.01 18 0 1 1 1 1 1 1 0.02 81 0 152 232 140 168 212 0.001 128 216 152 232 140 168 212 0.005 <td< th=""><th>0.002 57 78 154 97 97 125 101 0.005 34 82 103 38 95 29 74 65 0.01 28 1 38 16 17 20 0.02 1 67 37 0 9 27 0 20 0.02 1 67 37 0 9 27 0 20 0.01 128 128 138 103 125 124 104 105 124 0.002 125 118 99 69 109 110 95 104 0.005 42 140 84 97 47 100 85 0.01 18 0 1 1 1 4 0.02 81 0 152 232 140 168 212 178 0.002 75 111 99 88 98 176 108 0.005 68 62 71 18 <t< th=""><th>0.00257781549797125101340.00534821033895297465310.0128138161720140.0216737092702025012812813810312578104130.00112812813810312578104180.002125118996910911095104180.0054214084974710085370.011800111470.0281012140252118300.0275111998898176108360.00568627118521229770330.011108885552244380.0201614131291214</th><th>0.002 57 78 154 97 97 125 101 34 0.54 0.005 34 82 103 38 95 29 74 65 31 0.71 0.01 28 1 38 16 17 20 14 0.91 0.02 1 67 37 0 9 27 0 20 25 0.91 0.02 1 67 37 0 9 27 0 20 25 0.91 0.02 125 18 99 69 109 110 95 104 18 0.57 0.002 125 118 99 69 109 110 95 104 18 0.57 0.005 42 140 84 97 47 100 85 37 0.65 0.01 18 0 1 1 1 4 7 0.99 0.02 81 0 1 1 1 168 212<!--</th--><th>0.002 57 78 154 97 97 125 101 34 0.54 0.15 0.005 34 82 103 38 95 29 74 65 31 0.71 0.14 0.01 28 1 38 16 17 20 14 0.91 0.06 0.02 1 67 37 0 9 27 0 20 25 0.91 0.11 0.01 128 128 138 103 125 7 0 20 25 0.91 0.11 0.02 125 118 99 69 109 110 95 104 18 0.57 0.08 0.005 42 140 84 97 47 100 85 37 0.65 0.15 0.01 18 0 1 1 1 1 4 7 0.99 0.33 0.02 81 0 1 1 0 25 21 18 36</th></th></t<></th></td<>	0.002 57 78 154 97 97 125 101 0.005 34 82 103 38 95 29 74 65 0.01 28 1 38 16 17 20 0.02 1 67 37 0 9 27 0 20 0.02 1 67 37 0 9 27 0 20 0.01 128 128 138 103 125 124 104 105 124 0.002 125 118 99 69 109 110 95 104 0.005 42 140 84 97 47 100 85 0.01 18 0 1 1 1 4 0.02 81 0 152 232 140 168 212 178 0.002 75 111 99 88 98 176 108 0.005 68 62 71 18 <t< th=""><th>0.00257781549797125101340.00534821033895297465310.0128138161720140.0216737092702025012812813810312578104130.00112812813810312578104180.002125118996910911095104180.0054214084974710085370.011800111470.0281012140252118300.0275111998898176108360.00568627118521229770330.011108885552244380.0201614131291214</th><th>0.002 57 78 154 97 97 125 101 34 0.54 0.005 34 82 103 38 95 29 74 65 31 0.71 0.01 28 1 38 16 17 20 14 0.91 0.02 1 67 37 0 9 27 0 20 25 0.91 0.02 1 67 37 0 9 27 0 20 25 0.91 0.02 125 18 99 69 109 110 95 104 18 0.57 0.002 125 118 99 69 109 110 95 104 18 0.57 0.005 42 140 84 97 47 100 85 37 0.65 0.01 18 0 1 1 1 4 7 0.99 0.02 81 0 1 1 1 168 212<!--</th--><th>0.002 57 78 154 97 97 125 101 34 0.54 0.15 0.005 34 82 103 38 95 29 74 65 31 0.71 0.14 0.01 28 1 38 16 17 20 14 0.91 0.06 0.02 1 67 37 0 9 27 0 20 25 0.91 0.11 0.01 128 128 138 103 125 7 0 20 25 0.91 0.11 0.02 125 118 99 69 109 110 95 104 18 0.57 0.08 0.005 42 140 84 97 47 100 85 37 0.65 0.15 0.01 18 0 1 1 1 1 4 7 0.99 0.33 0.02 81 0 1 1 0 25 21 18 36</th></th></t<>	0.00257781549797125101340.00534821033895297465310.0128138161720140.0216737092702025012812813810312578104130.00112812813810312578104180.002125118996910911095104180.0054214084974710085370.011800111470.0281012140252118300.0275111998898176108360.00568627118521229770330.011108885552244380.0201614131291214	0.002 57 78 154 97 97 125 101 34 0.54 0.005 34 82 103 38 95 29 74 65 31 0.71 0.01 28 1 38 16 17 20 14 0.91 0.02 1 67 37 0 9 27 0 20 25 0.91 0.02 1 67 37 0 9 27 0 20 25 0.91 0.02 125 18 99 69 109 110 95 104 18 0.57 0.002 125 118 99 69 109 110 95 104 18 0.57 0.005 42 140 84 97 47 100 85 37 0.65 0.01 18 0 1 1 1 4 7 0.99 0.02 81 0 1 1 1 168 212 </th <th>0.002 57 78 154 97 97 125 101 34 0.54 0.15 0.005 34 82 103 38 95 29 74 65 31 0.71 0.14 0.01 28 1 38 16 17 20 14 0.91 0.06 0.02 1 67 37 0 9 27 0 20 25 0.91 0.11 0.01 128 128 138 103 125 7 0 20 25 0.91 0.11 0.02 125 118 99 69 109 110 95 104 18 0.57 0.08 0.005 42 140 84 97 47 100 85 37 0.65 0.15 0.01 18 0 1 1 1 1 4 7 0.99 0.33 0.02 81 0 1 1 0 25 21 18 36</th>	0.002 57 78 154 97 97 125 101 34 0.54 0.15 0.005 34 82 103 38 95 29 74 65 31 0.71 0.14 0.01 28 1 38 16 17 20 14 0.91 0.06 0.02 1 67 37 0 9 27 0 20 25 0.91 0.11 0.01 128 128 138 103 125 7 0 20 25 0.91 0.11 0.02 125 118 99 69 109 110 95 104 18 0.57 0.08 0.005 42 140 84 97 47 100 85 37 0.65 0.15 0.01 18 0 1 1 1 1 4 7 0.99 0.33 0.02 81 0 1 1 0 25 21 18 36

Single L3-stage larvae were placed on RNAi food targeting *act-5*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.
Dilution series results for *gtl-1* feeding

Strain	<i>OD</i> ₆₀₀				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.04	216	216	207	162	189	200	192	197	19	0.13	0.12	
(N2)	0.1	190	220	240	224	64	112	128	168	67	0.26	0.30	
	0.5	224	210	232	207	189	180	187	204	20	0.10	0.12	
	1	204	168	160	128	144	84	88	139	43	0.38	0.20	
	2	189	168	160	22	28	40	52	94	74	0.58	0.33	
eri-1	0.04	192	144	76	80	136	112	176	131	45	0.17	0.29	
(mg366)	0.1	144	96	104	81	88	80	72	95	24	0.40	0.16	
	0.5	128	104	128	56	72	64	79	90	30	0.43	0.19	Yes
	1	36	7	60	37	13	35	35	32	17	0.80	0.11	Yes
	2	40	48	45	48	54	39	40	45	6	0.72	0.04	
rrf-3	0.04	36	77	62	65	108	65	71	69	21	0.48	0.16	Yes
(pk1426)	0.1	49	42	63	38	63	73	62	56	13	0.58	0.10	Yes
Best	0.5	39	45	54	40	24	34	45	40	9	0.70	0.07	Yes
	1**	19	8	16	30	30	0	28	19	12	0.86	0.09	Yes
	2**	7	16	8	22	15	18	38	18	10	0.87	0.08	Yes
eri-3	0.04	152	128	135	88	112	102	68	112	29	0.28	0.20	
(tm1361)	0.1	21	136	96	76	44	72	72	74	37	0.53	0.24	
	0.5	25	95	15	68	6	72	40	46	33	0.71	0.21	Yes
	1	80	27	56	20	15	35	20	36	24	0.77	0.15	Yes
	2	20	45	17	40	32	40	10	29	13	0.81	0.09	
eri-5	0.04	184	240	231	168	216	153	160	193	36	0	0.24	
(tm1705)	0.1	174	176	200	128	112	128	144	152	32	0.11	0.21	
	0.5	204	210	176	88	184	160	125	164	44	0.04	0.28	
	1	148	94	141	84	81	72	96	102	30	0.40	0.19	
	2	152	144	182	52	48	44	42	95	61	0.44	0.37	
eri-6/7	0.04	60	76	75	176	136	184	202	130	59	0.16	0.39	
(tm1917)	0.1	47	43	74	61	62	104	90	69	22	0.56	0.15	Yes
	0.5	44	36	84	82	79	100	67	70	23	0.55	0.15	Yes
	1	16	20	22	65	34	42	17	31	18	0.80	0.12	Yes
	2	4	9	22	29	21	9	15	16	9	0.90	0.06	Yes
eri-8	0.04	120	136	85	137	88	104	120	113	21	0.49	0.10	Yes

(gg100)	0.1	104	112	114	52	51	82		86	29	0.61	0.13	Yes
	0.5	44	44	68	68	79	72	80	65	15	0.71	0.07	Yes
	1	39	28	23	42	43	64	27	38	14	0.83	0.06	Yes
	2	12	20	20	12	17	14	24	17	5	0.92	0.02	Yes
eri-9	0.04	232	296	248	128	160	120	152	191	68	0.20	0.29	
(gg106)	0.1	48	246	120	50	64	100	81	101	69	0.58	0.29	
	0.5	144	175	128	64	80	104		116	41	0.52	0.17	Yes
	1	32	39	49	84	72	68	98	63	24	0.74	0.10	Yes
	2	16	19	32	14	20	25	14	20	7	0.92	0.03	Yes
eri-11	0.04	192	160	196	120	104	104	192	153	42	0.44	0.16	Yes
(gg99)	0.1	98	168	128	96	72	90	88	106	32	0.61	0.12	Yes
Best	0.5	80	96	104	48	56	104	60	78	24	0.71	0.09	Yes
	1**	70	72	68	20	45	9	41	46	25	0.83	0.09	Yes
	2**	35	43	85	21	28	14	16	35	25	0.87	0.09	Yes

Single L3-stage larvae were placed on RNAi food targeting *gtl-1*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.01 and 0.02), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *act-3* feeding

Strain	OD_{600}				Brood Si.	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.002	200	208	232	200	192	216		208	14	0.08	0.10	
(N2)	0.005	206	234	198	184	210	208		207	16	0.09	0.11	
	0.01	176	216	207	203	180	210	216	201	17	0.11	0.11	
	0.02	230	234	54	165	80	204	154	160	71	0.29	0.32	
	0.05	9	19	28	6	9	58	18	21	18	0.91	0.08	
eri-1	0.002	132	144	148	120	136	104	136	131	15	0.17	0.11	
(mg366)	0.005	24	53	132	102	84	90	82	81	35	0.49	0.22	Yes
	0.01	36	63	57	34	69	37	88	55	20	0.65	0.13	Yes
	0.02	2	5	32	5	37	77	0	23	28	0.86	0.18	Yes
	0.05	0	4	0	1	0	12	0	2	4	0.98	0.03	
rrf-3	0.002	200	56	116	78	117	129	112	115	45	0.13	0.34	
(pk1426)	0.005	65	28	49	93	67	104	88	71	27	0.47	0.20	Yes
Best	0.01	17	31	39	66	21	18	23	31	17	0.77	0.13	Yes
	0.02*								2	7	0.09	0.05	Var
	*	2	19	2	0	0	0	0	3	,	0.90	0.05	ies
	0.05*								0	0	1.00	0	Vac
	*	0	0	0	0	1	0	0	U	U	1.00	0	165
eri-3	0.002	73	32	128	133	104	94	89	93	34	0.40	0.23	Yes
(tm1361)	0.005	40	31	33	101	58	66	100	61	30	0.61	0.19	Yes
	0.01	59	43	37	89	83	39	66	59	21	0.62	0.14	Yes
	0.02	46	9	8	0	59	16	1	20	23	0.87	0.15	Yes
	0.05	0	0	0	0	62	39	0	14	26	0.91	0.16	
eri-5	0.002	222	203	116	176	144	150	168	168	36	0.01	0.23	
(tm1705)	0.005	180	188	210	200	126	140	130	168	35	0.02	0.23	
	0.01	123	116	136	144	152	112		131	16	0.23	0.12	
	0.02	148	72	36	41	133	28		76	52	0.55	0.31	
	0.05	0	3	21	26	12	4		11	11	0.94	0.06	
eri-6/7	0.002	184	168	31	115	128	62	71	108	57	0.30	0.37	
(tm1917)	0.005	189	147	55	114	61	115	114	114	47	0.27	0.31	
	0.01	135	34	64	88	16	27	104	67	44	0.57	0.29	Yes
	0.02	81	3	4	2	3	1	2	14	30	0.91	0.19	Yes
	0.05	1	0	0	1	0	0	0	0	0	1.00	0	Yes

eri-8	0.002	272	264	112	160	128	96	136	167	72	0.25	0.32	
(gg100)	0.005	63	42	112	160	160	162	174	125	53	0.44	0.24	Yes
Best	0.01	121	69	144	56	72	51	128	92	38	0.59	0.17	Yes
	0.02*								14	15	0.04	0.07	Var
	*	34	2	1	1	11	15	35	14	15	0.94	0.07	res
	0.05*								1	1	1 00	0	Var
	*	0	1	1	0	1	1	3	1	1	1.00	U	ies
eri-9	0.002	205	192	180	170	190	192	66	171	47	0.29	0.20	Yes
(gg106)	0.005	176	186	176	174	161	152	168	170	11	0.29	0.06	Yes
	0.01	164	56	141	156	174	210	155	151	47	0.37	0.20	Yes
	0.02	88	60	152	0	70	23	95	70	50	0.71	0.21	Yes
	0.05	1	28	1	12	4	5	0	7	10	0.97	0.04	
eri-11	0.002	195	224	188	232	276	152	216	212	39	0.23	0.15	
(gg99)	0.005	155	160	288	176	248	203	176	201	50	0.27	0.19	
	0.01	138	152	152	160	208	162	41	145	51	0.47	0.19	Yes
	0.02	172	23	72	6	59	100	76	73	54	0.73	0.20	Yes
	0.05	5	0	8	17	16	12	46	15	15	0.95	0.05	

Single L3-stage larvae were placed on RNAi food targeting *act-3*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.1, 0.25, and 0.5), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *myo-3* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.5	241	205	164	170	228	181	226	202	31	0.11	0.16	
(N2)	0.75	248	256	196	193	259	168	202	217	36	0.04	0.18	
	1	220	230	201	183	147	129	127	177	43	0.22	0.20	
	2	176	165	146	139	196	128	90	149	35	0.34	0.16	
	3	102	91	69	94	65	78	106	86	16	0.62	0.08	
eri-1	0.5	92	98	68	74	85	55	58	76	17	0.52	0.11	Yes
(mg366)	0.75	82	54	49	55	42	42	78	57	16	0.64	0.10	Yes
	1	13	58	9	25	18	19	40	26	17	0.84	0.11	Yes
	2	0	2	2	5	12	0		4	5	0.98	0.03	Yes
	3	0	0	0	1	0	0	0	0	0	1.00	0	Yes
rrf-3	0.5	74	58	68	18	42	55	19	48	22	0.64	0.17	Yes
(pk1426)	0.75	31	0	0	2	45	0	5	12	18	0.91	0.14	Yes
Best	1**	0	0	2	3	0	0	1	1	1	0.99	0.01	Yes
	2**	0	0	0	0	2	0	9	2	3	0.99	0.03	Yes
	3**	1	2	0	0	0	4	0	1	2	0.99	0.01	Yes
eri-3	0.5	105	122	78	105	84	100	99	99	15	0.36	0.11	Yes
(tm1361)	0.75	76	122	66	75	74	64	47	75	23	0.52	0.15	Yes
	1	12	95	94	69	29	24	90	59	36	0.62	0.24	Yes
	2	3	25	0	2	0	5	0	5	9	0.97	0.06	Yes
	3	0	0	0	0	0	1	0	0	0	1.00	0	Yes
eri-5	0.5	176	192	196	180	188	204		189	10	0	0.10	
(tm1705)	0.75	174	118	176	180	130	120	112	144	31	0.15	0.31	
	1	168	176	84	146	192	188		159	40	0.07	0.40	
	2	166	167	168	76	144	132	132	141	33	0.17	0.33	
	3	96	45	40	32	30	48	58	50	22	0.71	0.22	
eri-6/7	0.5	196	186	206	218	180	206	196	198	13	0	0.13	
(tm1917)	0.75	82	111	96	94	114	110	120	104	13	0.33	0.10	Yes
	1	104	49	106	46	106	80	101	85	27	0.46	0.18	Yes
	2	0	0	2	0	10	0	0	2	4	0.99	0.02	Yes
	3	0	0	0	2	0	0	1	0	1	1.00	0.01	Yes
eri-8	0.5	238	216	222	216	196	184	206	211	18	0.05	0.09	

(gg100)	0.75	224	240	206	196	180	206		209	21	0.06	0.10	
	1	112	120	96	80	76	86	90	94	16	0.58	0.07	Yes
	2	0	0	0	1	0	2	11	2	4	0.99	0.02	Yes
	3	0	0	1	2	0	0		1	1	1.00	0	Yes
eri-9	0.5	264	272	240	232	232	222		244	20	0	0.10	
(gg106)	0.75	224	264	260	196	208	220	201	225	27	0.06	0.13	
	1	11	160	90	5	60	40	55	60	53	0.75	0.22	Yes
	2	0	12	2	11	7	0	5	5	5	0.98	0.02	Yes
	3	1	3	0	0	0	0	1	1	1	1.00	0	Yes
eri-11	0.5	272	230	216	224	230	270		240	24	0	0.11	
(gg99)	0.75	232	208	196	238	240	216	208	220	17	0	0.08	
	1	156	181	144	144	106	134	98	138	29	0.50	0.11	Yes
	2	0	2	18	35	30	0	14	14	14	0.95	0.05	Yes
	3	0	0	0	5	0	5	6	2	3	0.99	0.01	Yes

Single L3-stage larvae were placed on RNAi food targeting *myo-3*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.05, 0.1, and 0.25), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *unc-22* feeding

Strain	OD_{600}				Penetrance read	lings			Avg	SD	Eri?
Wildtype	0.1	3/28	3/18	1/16	5/31	0/13	3/25	1/17	0.10	0.06	
(N2)	0.25	8/30	9/35	8/29	5/30	5/22	5/20		0.24	0.04	
	0.5	8/31	8/36	10/28	8/27	8/27	8/30	11/26	0.30	0.07	
	1	7/24	7/25	12/21	11/22	6/16	10/19	11/27	0.42	0.11	
	2	26/31	27/36	22/26	25/27	29/36	26/29	28/33	0.84	0.06	
eri-1	0.1	3/26	3/35	1/22	4/32	2/27	0/30	2/19	0.08	0.04	
(mg366)	0.25	8/42	5/23	9/21	8/19	6/25	6/21	10/23	0.32	0.11	
	0.5	18/33	27/33	8/17	19/41	26/37	19/34	19/22	0.63	0.16	Yes
	1	46/55	6/7	20/22	31/32	45/50	19/21	24/30	0.88	0.06	Yes
	2	47/50	37/39	20/20	20/20	19/20	48/50	18/20	0.96	0.04	Yes
rrf-3	0.1	15/37	18/27	12/41	2/41	7/33	2/36	6/36	0.26	0.22	
(pk1426)	0.25	20/32	27/37	36/48	24/31	18/24	30/35	34/36	0.78	0.10	Yes
Best	0.5**	36/41	51/58	37/41	46/51	32/34	39/46	44/44	0.91	0.05	Yes
	1**	31/33	45/49	20/20	46/50	20/20	20/20	19/21	0.95	0.04	Yes
	2**	54/56	20/20	20/20	40/40	20/20	46/47	20/20	0.99	0.01	Yes
eri-3	0.1	4/15	9/19	2/30	3/54	6/36	2/31	2/37	0.16	0.16	
(tm1361)	0.25	3/30	5/24	5/24	5/31	9/40	10/35	6/31	0.20	0.06	
	0.5	28/31	20/31	29/46	30/40	14/18	24/34	17/22	0.74	0.09	Yes
	1	42/46	48/52	40/42	20/20	19/20	20/20	31/33	0.95	0.03	Yes
	2	24/26	46/52	20/20	20/20	19/20	20/20	21/23	0.95	0.05	Yes
eri-5	0.1	3/28	3/37	2/28	4/30	5/47	4/35	3/26	0.10	0.02	
(tm1705)	0.25	5/49	3/21	1/25	6/25	7/36	7/27	6/34	0.17	0.08	
	0.5	4/33	11/48	19/39	8/29	10/19	4/37		0.29	0.18	
	1	22/47	9/29	19/34	14/28	24/44	19/40	13/30	0.47	0.08	
	2	37/47	26/38	27/30	19/23	20/22	24/27	46/49	0.85	0.09	
eri-6/7	0.1	2/21	13/34	4/39	6/33	13/39	14/30	5/24	0.25	0.14	Yes
(tm1917)	0.25	14/42	15/37	17/36	10/19	6/20	14/29	11/24	0.43	0.08	Yes
	0.5	29/40	22/29	28/32	25/28	30/33	32/37		0.84	0.08	Yes
	1	51/55	20/20	39/40	78/80	30/30	20/20		0.98	0.03	Yes
	2	20/20	29/30	20/20	20/20	20/20	20/20	38/41	0.98	0.03	Yes
eri-8	0.1	4/30	4/25	5/27	1/27	1/35	3/25		0.11	0.06	

(gg100) 0.2	9/22	11/31	6/23	14/34	8/18	5/16	10/27	0.37	0.06	Yes
0.5	22/30	30/38	26/32	22/30	28/36	12/16	14/17	0.77	0.04	Yes
1	46/49	44/47	20/20	20/20	37/40	63/69	19/20	0.95	0.03	Yes
2	17/18	23/25	58/60	20/20	68/70	28/29	20/20	0.97	0.03	Yes
eri-9 0.1	5/38	3/34	1/22	0/22	1/14	1/19	1/17	0.06	0.04	
(gg106) 0.2	3/14	3/20	4/21	3/16	14/28	12/30	8/29	0.27	0.13	
0.5	12/22	18/27	20/26	20/27	14/19	29/37	14/19	0.71	0.08	Yes
1	10/11	37/41	37/41	20/20	20/20	70/72	31/32	0.95	0.04	Yes
2	51/56	44/46	20/20	20/20	44/47	40/40	20/20	0.97	0.04	Yes
eri-11 0.1	6/37	12/26	2/31	8/33	6/26	6/21	6/31	0.23	0.12	Yes
(gg99) 0.2 5	13/37	9/29	6/18	11/21	11/30	12/19	10/30	0.41	0.12	Yes
0.5	13/18	10/19	22/30	18/29	31/33	17/22	20/26	0.73	0.13	Yes
1	10/24	18/23	22/23	41/42	20/20	17/20		0.83	0.22	Yes
2	29/33	37/41	38/40	37/42	20/20	20/20	69/72	0.94	0.05	Yes

Single L3-stage larvae were placed on RNAi food targeting *unc-22*; 4 days later, the percent of progeny showing the expected paralysis due to severe twitching at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 3 and 4), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *hbl-1* feeding

Strain	OD_{600}				Penetr	ance readings				Avg	SD	Eri?
Wildtype	0.1	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0	0	
(N2)	0.25	0/20	0/20	2/78	1/98	0/62	0/20			0.01	0.01	
	0.75	0/20	2/100	1/100	12/89	16/104	16/83	1/80	4/90	0.07	0.08	
	1.5	5/95	6/80	4/83	43/110	14/93	17/81	12/124	16/135	0.14	0.11	
	3	16/59	15/76	22/91	24/105	23/109	34/108	46/143	21/140	0.24	0.06	
eri-1	0.1	3/50	2/50	0/50	0/20	0/20	0/20	3/74	1/56	0.02	0.02	
(mg366)	0.25	7/62	10/44	0/20	6/90	2/50	68/71	20/60		0.25	0.33	
	0.75	8/13	13/33	34/53	24/67	20/20	17/21	16/29	17/33	0.61	0.21	Yes
	1.5	11/14	37/45	25/27	74/78	84/88	65/100	37/41	21/32	0.83	0.12	Yes
	3	17/22	8/10	6/8	51/56	69/75	46/50	48/70	14/16	0.83	0.09	Yes
rrf-3	0.1	4/50	6/60	6/60	1/50	0/20	0/20	7/79		0.06	0.05	
(pk1426)	0.25	15/38	16/52	16/75	13/82	10/72	26/64	12/54		0.26	0.11	Yes
Best	0.75	37/57	31/72	51/99	20/20	27/30	26/30	34/43	34/55	0.72	0.20	Yes
	1.5**	20/20	20/20	20/20	20/20	28/30	20/20	33/35	27/29	0.98	0.03	Yes
	3**	20/20	20/20	20/20	20/20	20/20	20/20	20/20		1.00	0	Yes
eri-3	0.1	9/81	1/15	5/78	0/20	5/80	0/20	3/68	4/60	0.05	0.04	
(tm1361)	0.25	12/56	13/38	11/58	0/53	9/77	14/79	20/73	19/80	0.19	0.10	Yes
	0.75	15/27	13/18	28/54	19/20	29/30	159/174	34/40	24/36	0.77	0.18	Yes
	1.5	20/20	20/20	20/20	20/20	20/20	145/155	20/20	20/20	0.99	0.02	Yes
	3	20/20	20/20	20/20	18/19	20/20	90/127	20/20	20/20	0.96	0.10	Yes
eri-5	0.1	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0	0	
(tm1705)	0.25	0/20	0/20	0/20	0/20	0/20	0/20	2/50	1/50	0.01	0.01	
	0.75	3/100	3/100	5/100	5/93	17/107	28/149	2/31	10/68	0.09	0.06	
	1.5	19/107	20/100	23/81	9/111	1/12	8/79	16/50	15/46	0.20	0.10	
	3	27/87	31/109	25/71	14/111	13/80	24/132	10/57	24/56	0.25	0.11	
eri-6/7	0.1	9/66	0/20	1/50	3/50	1/50	1/15	1/58		0.05	0.06	
(tm1917)	0.25	23/118	16/86	7/89	11/56	10/120	16/84	8/54	24/63	0.18	0.09	Yes
	0.75	23/89	5/69	28/59	20/20	59/82	79/90	36/50	20/20	0.64	0.34	Yes
	1.5	24/88	30/32	20/20	34/43	20/20	50/90	24/48	38/40	0.75	0.28	Yes
	3	20/20	20/20	20/20	73/80	20/20	28/30	20/20		0.98	0.04	Yes
eri-8	0.1	3/100	9/100	7/150	4/70	5/150	1/90			0.04	0.03	

(gg100)	0.25	16/95	9/91	38/143	24/111	26/129	29/105	21/92		0.21	0.06	Yes
Best	0.75	20/21	20/21	27/27	138/148	28/30	43/47	48/104	68/98	0.86	0.18	Yes
	1.5**	20 / 20	20/20	20/20	00/00	20/20	97/90	20/20	140/15	0.97	0.04	Yes
		20720	20720	20720	26729	20720	27729	20720	0			
	3**	20/20	20/20	20/20	20/20	20/20	78/89	20/20	20/20	0.98	0.04	Yes
eri-9	0.1	5/100	5/100	6/100	0/20	0/20	0/20	0/53	0/20	0.02	0.03	
(gg106)	0.25	20/115	13/85	19/96	7/103	9/160	14/180	34/168	2/6	0.16	0.09	Yes
	0.75	67/78	57/91	39/97	117/147	116/166	96/121	35/124	40/87	0.61	0.21	Yes
	1.5	62/69	49/50	159/178	26/165	27/151	49/69	104/115		0.67	0.36	Yes
	3	22/22	14/14	99/100	81/135	47/50	20/20	96/103		0.92	0.15	Yes
eri-11	0.1	1/100	0/20	0/20	4/150	2/120	0/20	4/150	2/80	0.01	0.01	
(gg99)	0.25	8/86	10/54	7/56	12/105	8/82	9/113	9/61	11/63	0.13	0.04	Yes
	0.75	12/55	8/22	43/85	63/133	55/91	34/66	21/88		0.42	0.15	Yes
	1.5	18/18	20/22	44/77	85/108	76/114	76/129			0.75	0.18	Yes
	3	13/14	14/14	17/19	115/137	20/20	103/143	20/20	20/20	0.92	0.10	Yes

Single L3-stage larvae were placed on RNAi food targeting *hbl-1*; 4 days later, the percent of progeny showing the expected paralysis at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.02 and 0.5), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *hmr-1* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.02	224	208	240	198	232	248		225	19	0.01	0.12	
(N2)	0.05	184	200	240	272	248	256		233	34	0	0.18	
	0.1	252	224	200	240	256	220	238	233	20	0	0.13	
	0.25	288	264	200	210	225	252	224	238	32	0	0.17	
	0.5	225	240	264	259	224	208	228	235	20	0	0.13	
eri-1	0.02	104	128	120	114	144	88	80	111	22	0.30	0.15	Yes
(mg366)	0.05	72	56	78	96	70	84	72	75	12	0.52	0.08	Yes
	0.1	53	25	71	58	83	53	61	58	18	0.64	0.12	Yes
	0.25	54	0	23	14	8	22	0	17	19	0.89	0.12	Yes
	0.5	13	0	0	20	19	0	60	16	21	0.90	0.13	Yes
rrf-3	0.02	78	101	85	48	80	63	71	75	17	0.44	0.13	Yes
(pk1426)	0.05	89	42	49	53	45	63	100	63	23	0.53	0.17	Yes
Best	0.1**	0	0	1	1	0	6	21	4	8	0.97	0.06	Yes
	0.25**	22	0	1	2	24	0	18	10	11	0.93	0.08	Yes
	0.5**	0	0	0	0	0	0	0	0	0	1.00	0	Yes
eri-3	0.02	72	102	72	85	120	128		97	24	0.38	0.17	Yes
(tm1361)	0.05	120	108	128	144	90			118	20	0.24	0.15	Yes
	0.1	29	23	37	25	13	17	40	26	10	0.83	0.07	Yes
	0.25	0	19	12	3	0	3		6	8	0.96	0.05	Yes
	0.5	0	0	0	0	1	6	3	1	2	0.99	0.01	Yes
eri-5	0.02	144	184	203	217	152	168	193	180	27	0	0.19	
(tm1705)	0.05	216	168	216	192	152			189	29	0	0.20	
	0.1	152	168	152	176	184	184	128	163	21	0.04	0.15	
	0.25	168	144	116	156	170	125	136	145	21	0.15	0.15	
	0.5	192	184	156	160	176	152	175	171	15	0	0.13	
eri-6/7	0.02	132	105	93	84	108	90	98	101	16	0	0.11	
(tm1917)	0.05	136	160	128	168	104	168	136	143	24	0.08	0.17	
	0.1	33	26	20	46	35	112	68	49	32	0.69	0.21	Yes
	0.25	46	29	0	36	42	45		33	17	0.79	0.11	Yes
	0.5	10	0	0	4	3	0	1	3	4	0.98	0.02	Yes
eri-8	0.02	96	168	136	142	153	160	169	146	25	0	0.12	

(gg100)	0.05	128	72	144	104	128	56	128	109	33	0.51	0.15	Yes
Best	0.1**	3	25	17	25	5	16	12	15	9	0.93	0.04	Yes
	0.25**	1	1	0	4	0	8	3	2	3	0.99	0.01	Yes
	0.5**	0	1	0	0	0	1	0	0	0	1.00	0	Yes
eri-9	0.02	180	232	168	168	176	196	187	187	22	0.22	0.10	Yes
(gg106)	0.05	160	176	120	200	112	128	204	157	38	0.34	0.16	Yes
	0.1	15	168	160	72	114	104	71	101	54	0.58	0.23	Yes
	0.25	37	87	33	52	27	67	72	54	23	0.78	0.09	Yes
	0.5	8	12	0	9	34	0	15	11	12	0.95	0.05	Yes
eri-11	0.02	256	184	208	200	168	184	180	197	29	0.28	0.12	Yes
(gg99)	0.05	152	160	180	205	200	198		183	22	0.33	0.09	Yes
	0.1	64	66	95	56	96	162	80	88	36	0.68	0.13	Yes
	0.25	48	0	15	80	30	50	52	39	27	0.86	0.10	Yes
	0.5	6	0	11	0	0	0	7	3	5	0.99	0.02	Yes

Single L3-stage larvae were placed on RNAi food targeting *hmr-1*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.01, 1, and 2), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Figure S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *unc-73* **feeding**

Strain	OD_{600}				Penetrance read	lings			Avg	SD	Eri?
Wildtype	0.1	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0	0	
(N2)	0.5	0/20	0/20	0/20	0/20	1/30	0/20	1/40	0.01	0.01	
	0.75	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0	0	
	2	0/20	0/20	0/20	2/50	0/30	0/20	2/80	0.01	0.02	
	3	0/20	0/20	0/20	6/90	3/80	0/20	0/20	0.01	0.03	
eri-1	0.1	0/20	0/20	0/20	0/26	0/35	0/20	0/20	0	0	
(mg366)	0.5	5/50	8/67	13/61	17/47	6/27	14/32	12/33	0.26	0.13	Yes
	0.75	12/40	14/50	9/47	13/35	20/57	27/48	26/54	0.36	0.13	Yes
	2	21/23	74/78	22/38	21/31	73/84	30/53		0.76	0.17	Yes
	3	20/20	103/112	20/20	28/30	20/20	42/47		0.96	0.05	Yes
rrf-3	0.1	0/20	0/20	0/20	1/29	2/60	0/20	0/20	0.01	0.02	
(pk1426)	0.5	1/60	4/50	3/70	4/15	13/67	6/48		0.12	0.10	Yes
	0.75	3/6	10/42	10/31	13/37	38/61	44/61	21/48	0.46	0.17	Yes
	2	18/39	19/77	22/58	46/54	43/55	81/91	88/97	0.65	0.27	Yes
	3	18/64	18/47	25/54	27/30	88/90	58/68		0.64	0.30	Yes
eri-3	0.1	0/20	0/20	0/12	0/20	1/30	0/20	0/20	0	0.01	
(tm1361)	0.5	2/50	3/60	5/50	1/15	2/23	12/56	15/40	0.13	0.12	Yes
	0.75	18/52	16/48	13/32	13/35	11/22	26/36	13/30	0.44	0.13	Yes
	2	11/44	22/46	16/65	19/46	6/10	32/36	80/82	0.55	0.29	Yes
	3	29/46	25/44	26/48	53/60	18/20	22/24	43/44	0.77	0.19	Yes
eri-5	0.1	0/20	0/20	2/30	0/20	0/20	0/20	1/108	0.01	0.02	
(tm1705)	0.5	0/20	0/20	0/20	0/20	0/20	0/20		0	0	
	0.75	1/40	0/20	0/20	0/20	1/30	12/120	4/120	0.03	0.04	
	2	0/20	0/20	1/20	1/30	0/20	2/89	0/20	0.02	0.02	
	3	1/20	2/30	4/50	2/60	1/30	5/103	0/20	0.04	0.03	
eri-6/7	0.1	0/20	0/20	0/20	0/67	1/53	1/90	0/20	0	0.01	
(tm1917)	0.5	3/40	7/50	2/60	4/57	6/78	1/32	8/69	0.08	0.04	Yes
	0.75	6/22	17/77	17/69	26/39	10/17	11/90	17/83	0.33	0.21	Yes
	2	34/43	47/50	44/50	23/40	38/66	34/40	14/60	0.69	0.25	Yes
	3	46/50	47/50	20/20	20/20	20/20	30/33	50/53	0.96	0.04	Yes
eri-8	0.1	0/20	0/20	2/50	2/50	3/60	0/23	0/29	0.02	0.02	

(gg100)	0.5	8/90	8/60	4/70	14/73	28/78	34/82	17/68	0.21	0.14	Yes
Best	0.75	56/73	86/101	46/53	41/51	29/45	32/57	30/65	0.71	0.16	Yes
	2**	20/20	20/20	20/20	19/24	20/20	117/122	81/81	0.96	0.08	Yes
	3**	20/20	20/20	20/20	20/20	20/20	124/133	20/20	0.99	0.03	Yes
eri-9	0.1	1/50	0/20	0/20	4/71	5/57	1/130	0/20	0.02	0.03	
(gg106)	0.5	3/100	8/100	2/80	9/54	24/83	13/51		0.14	0.11	Yes
	0.75	9/60	8/69	25/78	11/62	6/48	34/64	15/47	0.25	0.15	Yes
	2	40/48	43/65	35/46	29/94	19/71	52/57	31/72	0.60	0.26	Yes
	3	48/50	83/90	89/90	67/88	107/115	41/49		0.90	0.09	Yes
eri-11	0.1	0/20	1/40	0/20	0/20	1/30	0/20	2/80	0.01	0.02	
(gg99)	0.5	11/122	6/72	10/87	7/50	4/72	6/44	21/53	0.15	0.11	Yes
	0.75	24/55	7/64	21/73	36/79	21/66	27/84	29/86	0.32	0.11	Yes
	2	32/79	20/71	22/67	11/59	53/72	12/35	35/66	0.40	0.18	Yes
	3	51/83	112/118	20/20	20/20	56/66	91/107	61/67	0.88	0.13	Yes

Single L3-stage larvae were placed on RNAi food targeting *unc-73*; 4 days later, the percent of progeny showing the expected paralysis at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.03, 0.25, and 1), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p < 0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *div-1* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.5	95	104	128	105	128	160	146	124	24	0.45	0.12	
(N2)	1	86	57	69	72	33	37	56	59	19	0.74	0.09	
	2	88	53	50	47	79	33	37	55	21	0.76	0.09	
	3	59	62	49	54	84	33	50	56	16	0.75	0.07	
	4	63	50	58	83	50	34	32	53	18	0.77	0.08	
eri-1	0.5	98	100	64	120	66	99	80	90	20	0.43	0.13	
(mg366)	1	60	96	78	68	36	48	46	62	21	0.61	0.13	
	2	29	63	59	10	55	31	40	41	19	0.74	0.12	
	3	50	50	56	44	23	35	59	45	13	0.71	0.08	
	4	51	74	19	64	39	10	47	43	23	0.73	0.15	
rrf-3	0.5	64	96	63	84	102	57	54	74	19	0.44	0.15	
(pk1426)	1	36	65	75	35	34	41	26	45	18	0.67	0.14	
	2	36	42	66	27	25	10	11	31	19	0.77	0.15	
	3	26	23	1	25	10	27	15	18	10	0.86	0.07	Yes
	4	20	24	17	17	19	43	15	22	10	0.83	0.07	
eri-3	0.5	47	54	79	55	51	55	37	54	13	0.65	0.09	
(tm1361)	1	94	34	47	25	45	27	50	46	23	0.70	0.15	
Best	2**	18	36	13	10	14	19		18	9	0.88	0.06	Yes
	3**	10	24	32	18	15	17	8	18	8	0.89	0.05	Yes
	4**	8	16	9	10	15	32	12	15	8	0.91	0.05	Yes
eri-5	0.5	46	72	88	104	112	120	81	89	26	0.48	0.16	
(tm1705)	1	32	28	40	7	48	39	13	30	15	0.83	0.09	
	2	23	25	26	22	18	23	18	22	3	0.87	0.02	Yes
	3	18	20	18	23	9	21	16	18	5	0.90	0.03	Yes
	4	30	25	20	9	22	25	19	21	7	0.87	0.04	Yes
eri-6/7	0.5	106	108	90	88	72	84	105	93	13	0.40	0.10	
(tm1917)	1	38	34	31	36	44	37	61	40	10	0.74	0.07	
	2	52	38	26	29	34	2	30	30	15	0.81	0.10	
	3	44	14	23	51	31	27	48	34	14	0.78	0.09	
	4	19	25	29	28	16	6	33	22	9	0.86	0.06	Yes
	0 5	104	100	105	100	100	100	100	140	91	0.94	0.14	
eri-o	0.5	104	108	133	102	100	100	100	140	51	0.34	V.14	

(gg100)	1	192	86	102	60	78	76		99	48	0.56	0.21	
	2	128	108	90	36	32	56	33	69	40	0.69	0.18	
	3	29	70	106	39	44	36	39	52	27	0.77	0.12	
	4	74	78	25	30	27	19		42	26	0.81	0.12	
eri-9	0.5	114	148	120	76	122	88	98	109	24	0.54	0.10	
(gg106)	1	72	130	112	30	24	18	24	59	47	0.76	0.19	
	2	72	42	114	31	26	29	22	48	34	0.80	0.14	
	3	75	88	65	30	35	20	21	48	28	0.80	0.12	
	4	25	43	33	29	23	24	20	28	8	0.88	0.03	Yes
eri-11	0.5	112	232	160	136	162	200	176	168	40	0.39	0.15	
(gg99)	1	98	102	118	37	72	96	82	86	26	0.68	0.10	
	2	104	44	90	33	45	28	34	54	30	0.80	0.11	
	3	44	98	96	40	35	34	35	55	29	0.80	0.11	
	4	31	42	34	25	37	37		34	6	0.87	0.02	Yes

Single L3-stage larvae were placed on RNAi food targeting dw-I; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *pbs-6* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.02	205	227	224	244	207	240	207	222	16	0.02	0.11	
(N2)	0.05	244	256	216	134	264	200	160	211	49	0.07	0.23	
	0.1	172	190	84	53	210	41	93	120	69	0.47	0.31	
	0.25	62	50	39	20	21	60		42	19	0.81	0.08	
	0.5	32	12	15	13	23	20	22	20	7	0.91	0.03	
eri-1	0.02	107	137	120	72	80	80	80	97	25	0.39	0.16	Yes
(mg366)	0.05	134	88	84	64	44	60	75	78	29	0.50	0.18	Yes
	0.1	110	33	56	66	40	33	36	53	28	0.66	0.18	
	0.25	20	48	6	9	4	3	11	14	16	0.91	0.10	
	0.5	4	1	2	11	4	4	0	4	4	0.98	0.02	Yes
rrf-3	0.02	122	152	120	128	120	138	112	127	14	0.04	0.12	
(pk1426)	0.05	144	135	96	104	126	84	78	110	26	0.18	0.20	
	0.1	51	85	38	25	96	43	84	60	28	0.55	0.21	
	0.25	0	2	2	7	9	87	23	19	31	0.86	0.23	
	0.5	0	1	1	0	0	0	3	1	1	0.99	0.01	Yes
eri-3	0.02	152	176	42	144	104	156	75	121	49	0.22	0.32	
(tm1361)	0.05	156	99	32	45	19	84	31	67	49	0.57	0.32	Yes
Best	0.1	41	25	72	22	56	80	72	53	24	0.66	0.15	
	0.25**	16	4	2	3	7	8	2	6	5	0.96	0.03	Yes
	0.5**	2	11	0	0	1	0	3	2	4	0.98	0.03	Yes
eri-5	0.02	170	162	160	152	90	112	95	134	34	0.21	0.22	
(tm1705)	0.05	165	144	66	48	62	49	49	83	50	0.51	0.29	Yes
	0.1	56	133	71	42	30	21	33	55	38	0.68	0.23	
	0.25	16	18	6	20	13	23	13	16	6	0.91	0.03	Yes
	0.5	2	3	4	2	5	2	2	3	1	0.98	0.01	Yes
eri-6/7	0.02	176	192	168	184	232	190	112	179	36	0	0.25	
(tm1917)	0.05	150	162	96	96	100	104	126	119	27	0.23	0.19	
Best	0.1	40	35	23	112	66	40		53	32	0.66	0.21	
	0.25**	24	11	3	9	2	3	6	8	8	0.95	0.05	Yes
	0.5**	0	0	2	3	4	3	1	2	2	0.99	0.01	Yes
eri-8	0.02	234	232	266	248	240	224	232	239	14	0	0.07	

(gg100)	0.05	280	272	144	192	152	193		206	58	0.08	0.26	
	0.1	105	28	77	75	45	120		75	35	0.66	0.16	
	0.25	18	19	11	56	22	19	16	23	15	0.90	0.07	
	0.5	2	3	13	0	3	7	3	4	4	0.98	0.02	Yes
eri-9	0.02	216	192	250	210	192	208	222	213	20	0.11	0.10	
(gg106)	0.05	217	227	190	160	192	184	170	191	24	0.20	0.11	
	0.1	124	66	160	167	126	112	44	114	45	0.52	0.19	
	0.25	26	69	14	16	27	32	16	29	19	0.88	0.08	
	0.5	2	0	2	8	9	13	22	8	8	0.97	0.03	Yes
eri-11	0.02	161	227	116	146	136	168	135	156	36	0.43	0.14	Yes
(gg99)	0.05	192	224	126	88	112	128		145	52	0.47	0.19	Yes
	0.1	26	158	136	128	128	67	33	97	54	0.65	0.20	
	0.25	51	66	26	24	8	37		35	21	0.87	0.08	
	0.5	0	3	12	7	7	8	8	6	4	0.98	0.01	Yes

Single L3-stage larvae were placed on RNAi food targeting *pbs-6*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.005, 0.01, and 1), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table Figure 27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *pha-4* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.01	208	199	210	233	240	264	260	231	26	0	0.15	
(N2)	0.02	210	272	280	256	252	244		252	25	0	0.15	
	0.04	176	189	240	255	224	234	200	217	29	0.04	0.16	
	0.1	149	160	176	168	152	140		158	13	0.30	0.09	
	0.25	147	158	164	168	136	174		158	14	0.30	0.09	
eri-1	0.01	98	133	160	128	152	130	176	140	25	0.12	0.17	
(mg366)	0.02	70	85	61	100	73	130	47	81	27	0.49	0.18	Yes
	0.04	11	0	57	46	73	94	108	56	40	0.65	0.25	Yes
	0.1	0	45	28	71	61	62		45	27	0.72	0.17	Yes
	0.25	31	15	47	12	17	13		23	14	0.86	0.09	Yes
rrf-3	0.01	114	101	120	112	104	106		110	7	0.18	0.08	Yes
(pk1426)	0.02	76	81	47	92	64	90		75	17	0.44	0.13	Yes
	0.04	6	54	49	61	43	10		37	23	0.72	0.18	Yes
	0.1	1	0	7	19	34	44	57	23	22	0.83	0.17	Yes
	0.25	6	1	0	0	16	9	0	5	6	0.97	0.05	Yes
eri-3	0.01	162	142	115	54	45	42	82	92	49	0.41	0.32	Yes
(tm1361)	0.02	46	87	72	74	54	75	29	62	20	0.60	0.13	Yes
Best	0.04	60	79	15	23	7	4	53	34	29	0.78	0.19	Yes
	0.1**	28	25	23	14	3	16	33	20	10	0.87	0.07	Yes
	0.25**	10	15	3	5	17	3	3	8	6	0.95	0.04	Yes
eri-5	0.01	194	192	170	178	190	176	184	183	9	0	0.12	
(tm1705)	0.02	192	182	160	200	170	160	167	176	16	0	0.14	
	0.04	168	144	184	168	152	168		164	14	0.04	0.13	
	0.1	100	86	100	133	132	93	65	101	24	0.41	0.16	
	0.25	55	62	35	57	33	50	20	45	15	0.74	0.09	Yes
eri-6/7	0.01	216	240	169	200	205	163	162	194	30	0	0.22	
(tm1917)	0.02	217	266	156	132	172	182		188	48	0	0.32	
	0.04	179	126	73	62	112	114	88	108	39	0.31	0.26	Yes
	0.1	52	74	41	63	56	63	41	56	12	0.64	0.08	Yes
	0.25	60	0	28	30	64	54	47	40	23	0.74	0.15	Yes
eri-8	0.01	236	248	232	224	216	235		232	11	0	0.06	

(gg100)	0.02	86	164	144	176	176	154	160	151	31	0.32	0.14	Yes
	0.04	61	82	64	84	92	63	100	78	16	0.65	0.07	Yes
	0.1	7	3	28	4	3	47	30	17	18	0.92	0.08	Yes
	0.25	25	10	52	55	63	32	9	35	22	0.84	0.10	Yes
eri-9	0.01	244	246	272	240	256	256		252	12	0	0.08	
(gg106)	0.02	216	176	216	240	280	278		234	40	0.02	0.18	
	0.04	164	171	208	248	224	170	220	201	33	0.16	0.14	
	0.1	36	57	114	92	90	123		85	33	0.64	0.14	Yes
	0.25	89	107	87	106	74	146		102	25	0.58	0.11	Yes
eri-11	0.01	292	260	320	264	274	312		287	25	0	0.11	
(gg99)	0.02	264	254	240	248	341	324	304	282	40	0	0.16	
	0.04	153	116	216	216	200	209	226	191	41	0.30	0.16	Yes
	0.1	85	81	228	200	240	256	176	181	72	0.34	0.27	
	0.25	65	72	80	93	96	112		86	17	0.68	0.07	Yes

Single L3-stage larvae were placed on RNAi food targeting *pha-4*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.05 and 0.5), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *cdk-1* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.1	248	284	222	192	248	248		240	31	0	0.17	
(N2)	0.5	194	244	224	239	157			212	36	0.07	0.18	
	1	124	4	9	17	0			31	52	0.86	0.23	
	2	87	137	4	6	3	51	3	42	53	0.82	0.23	
	3	0	11	0	6	2	2	3	3	4	0.98	0.02	
eri-1	0.1	13	127	192	120	123	84	148	115	56	0.27	0.35	
(mg366)	0.5	77	75	65	36	47			60	18	0.62	0.12	Yes
	1	22	0	2	0	1	0		4	9	0.97	0.06	
	2	2	40	0	0	0	0	0	6	15	0.96	0.09	
	3	1	0	0	1	0	1	0	0	1	1.00	0	
rrf-3	0.1	50	76	123	156	160	192	160	131	51	0.02	0.39	
(pk1426)	0.5**	2	0	3	0	0	0	0	1	1	0.99	0.01	Yes
Best	1**	1	0	0	0	0	0		0	0	1.00	0	
	2**	0	0	0	0	0	0	1	0	0	1.00	0	
	3**	0	0	0	1	0	0	0	0	0	1.00	0	
eri-3	0.1	134	6	126	108	104	120	120	103	44	0.34	0.29	
(tm1361)	0.5	67	5	0	0	11	38		20	27	0.87	0.17	Yes
	1	26	65	0	1	0	14	34	20	24	0.87	0.15	
	2	0	0	1	1	0	0	0	0	0	1.00	0	
	3	9	1	0	0	0	0	0	1	3	0.99	0.02	
eri-5	0.1	189	210	174	186	140	148	195	177	25	0	0.18	
(tm1705)	0.5	106	126	58	8	99			79	47	0.53	0.28	Yes
	1	58	72	0	0	0	0	0	19	32	0.89	0.19	
	2	81	5	0	0	0	0	0	12	30	0.93	0.18	
	3	0	1	0	0	0	0	0	0	0	1.00	0	
eri-6/7	0.1	99	220	182	216	176	240	168	186	47	0	0.31	
(tm1917)	0.5	51	9	4	3	11			16	20	0.90	0.13	Yes
	1	33	0	0	0	0	0		6	13	0.96	0.09	
	2	4	1	0	1	0	0	0	1	1	0.99	0.01	
	3	0	2	0	1	0	0	0	0	1	1.00	0.01	
eri-8	0.1	262	276	194	248	240	240	272	247	28	0	0.13	

(gg100)	0.5	24	93	1	0	6			25	39	0.89	0.18	Yes
	1	8	19	0	0	0	44	17	13	16	0.94	0.07	
	2	0	2	0	0	0	0	0	0	1	1.00	0	
	3	1	0	0	0	0	2	1	1	1	1.00	0	
eri-9	0.1	282	270	224	184	214	240	248	237	34	0.01	0.15	
(gg106)	0.5	20	0	4	9	3	0		6	8	0.97	0.03	Yes
	1	124	0	0	0	2	2		21	50	0.91	0.21	
	2	3	127	0	0	3	1	1	19	48	0.92	0.20	
	3	0	0	0	0	0	0	1	0	0	1.00	0	
eri-11	0.1	272	298	264	216	272	224	260	258	29	0.06	0.12	
(gg99)	0.5	181	282	64	78	38	104	192	134	87	0.51	0.32	Yes
	1	47	0	0	2	5	4	3	9	17	0.97	0.06	
	2	32	2	3	0	0	0	0	5	12	0.98	0.04	
	3	0	0	0	0	0	0	0	0	0	1.00	0	

Single L3-stage larvae were placed on RNAi food targeting *cdk-1*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 0.025, 0.25, and 0.75), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *knl-3* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.1	256	242	184	210	180	232	200	215	29	0.05	0.16	
(N2)	0.25	264	240	237	216	260	235	224	239	18	0	0.12	
	0.5	240	192	148	168	208	191		191	32	0.16	0.16	
	0.75	212	200	176	162	180	169	203	186	19	0.18	0.11	
	1	99	63	84	47	77			74	20	0.67	0.09	
eri-1	0.1	63	40	168	155	162	151		123	56	0.22	0.36	
(mg366)	0.25	100	152	96	120	120	184	156	133	32	0.16	0.21	
	0.5	50	1	55	111	81	114	77	70	39	0.56	0.25	Yes
	0.75	81	74	50	54	75	56	49	63	13	0.60	0.09	Yes
	1	1	0	0	0	0	66	13	11	25	0.93	0.15	Yes
rrf-3	0.1	108	62	97	97	113	91	115	98	18	0.27	0.14	Yes
(pk1426)	0.25	68	130	110	89	78	105	100	97	21	0.27	0.16	Yes
Best	0.5	96	62	108	58	96	72	81	82	19	0.39	0.15	Yes
	0.75	69	64	102	93	80	109	89	87	17	0.35	0.13	Yes
	1**	0	0	15	0	10	5	1	4	6	0.97	0.04	Yes
eri-3	0.1	99	91	210	200	195	208	220	175	55	0	0.37	
(tm1361)	0.25	85	184	89	189	78	170		133	54	0.15	0.35	
	0.5	62	83	185	168	76	82		109	53	0.30	0.35	
	0.75	128	123	126	101	96	113	103	113	13	0.28	0.11	
	1	0	22	12	16	59	36	10	22	20	0.86	0.13	Yes
eri-5	0.1	224	184	243	216	236	200	168	210	27	0	0.20	
(tm1705)	0.25	240	244	198	232	200	168	180	209	30	0	0.22	
	0.5	82	109	132	144	157	187	136	135	34	0.21	0.22	
	0.75	114	121	113	132	128	104	117	118	10	0.30	0.09	Yes
	1	0	0	28	22	44	0	23	17	17	0.90	0.10	Yes
eri-6/7	0.1	133	151	170	210	216	214	203	185	34	0	0.24	
(tm1917)	0.25	180	188	216	198	232	232		208	22	0	0.18	
	0.5	105	86	160	155	168	222		149	48	0.04	0.32	
	0.75	133	164	168	144	160	184		159	18	0	0.14	
	1	0	31	1	8	20	0	40	14	16	0.91	0.11	Yes
eri-8	0.1	194	256	292	252	272	216	240	246	33	0	0.15	

(88100) 0.20 215	220 210	0 210	214	243	241	222	14	0	0.07	
<u>*Best*</u> 0.5 176	186 200	0 186	200	202		192	11	0.14	0.06	
0.75 131	157 142	2 131	152	140	156	144	11	0.35	0.05	Yes
1** 0	0 0	13	11	9	7	6	6	0.97	0.03	Yes
<i>eri-9</i> 0.1 234	240 280	0 272	288	244		260	23	0	0.11	
<i>(gg106)</i> 0.25 192	240 264	4 240	248	232	225	234	22	0.02	0.11	
0.5 216	224 137	7 149	168	174	150	174	34	0.27	0.15	
0.75 132	126 126	6 138	131	159	146	137	12	0.43	0.06	Yes
1 10	5 40	38	19	12	78	29	26	0.88	0.11	Yes
<i>eri-11</i> 0.1 292	280 272	2 320	258	288	304	288	20	0	0.10	
<i>(gg99)</i> 0.25 248	256 280	0 264	224	254	320	264	30	0.04	0.13	
<u>*Best*</u> 0.5 236	248 156	6 288	224	235	256	235	40	0.14	0.16	
0.75 68	81 116	6 92	109	97	83	92	17	0.66	0.06	Yes
1**]	1 15	0	3	21	6	7	8	0.98	0.03	Yes

Single L3-stage larvae were placed on RNAi food targeting *knl-3*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, three bacterial culture concentrations (OD_{600nm} of 2, 3, and 4), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *vha-15* feeding

Strain	OD_{600}				Brood Si.	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.03	231	205	185	216	179	229	208	208	20	0.08	0.12	
(N2)	0.25	170	181	190	288	127	136	183	182	53	0.20	0.24	
	1	73	128	127	97	222	135	122	129	46	0.43	0.21	
	2	117	79	79	164	78	122		107	35	0.53	0.16	
	3	30	66	97	100	65	105		77	29	0.66	0.13	
eri-1	0.03	155	173	77	128	140	151	156	140	31	0.12	0.20	
(mg366)	0.25	45	69	77	41	83	97	68	69	20	0.57	0.13	Yes
	1	3	18	3	42	51	44	30	27	20	0.83	0.12	Yes
	2	0	6	0	40	7	10	12	11	14	0.93	0.09	Yes
	3	1	2	0	0	1	12	0	2	4	0.99	0.03	Yes
rrf-3	0.03	144	59	196	148	195	97		140	54	0	0.41	
(pk1426)	0.25	29	3	77	57	34	33	0	33	27	0.75	0.21	Yes
Best	1**	0	1	0	24	1			5	11	0.96	0.08	Yes
	2**	0	0	0	0	0	0	0	0	0	1.00	0	Yes
	3**	0	0	0	0	0	0	0	0	0	1.00	0	Yes
eri-3	0.03	135	155	164	133	162	86	145	140	27	0.10	0.19	
(tm1361)	0.25	63	40	66	52	62	9	19	44	23	0.71	0.15	Yes
	1	0	18	1	0	1	0	46	9	17	0.94	0.11	Yes
	2	0	0	0	0	0	17	0	2	6	0.98	0.04	Yes
	3	0	0	0	0	0	1	1	0	0	1.00	0	Yes
eri-5	0.03	97	126	163	195	208	102	153	149	43	0.12	0.27	
(tm1705)	0.25	127	238	106	165	173	114	85	144	52	0.15	0.32	
	1	34	64	43	11	102	65		53	31	0.69	0.19	Yes
	2	5	7	204	26	34	23	45	49	70	0.71	0.41	
	3	24	19	12	67	113	34		45	39	0.74	0.23	
eri-6/7	0.03	219	143	148	226	127	161		171	42	0	0.28	
(tm1917)	0.25	127	78	51	113	128	78		96	31	0.38	0.21	
	1	0	22	51	9	60	16	5	23	23	0.85	0.15	Yes
	2	2	1	0	15	46	9	26	14	17	0.91	0.11	Yes
	3	1	0	1	1	0	1	15	3	5	0.98	0.04	Yes
	0.02	100	05.0	000	0.40	051	070		0.05	94	0	0.10	
eri-8	0.03	180	256	209	242	251	2/3		233	34	U	0.10	

(gg100)	0.25	48	46	27	125	154	49	25	68	51	0.70	0.23	Yes
Best	1**	1	0	20	1	2	0	0	3	7	0.98	0.03	Yes
	2**	0	0	0	1	1	1	4	1	1	1.00	0.01	Yes
	3**	0	2	0	3	0	0	0	1	1	1.00	0.01	Yes
eri-9	0.03	219	238	284	246	233	257	237	245	21	0	0.11	
(gg106)	0.25	192	150	179	55	167	150	114	144	46	0.40	0.20	
	1	102	114	62	6	101	53	49	70	38	0.71	0.16	Yes
	2	3	0	1	34	105	46	28	31	37	0.87	0.16	Yes
	3	1	0	0	1	10	1	0	2	4	0.99	0.02	Yes
eri-11	0.03	292	246	239	247	258	285	228	256	24	0.06	0.11	
(gg99)	0.25	123	135	220	224	189	249	185	189	47	0.31	0.18	
	1	24	8	2	50	1	66	43	28	26	0.90	0.09	Yes
	2	5	60	0	125	1	43	15	36	46	0.87	0.17	Yes
	3	0	1	0	1	0	82	0	12	31	0.96	0.11	Yes

Single L3-stage larvae were placed on RNAi food targeting *vha-15*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.1 and 0.5), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *glp-1* feeding

Strain	OD_{600}				Penetrance read	lings			Avg	SD	Eri?
Wildtype	1	2/56	2/67	1/80	0/20	0/20	0/20	1/60	0.01	0.01	
(N2)	2	3/67	1/18	2/40	0/20	2/60			0.04	0.02	
	3	9/31	6/25	8/27	6/25	10/31	12/39	8/24	0.29	0.04	
	4	26/61	24/52	7/14	9/28	9/25	9/26	12/36	0.39	0.07	
	5	11/29	26/53	16/31	13/25	18/28	20/34	19/36	0.52	0.08	
eri-1	1	4/49	5/46	6/42	8/47	3/25	3/20	8/45	0.14	0.03	Yes
(mg366)	2	12/38	13/33	17/39	9/32	8/23	11/30	18/41	0.37	0.06	Yes
	3	14/28	17/33	14/43	16/32	13/28	24/48	22/39	0.48	0.07	Yes
	4	23/34	29/41	38/52	16/23	24/40			0.68	0.05	Yes
	5	24/28	21/27	28/37	25/35	24/31	32/42	31/38	0.78	0.05	Yes
rrf-3	1	7/47	8/61	12/39	4/39	3/38	5/37		0.15	0.08	Yes
(pk1426)	2	10/41	16/50	26/47	39/54	15/34	14/27	18/38	0.47	0.16	Yes
	3	53/57	41/51	18/36	21/28	41/57	29/39		0.74	0.14	Yes
	4	31/33	42/54	21/27	29/40	36/49	27/40	39/50	0.77	0.08	Yes
	5	31/37	25/30	33/38	28/42	23/25	28/34	28/33	0.83	0.08	Yes
eri-3	1	3/36	5/45	7/25	2/28	2/29	5/37	4/35	0.12	0.07	Yes
(tm1361)	2	10/36	6/19	19/37	22/63	21/47	12/27	11/35	0.38	0.09	Yes
	3	17/39	22/48	14/30	25/37	15/26	19/36	27/49	0.53	0.08	Yes
	4	14/18	39/48	22/33	40/47	22/30	19/24	44/47	0.80	0.09	Yes
	5	19/24	8/9	27/38	17/22	22/30	23/27	21/25	0.80	0.07	Yes
eri-5	1	3/29	4/28	4/37	3/30	2/60	3/50	0/20	0.08	0.05	Yes
(tm1705)	2	21/34	13/20	10/21	10/30	10/22	12/22		0.51	0.12	Yes
Best	3	7/11	7/14	11/28	8/21	5/14	25/40	12/28	0.47	0.12	Yes
	4	27/36	25/32	20/29	22/27	14/22	22/29	23/28	0.75	0.07	Yes
	5**	11/13	12/13	34/35	27/29	30/33	19/21	13/13	0.93	0.05	Yes
eri-6/7	1	2/36	4/61	7/32	5/30	5/34	6/40	6/46	0.13	0.06	Yes
(tm1917)	2	12/28	11/27	9/35	8/33	8/35	6/28	12/26	0.32	0.11	Yes
	3	18/31	24/34	20/29	14/25	11/19	26/37		0.64	0.07	Yes
	4	30/35	24/37	24/31	23/29	13/17	27/36	23/29	0.77	0.06	Yes
	5	19/26	18/21	14/25	23/27	26/30	18/20	24/30	0.80	0.12	Yes
eri-8	1	7/79	8/78	7/29	9/50	6/42	2/23	3/35	0.13	0.06	Yes

(gg100)	2	17/38	7/18	9/54	8/24	10/29	18/47	15/49	0.34	0.09	Yes
	3	17/32	15/29	16/30	29/47	20/43	35/58	27/44	0.55	0.06	Yes
	4	20/23	49/68	26/36	24/40	33/47	12/17	32/54	0.70	0.09	Yes
	5	20/32	33/40	22/25	25/30	24/30	23/26	25/34	0.80	0.09	Yes
eri-9	1	8/75	1/48	8/60	2/28	4/46	6/63	11/93	0.09	0.04	Yes
(gg106)	2	13/39	8/24	11/39	12/39	18/53	5/32	4/16	0.29	0.07	Yes
	3	12/28	20/39	20/36	19/34	21/35	14/25	24/45	0.54	0.05	Yes
	4	28/31	30/40	17/27	20/23	17/28	30/39	15/22	0.74	0.11	Yes
	5	43/65	40/51	16/28	34/38	16/18	24/28	26/32	0.78	0.12	Yes
eri-11	1	4/69	5/53	0/20	0/20	2/40	0/20	0/20	0.03	0.04	
(gg99)	2	17/53	11/37	5/19	3/10	9/28	7/24		0.30	0.02	Yes
	3	24/39	16/25	7/20	23/49	10/19	12/28	27/55	0.50	0.10	Yes
	4	44/57	36/44	27/41	27/39	17/27	41/49	19/25	0.74	0.08	Yes
	5	31/36	52/58	16/20	34/39	13/16	24/26	29/37	0.85	0.05	Yes

Single L3-stage larvae were placed on RNAi food targeting glp-1; 4 days later, the percent of progeny showing the expected absent germline at each indicated concentration (OD at 600 nm) of initial bacterial culture were determined. The tabulated mean (Avg) and standard deviation (SD) for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *par-1* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.1	196	248	256	220	216	232		228	22	0	0.13	
(N2)	0.5	196	184	200	160	212			190	20	0.16	0.12	
	1	133	109	130	108	94			115	16	0.49	0.09	
	2	97	49	65	192	36			88	63	0.61	0.28	
	3	10	14	17	18	17	9	6	13	5	0.94	0.02	
eri-1	0.1	130	208	184	168	192	216		183	31	0	0.21	
(mg366)	0.5	79	95	31	131	104	116	128	98	35	0.38	0.22	
	1	35	57	87	34	6	41		43	27	0.73	0.17	Yes
	2	4	19	6	18	9	18		12	7	0.92	0.04	Yes
	3	7	26	15	12	9	23	5	14	8	0.91	0.05	
rrf-3	0.1	18	38	176	112	104	87	118	93	53	0.30	0.40	
(pk1426)	0.5	11	10	10	18	21	14		14	5	0.90	0.04	Yes
	1	7	19	12	12	16	12	2	11	6	0.91	0.04	Yes
	2	7	12	5	13	10	12	9	10	3	0.93	0.02	Yes
	3	8	10	10	6	7	3	4	7	3	0.95	0.02	
eri-3	0.1	27	5	19	90	69	90	144	63	49	0.59	0.32	Yes
(tm1361)	0.5	18	18	11	8	11	4	54	18	17	0.89	0.11	Yes
	1	5	8	3	10	6	40	18	13	13	0.92	0.08	Yes
	2	12	3	1	1	2	1	5	4	4	0.98	0.03	Yes
	3	15	7	21	17	3	2	6	10	7	0.93	0.05	
eri-5	0.1	8	94	77	47	248	136	184	113	82	0.33	0.49	
(tm1705)	0.5**	4	15	10	14	19	11	28	14	8	0.92	0.05	Yes
Best	1**	5	10	7	6	10	11	4	8	3	0.96	0.02	Yes
	2**	4	14	9	8	3	4	7	7	4	0.96	0.02	Yes
	3	18	21	10	2	10	9	7	11	6	0.94	0.04	
eri-6/7	0.1	159	168	200	208	232	186		192	27	0	0.20	
(tm1917)	0.5	15	12	35	232	13	31	12	50	81	0.68	0.52	
	1	3	3	5	11	10	8		7	4	0.96	0.02	Yes
	2	45	19	11	12	5	13	11	17	13	0.89	0.09	Yes
	3	6	3	6	5	8	3	8	6	2	0.96	0.01	Yes
eri-8	0.1	228	184	220	243	248	208	270	229	28	0	0.13	

(gg100)	0.5	9	27	268	173	159	100	176	130	91	0.41	0.41	
	1	119	80	188	40	39	64	20	79	58	0.65	0.26	
	2	16	21	8	11	60	12	17	21	18	0.91	0.08	Yes
	3	6	16	9	14	10	26	10	13	7	0.94	0.03	
eri-9	0.1	272	244	232	219	255	244		244	18	0	0.10	
(gg106)	0.5	14	26	148	137	172	200	196	128	77	0.47	0.32	
	1	137	144	86	150	176			139	33	0.42	0.14	
	2	23	17	48	117	13	121	140	68	55	0.71	0.23	
	3	2	8	97	40	12	15	5	26	34	0.89	0.14	
eri-11	0.1	280	292	216	252	270	260	243	259	25	0.05	0.11	
(gg99)	0.5	96	20	113	132	248	164		129	76	0.53	0.28	Yes
	1	86	62	200	196	51	121	99	116	60	0.57	0.22	
	2	60	62	17	10	22	17		31	23	0.89	0.09	Yes
	3	11	6	8	4	16	9	8	9	4	0.97	0.01	Yes

Single L3-stage larvae were placed on RNAi food targeting *par-1*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.25 and 0.75), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *en*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Dilution series results for *pos-1* feeding

Strain	OD_{600}				Brood Si	ze			Avg	SD	N.Avg	SEM	Eri?
Wildtype	0.1	216	205	272	180	196	232	205	217	30	0.04	0.17	
(N2)	0.25	184	168	10	248	231	240		180	89	0.20	0.40	
	0.5	201	170	169	150	153			169	20	0.26	0.11	
	0.75	147	37	3	2	133	74	118	66	61	0.71	0.28	
	1	30	0	3	2	0	4	71	7	27	0.97	0.05	
eri-1	0.1	123	128	154	164	164	171	192	151	24	0.05	0.14	
(mg366)	0.25	132	107	130	188	220	133	168	152	40	0.04	0.28	
	0.5	39	0	7	6	10			13	15	0.92	0.11	Yes
	0.75	74	0	2	0	0	0	22	13	28	0.92	0.19	
	1	64	55	2	0	1	0	0	20	29	0.87	0.19	
rrf-3	0.1	91	176	162	126	168	184	186	151	35	0	0.28	
(pk1426)	0.25	138	61	8	204	8	82		84	77	0.37	0.64	
	0.5	0	50	1	2	0	0	1	8	19	0.93	0.15	Yes
	0.75	0	0	0	0	0	0	0	0	0	1.00	0	Yes
	1	0	0	0	0	0	0	0	0	0	1.00	0	
eri-3	0.1	109	90	124	140	125	192	144	130	32	0.17	0.24	
(tm1361)	0.25	142	136	100	27	10	36	25	75	56	0.52	0.38	
	0.5	11	32	41	2	7	5	7	16	15	0.90	0.10	Yes
	0.75	0	0	0	8	4	0	17	2	6	0.99	0.02	Yes
	1	0	2	2	1	18			5	8	0.97	0.05	
eri-5	0.1	129	174	192	228	85	244	200	175	56	0	0.37	
(tm1705)	0.25	78	85	208	184	35	252	136	140	79	0.18	0.51	
Best	0.5**	1	5	3	0	0	2	16	2	6	0.99	0.01	Yes
	0.75**	0	0	0	1	0	0	0	0	0	1.00	0	Yes
	1	10	0	0	0	0	0	0	2	4	0.99	0.02	
eri-6/7	0.1	166	156	144	128	164	167		154	15	0.01	0.13	
(tm1917)	0.25	186	200	15	97	128	168	184	132	66	0.15	0.45	
	0.5	68	0	20	0	23	22		22	25	0.86	0.18	Yes
	0.75	1	1	0	0	2	0	0	1	1	1.00	0.01	Yes
	1	0	0	1	1	0	0	0	0	0	1.00	0	
eri-8	0.1	232	256	184	252	304	240	204	245	39	0	0.18	

$60 \mathrm{S}$

(gg100)	0.25	168	264	99	75	29	129	236	127	85	0.43	0.37	
	0.5	40	0	1	50	84	2		35	34	0.84	0.16	Yes
	0.75	32	11	0	0	0	0	1	7	12	0.97	0.06	Yes
	1	44	30	0	1	1	1	0	13	18	0.94	0.09	
eri-9	0.1	224	248	252	200	168	228	210	220	29	0.08	0.14	
(gg106)	0.25	144	172	164	62	128	192		134	46	0.44	0.19	
	0.5	47	71	4	2	0	1	2	21	29	0.91	0.13	Yes
	0.75	5	0	0	1	0	0	21	1	8	1.00	0.01	Yes
	1	0	0	0	0	0	0	9	0	3	1.00	0	
eri-11	0.1	240	208	250	244	256	224	216	237	18	0.13	0.09	
(gg99)	0.25	252	214	272	258	228	243	192	245	28	0.11	0.10	
	0.5	212	230	296	77	202	128		191	78	0.30	0.29	
	0.75	64	67	0	0	1	3		26	33	0.90	0.13	
	1	0	0	6	0	0	37	8	7	14	0.97	0.05	

Single L3-stage larvae were placed on RNAi food targeting *pos-1*; 4 days later, the number of progeny surviving to L3-stage larvae or older at each indicated concentration (OD at 600 nm) of initial bacterial culture was determined. For clarity, two bacterial culture concentrations (OD_{600nm} of 0.03 and 2), which produced similar Eri penetrances as adjacent concentrations, are not included. The tabulated mean (Avg) and standard deviation (SD) were normalized to the brood sizes of each strain fed empty RNAi vector (Table S27), to obtain the normalized mean (N.Avg) and standard error of the mean (SEM). The normalized mean and the standard error of the mean for N2 wild type were used as the basis to indicate an Eri or a Rde phenotype (Eri?), with p<0.05 as the criterion to denote significant difference from wild type response levels. A strain which fits the "best *eri*" criterion described in text is marked as "best", with asterisks indicating concentrations of RNAi food at which it fulfilled the criterion.

Different Eri strains' brood sizes upon L4440 vector feeding

Strain					Bro	ood Size					Avg	SD
Wildtype (N2)	185	218	237	242	208	247	248	222	215	244	227	21
eri-1 (mg366)	168	156	151	162	149	167	167	147			158	9
rrf-3 (pk1426)	137	137	142	135	143	138	139	117	127	119	133	9
eri-3 (tm1361)	169	160	146	134	151	176	167	143			156	16
eri-5 (tm1705)	150	188	189	144	173	177	186	172	177	147	170	17
eri-6/7 (tm1917)	145	143	154	176	143	168	168	148	152		155	12
eri-8 (gg100)	226	229	208	230	219	234	219	221	218		223	8
eri-9 (gg106)	221	249	233	231	237	227	262	254	241		239	13
eri-11 (gg99)	285	242	274	284	297	279	268	285	249		274	18
sid-1 (qt9)	178	206	214	238	211	224	218	260	243	231	222	23

The presented means and standard deviations were used for normalized means and standard errors of the means in RNAi feeding assays that caused lethality phenotypes.

Transgene silencing penetrance of eri-1, rrf-3, and eri-8 in the sur-5::gfp background

Strain		Penetrance of	spontaneous int	estinal TGS at 2	$20^{\circ}C$	Mean	STD
N2 wild type	3/98	1/88	2/109	1/19	0/82	0.02	0.02
eri-1 (mg366)	48/62	28/46	31/54			0.65	0.11
rrf-3 (pk1426)	73/83	76/91	38/45	39/57	97/107	0.83	0.09
eri-8 (gg100)	30/38	24/42	25/35	42/53	28/40	0.71	0.09

Single L3-stage larvae were placed on OP50 food; 4 days later, the percent of progeny showing spontaneous transgene silencing in the intestinal nuclei was determined. For consistency, only worms with distinctly absent *gfp* expression in intestinal nuclei, as shown in Figure S3, are scored as having spontaneous transgene silencing.

Maternal rescue of Eri phenotype on *dpy-13* feeding via outcrossing

Strain			F ₂ Dpy	:Non-Dpy			χ2 value
eri-1 (mg366)	0:60	0:30	0:40	0:80	0:50		1.5e-23
rrf-3 (pk1426)	0:120	0:80	0:80				4.4e-22
eri-3 (tm1361)	0:50	0:40	0:50	0:80	0:80		1.5e-23
eri-6/7 (tm1917)	0:80	0:100	0:100	0:80	0:60		2.7e-32
eri-8 (gg100)	4:29	2:34	4:48	4:25			9.4e-9
eri-9 (gg106)	1:59	0:40	2:78	0:80	1:49	0:60	2.3e-26
eri-11 (gg99)	0:40	3:32	2:31	2:38	0:60		5.8e-13
Strain		F ₃ 10	00% Dpy: 25%	Dpy: 100	% Non-Dpy		χ2 value
eri-1 (mg366)	6:0:10	5:0:11	3:0:13	3			9.1e-15
rrf-3 (pk1426)	6:0:10	2:0:12	4:0:12	2			2.8e-15
eri-3 (tm1361)	2:0:14	4:0:12	3:0:13	3			2.2e-20
eri-6/7 (tm1917)	5:0:11	5:0:11	5:0:11	l	3:0:13	5:0:11	2.3e-24
eri-8 (gg100)	5:8:3	4:7:5	2:8:5		3:0:13	6:0:10	4.0e-5
eri-9 (gg106)	4:0:12	3:0:13	2:0:14	ŀ	5:0:11	3:0:13	1.4e-29
eri-11 (gg99)	5:0:11	5:0:11	3:0:13	3	4:0:12	6:0:10	2.3e-24

Corresponding to Figure S5A, the observed phenotypic ratios of the outcross progeny in the F_2 and F_3 are as indicated. At the F_2 , the expected phenotypic ratio of 1:3 Dpy:non-Dpy is used as the basis for chi-squared test calculations; at the F_3 , the expected phenotypic ratio of 1:2:1 100% Dpy: 25% Dpy:100% Non-Dpy is used as the basis for chi-squared test calculations. Observed results are summed for chi-squared test calculations.

Maternal rescue of Eri phenotype on *dpy-13* feeding via a heterozygous Eri male crossed with a homozygous

Eri hermaphrodite

Strain	F1 Dpy:Non-Dpy					χ2 value
eri-1 (mg366)	18:20	24:25	10:8	13:16	18:17	0.82
rrf-3 (pk1426)	11:10	6:8	13:14			0.80
eri-3 (tm1361)	5:8	4:6	13:10			0.77
eri-6/7 (tm1917)	14:9	6:4	4:6			0.45
eri-8 (gg100)	21:28	12:11	20:18	16:18	8:11	0.48
eri-9 (gg106)	12:18	18:13	10:14	15:15		0.64
eri-11 (gg99)	11:16	10:14	12:10	10:7	13:10	0.93

Corresponding to Figure S6A, the observed phenotypic ratios of the cross progeny are as indicated. The expected phenotypic ratio of 1:1 Dpy:non-Dpy is used as the basis for chi-squared test calculations. Observed results are summed for chi-squared test calculations.
TABLE S31

Maternal rescue of Eri phenotype on *dpy-13* feeding via a homozygous Eri male crossed with a heterozygous

Eri hermaphrodite

Strain	F ₁ Dpy:Non-Dpy					χ2 value		
eri-1 (mg366)	0:16	0:14	0:33			2.1e-15		
rrf-3 (pk1426)	0:18	0:13	0:23	0:16		5.9e-17		
eri-3 (tm1361)	0:40	0:20	0:20			3.7e-19		
eri-6/7 (tm1917)	0:60	0:60	0:80	0:80	0:50	9.6e-74		
eri-8 (gg100)	1:14	5:14	4:17	5:28	2:22	1.7e-13		
eri-9 (gg106)	0:25	0:29	0:16			5.9e-17		
eri-11 (gg99)	0:19	0:20	0:21	0:24		4.9e-20		

Corresponding to Figure S6B, the observed phenotypic ratios of the cross progeny are as indicated. The expected phenotypic ratio of 1:1 Dpy:non-Dpy is used as the basis for chi-squared test calculations. Observed results are summed for chi-squared test calculations.

TABLE S32

Maternal rescue of Eri phenotype on *hmr-1* and *unc-73* feeding via outcrossing

Strain	Food	F ₂ Phenotype:No-Phenotype					χ2 value
eri-1 (mg366)	unc-73	0:76	0:45	0:35	0:45		2.7e-16
rrf-3 (pk1426)	unc-73	0:34	0:36	0:23			2.6e-8
eri-8 (gg100)	unc-73	8:24	3:27	3:28	3:38	2:34	3.1e-5
Strain	Food	F ₃ 100% Phenotype: 25%Phenotype:No-Phenotype					χ2 value
eri-1 (mg366)	unc-73	4:0:12	5:0:11	4:0	0:12	3:0:13	1.4e-21
rrf-3 (pk1426)	unc-73	5:0:11	5:0:11	2:0	0:14	3:0:13	1.8e-22
eri-3 (tm1361)	hmr-1	6:0:10	2:0:14	3:0	0:13	4:0:12	1.8e-22
eri-6/7 (tm1917)	hmr-1	3:0:13	3:0:13	2:0	0:14		2.1e-20
eri-8 (gg100)	hmr-1	2:0:14	1:0:15	3:0	0:13		7.1e-23

Corresponding to Figure S5A, the observed phenotypic ratios of the outcross progeny in the F_2 and F_3 are as indicated when fed the three respective RNAi foods. At the F_2 , the expected phenotypic ratio of 1:3 with-phenotype:without-phenotype is used as the basis for chi-squared test calculations; at the F_3 , the expected phenotypic ratio of 1:2:1 100% with-phenotype: 25% with-phenotype: 100% without-phenotype is used as the basis for chi-squared test calculations. Observed results are summed for chi-squared test calculations.

TABLE S33

No maternal rescue of Eri phenotype-related spermatogenesis defects

Strain	F_2 St	erile:Non	χ2 value	
eri-1 (mg366)	2:14	3:13	3:12	0.18
rrf-3 (pk1426)	5:11	3:13	5:11	0.74
eri-3 (tm1361)	3:13	4:12	3:13	0.50

Corresponding to Figure S5B, the observed phenotypic ratios of the outcross progeny are as indicated. The expected phenotypic ratio of 1:3 sterile:not-sterile is used as the basis for chi-squared test calculations. Observed results are summed for chi-squared test calculations.

Strain		Penetrance of Bli at F_2			Mean	STD	<i>p</i> value	
N2 wild type	39/86	63/144	58/119		0.46	0.03		
eri-1 (mg366)	78/87	66/97	65/70		0.84	0.13	0.008	
rrf-3 (pk1426)	46/51	34/41	38/41		0.89	0.05	0.0002	
eri-8 (gg100)	46/67	45/69	47/80		0.64	0.05	0.006	
N2 x <i>eri-1</i>	63/134	51/116	74/139	34/80	0.47	0.05	0.78	
N2 x <i>rrf-3</i>	36/73	64/123	15/37	32/74	0.46	0.05	1	
N2 x eri-8	75/145	48/101	36/72	52/97	0.51	0.03	0.11	

Maternal rescue of Eri phenotype on *bli-1* feeding via outcrossing

TABLE S34

Corresponding to Figure S5A, the observed phenotypic penetrances of the outcross progeny in the F_2 are as indicated. The N2 wild type penetrance was used as the basis for a *t* test, to compare an Eri mutant's or an outcrossed-Eri mutant's penetrance, with a two-tailed *p* value as indicated.

SUPPORTING LITERATURE CITED

Ahnn, J. and Fire, A., 1994

A screen for genetic loci required for body-wall muscle development during embryogenesis in *Caenorhabditis elegans*. Genetics **137**: 483-498.

Bargmann, C. I. and Avery, L., 1995 Caenorhabditis elegans: Modern biological analysis of an organism: 225–250.

Bird, D.M., 1992 Sequence comparison of the *Caenorhabditis elegans dpy-13* and *col-34* genes, and their deduced collagen products. Gene **120**: 261-266.

Bowerman, B., Ingram, M.K., and Hunter, C.P., 1997 The maternal par genes and the segregation of cell fate specification activities in early *Caenorhabditis elegans* embryos. Development **124**: 3815-3826.

Brenner, S., 1974 The genetics of *Caenorhabditis elegans*. Genetics **77**: 71-94.

Broadbent, I.D. and Pettitt, J., 2002 The *C. elegans hmr-1* gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation. Curr. Biol. **12**: 59-63.

Chang, W., Tilmann, C., Thoemke, K., Markussen, F.H., Mathies, L.D. et al., 2004 A *forkhead* protein controls sexual identity of the *C. elegans* male somatic gonad. Development **131**: 1425-1436.

Cheeseman, I.M., Niessen, S., Anderson, S., Hyndman, F., Yates, J.R. et al., 2004 A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. **18**: 2255-2268.

Church, D.L. and Lambie, E.J., 2003 The promotion of gonadal cell divisions by the *Caenorhabditis elegans* TRPM cation channel GON-2 is antagonized by GEM-4 copine. Genetics **165**: 563-574.

Duchaine, T.F., Wohlschlegel, J.A., Kennedy, S., Bei, Y., Conte, D. et al., 2006 Functional proteomics reveals the biochemical niche of *C. elegans* DCR-1 in multiple small-RNA-mediated pathways. Cell **124**: 343-354.

Fire, A., Albertson, D., Harrison, S.W., and Moerman, D.G., 1991 Production of antisense RNA leads to effective and specific inhibition of gene expression in *C. elegans* muscle. Development **113**: 503-514.

Fischer, S.E.J., Butler, M.D., Pan, Q., and Ruvkun, G., 2008 Trans-splicing in *C. elegans* generates the negative RNAi regulator ERI-6/7. Nature **455**: 491-496.

Hunt-Newbury, R., Viveiros, R., Johnsen, R., Mah, A., Anastas, D. et al., 2007 High-throughput in vivo analysis of gene expression in *Caenorhabditis elegans*. PLoS Biol. **5**: e237.

Hüsken, K., Wiesenfahrt, T., Abraham, C., Windoffer, R., Bossinger, O. et al., 2008 Maintenance of the intestinal tube in *Caenorhabditis elegans*: the role of the intermediate filament protein IFC-2. Differentiation **76**: 881-896.

Jose, A.M., Smith, J.J., and Hunter, C.P., 2009 Export of RNA silencing from *C. elegans* tissues does not require the RNA channel SID-1. Proc. Nat. Aca. Sci USA **106**: 2283-2288.

Kamath, R.S. and Ahringer, J., 2003 Genome-wide RNAi screening in *Caenorhabditis elegans*. Methods **30**: 313-321.

Kennedy, S., Wang, D., and Ruvkun, G., 2004 A conserved siRNA-degrading RNase negatively regulates RNA interference in *C. elegans*. Nature **427**: 645-649. Ko, F.C. and Chow, K.L., 2003

A mutation at the start codon defines the differential requirement of *dpy-11* in *Caenorhabditis elegans* body hypodermis and male tail. Biochem. Biophys. Res. Commun. **309**: 201-208.

MacQueen, A.J., Baggett, J.J., Perumov, N., Bauer, R.A., Januszewski, T. et al., 2005 ACT-5 is an essential *Caenorhabditis elegans* actin required for intestinal microvilli formation. Mol. Biol. Cell. **16**: 3247-3259.

Mango, S.E., 2007 The *C. elegans* pharynx: a model for organogenesis. WormBook: 1-26.

McKay, S.J., Johnsen, R., Khattra, J., Asano, J., Baillie, D.L. et al., 2003 Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. **68**:159-169.

Meissner, B., Warner, A., Wong, K., Dube, N., Lorch, A. et al., 2009 An integrated strategy to study muscle development and myofilament structure in *Caenorhabditis elegans*. PLoS Genet. **5**: e1000537.

Myllyharju, J. and Kivirikko, K.I., 2004 Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. **20**: 33-43.

Pavelec, D.M., Lachowiec, J., Duchaine, T.F., Smith, H.E., and Kennedy, S., 2009 Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in *Caenorhabditis elegans*. Genetics **183**: 1283-1295.

Seydoux, G. and Fire, A., 1994 Soma-germline asymmetry in the distributions of embryonic RNAs in *Caenorhabditis elegans*. Development **120**: 2823-2834.

Simmer, F., Tijsterman, M., Parrish, S., Koushika, S.P., Nonet, M.L. et al., 2002 Loss of the putative RNA-directed RNA polymerase RRF-3 makes *C. elegans* hypersensitive to RNAi. Current Biology **12**: 1317-1319.

Tabara, H., Hill, R.J., Mello, C.C., Priess, J.R., and Kohara, Y., 1999a *pos-1* encodes a cytoplasmic zinc-finger protein essential for germline specification in *C. elegans*. Development **126**: 1-11.

Tamai, K.K. and Nishiwaki, K., 2007

bHLH transcription factors regulate organ morphogenesis via activation of an ADAMTS protease in *C. elegans*. Dev Biol. **308**: 562-71.

Timmons, L., Court, D.L., and Fire, A., 2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in *Caenorhabditis elegans*. Gene **263**: 103-112.

Vanderzalm, P.J., Pandey, A., Hurwitz, M.E., Bloom, L., Horvitz, H.R. et al., 2009 *C. elegans* CARMIL negatively regulates UNC-73/Trio function during neuronal development. Development **136**: 1201-1210.

Vastenhouw, N.L., Brunschwig, K., Okihara, K.L., Müller, F., Tijsterman, M., et al., 2006 Gene expression: long-term gene silencing by RNAi. Nature **442**: 882.

Vought, V.E., Ohmachi, M., Lee, M.H., and Maine, E.M., 2005

EGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in *Caenorhabditis elegans*. Genetics **170**: 1121-1132.

Wang, D., Kennedy, S., Conte, D., Kim, J.K., Gabel, H.W. et al., 2005 Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature **436**: 593-597.

Wang, P., Zhao, J., and Corsi, A.K., 2006 Identification of novel target genes of CeTwist and CeE/DA. Dev. Biol. **293**: 486-498.

Winston, W.M., Molodowitch, C., and Hunter, C.P., 2002

Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295: 2456-2459.

Xing, J., Yan, X., Estevez, A., and Strange, K., 2008 Highly Ca²⁺-selective TRPM channels regulate IP3-dependent oscillatory Ca²⁺ signaling in the *C. elegans* intestine. J. Gen. Physiol. **131**: 245-255.