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ABSTRACT
Marker-assisted selection holds promise for highly influencing tree breeding, especially for wood traits, by

considerably reducing breeding cycles and increasing selection accuracy. In this study, we used a candidate
gene approach to test for associations between 944 single-nucleotide polymorphism markers from 549
candidate genes and 25 wood quality traits in white spruce. A mixed-linear model approach, including
a weak but nonsignificant population structure, was implemented for each marker–trait combination.
Relatedness among individuals was controlled using a kinship matrix estimated either from the known
half-sib structure or from the markers. Both additive and dominance effect models were tested. Between 8
and 21 single-nucleotide polymorphisms (SNPs) were found to be significantly associated (P # 0.01) with
each of earlywood, latewood, or total wood traits. After controlling for multiple testing (Q # 0.10), 13 SNPs
were still significant across as many genes belonging to different families, each accounting for between 3
and 5% of the phenotypic variance in 10 wood characters. Transcript accumulation was determined for
genes containing SNPs associated with these traits. Significantly different transcript levels (P # 0.05) were
found among the SNP genotypes of a 1-aminocyclopropane-1-carboxylate oxidase, a b-tonoplast intrinsic
protein, and a long-chain acyl-CoA synthetase 9. These results should contribute toward the development
of efficient marker-assisted selection in an economically important tree species.

ACQUISITION of a perennial woody growth habit
has had an enormous impact on the evolution of

plants and of life on land (Groover 2005). Trees have
shaped many terrestrial ecosystems and provide wood
and fiber used by diverse industries worldwide. The
adaptive importance of wood (secondary xylem) is in-
dicated by its remarkable diversity among species, its
significant variation within species, and its developmen-
tal plasticity. Although many of the genes involved in
wood growth and development are known (e.g., Whetten

et al. 2001; Aspeborg et al. 2005; Pavy et al. 2008a), the
genetic basis underlying the variability of wood structure is
only partly understood.

Revealing the genetics of wood and growth traits in
forest trees initially proceeded through mapping quan-
titative trait loci (QTL) (Groover et al. 1994; Bradshaw
and Stettler 1995; Grattapaglia et al. 1996; Plomion
et al. 1996; Sewell et al. 2000; Wheeler et al. 2005;

Ukrainetz et al. 2008). Major QTL were identified and
reported to explain up to a total of $25% of the natu-
rally occurring variation depending on the species and
the trait (Kirst et al. 2004). One limitation with linkage
mapping is its requirement for large families with known
relatedness, i.e., full-sib families in plants or extended
pedigrees in humans (Myles et al. 2009). Furthermore,
QTL do not replicate well across populations of different
genetic background and across environments (Mackay

2001; Pelgas et al. 2011; Ritland et al. 2011).
In contrast to QTL mapping, genetic association

mapping [or linkage disequilibrium (LD) mapping]
can readily be applied to natural or breeding popula-
tions to identify marker–trait associations that remain
linked following a large number of recombinations over
a population’s history. LD mapping has led to research
advances in human, animal, and plant genomics and is
increasingly being adopted as the method of choice to
dissect quantitative traits (Hirschhorn et al. 2002;
Cheung et al. 2005; Zhu et al. 2008; Goddard and
Hayes 2009; Grattapaglia et al. 2009; Rafalski
2010; Neale and Kremer 2011). By utilizing past re-
combination events, association mapping increases the
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resolution of marker–trait associations. It is advantageous
for species with long generation times because it may
capture a broader sampling of allelic variation in a sin-
gle study. Its application in undomesticated species like
forest trees also holds potential to enhance and accel-
erate genetic resource management activities, including
gene conservation and marker-assisted selection (MAS)
for quantitative traits (Haussmann et al. 2004).

Two approaches can be taken in association mapping
to identify marker–trait associations. Randomly chosen
markers may be distributed evenly across the genome
to capture associations through LD with the genes con-
trolling the traits. The alternative is to select a subset
of candidate genes that are hypothesized to contrib-
ute to the quantitative variation on the basis of prior
knowledge. Because conifers have immense genomes
(Murray 1998) and low LD within gene limits (Neale

and Savolainen 2004), genome-wide coverage of ran-
domly selected markers is not practical. On the other
hand, the rapid accumulation of cDNA sequences and
expression data in conifers (e.g., Pavy et al. 2008a) en-
able large-scale candidate gene approaches.

Association studies of wood traits in a handful of tree
species suggest the approach is promising but results
have been species dependent. In Eucalyptus nitens
(H. Deane & Maiden) Maiden, allelic variation in a cin-
namoyl CoA reductase gene explained a small but sig-
nificant proportion of the variation in the cellulose
micofibril angle (Thumma et al. 2005), and a variant
of a cobra-like gene was linked to cellulose content
and pulp yield (Thumma et al. 2009). In Pinus taeda
L., four cell wall genes, i.e., S-adenosyl methionine syn-
thase 2, cinnamyl alcohol dehydrogenase, the water-
stress inducible protein lp3-l, and a-tubulin, explained
�3% of the variation in wood specific gravity, in the
proportion of latewood to earlywood and in cellulose
microfibril angle (González-Martínez et al. 2007). In
P. radiata L., 10 single-nucleotide polymorphisms (SNPs)
located on nine genes were associated with several traits
(Dillon et al. 2010) but none of the genes overlapped
with previous studies. This observation and the small
number of genes tested to date suggest that these asso-
ciations likely represent a small fraction of the genes
that influence wood trait variation. Larger-scale analyses
are needed to resolve this question and have become
feasible with the availability of genome sequences for
Populus and Eucalyptus (available at http://www.phyto-
zome.net/), as well as large-scale cDNA resources in
conifers such as Picea and Pinus (Mackay and Dean
2011).

The objective of the present study was to test for
associations between SNP markers and wood quality
and radial growth traits in white spruce [Picea glauca
(Moench) Voss]. White spruce is widely distributed in
North America (Nienstaedt and Teich 1972) and col-
onizes a wide range of sites covering most of Canada
and a part of the United States (Nienstaedt and

Zasada 1990). It exhibits high genetic variability for neu-
tral markers ( Jaramillo-Correa et al. 2001; Bousquet
et al. 2007; Namroud et al. 2008), for growth and phenol-
ogy (Li et al. 1993, 1997), and for wood traits (Corriveau
et al. 1991; Beaulieu 2003; Lenz et al. 2010). As in many
other tree species, spruce breeding aimed at wood qual-
ity has seen limited application because wood traits are
time consuming and expensive to assess and change
over the course of tree development. It is expected that
DNA markers that explain a significant portion of the
variation in wood traits would help to develop more
rapid and effective breeding methods. Our specific
objectives were (1) to identify single-marker associa-
tions with 25 wood traits using SNPs from several hun-
dred candidate genes, (2) to determine the proportion
of the variation in wood traits explained by these asso-
ciations, (3) to test whether RNA transcript accumula-
tion varies between the different genotypes for
significant associations, and (4) to confirm the potential
of a candidate gene approach for characterizing the
genetic basis of wood traits.

MATERIALS AND METHODS

Association population: The discovery population consisted
of 492 30-year-old trees representing 165 open-pollinated
families from 40 provenances sampled in Quebec, Canada.
For each family, 3 trees were selected to cover as much as
possible of the existing range of diameters at breast height
(dbh) observed in the family. Needle tissue as well as 12-mm
increment cores taken at breast height were collected, stored
on ice, and transported to the Canadian Forest Service
facilities where they were stored in a freezer at 210� until
further treatment.
Phenotypic data: Pith to bark profiles of wood physical

attributes were obtained using the SilviScan technology
(Evans and Ilic 2001) at FPInnovations (Vancouver, BC,
Canada). SilviScan is designed to rapidly measure wood attrib-
utes using a combination of X-ray densitometry, X-ray diffrac-
tometry, and image analysis. Measurements were taken from
the radial surface of 2 · 7-mm wood flitch samples
prepared from the 12-mm cores. The thawed samples were
acetone extracted and conditioned at 40% relative humidity.
Air-dry (20�) density was measured in 25-mm steps using X-ray
densitometry. Microfibril angle (MFA) was measured in 1-mm
steps using X-ray diffractometry, and wood modulus of elas-
ticity (MOE) was calculated from the densitometry and dif-
fractometry data. Cell wall thickness as well as radial and
tangential cell dimensions (�1.5 mm) were obtained using
optical microscopy and image analysis. From the raw data,
early-, late-, and total wood averages were weighted by calcu-
lated annual ring area for each of the attributes (Table 1).

Wood traits (supporting information, File S1) were submit-
ted to principal component analysis (PCA) to create a small
number of orthogonal composite wood characters that could
explain a large proportion of the variation observed in the raw
characters (Legendre and Legendre 1998). PCA was carried
out using PROC PRINCOMP (Sas Institute 2008) with stan-
dardized data. Three components were found to be sig-
nificant (Frontier 1976), and altogether they explained
83% of the total variation. The first principal component was
mainly influenced by wood stiffness, density, and cell wall
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thickness. The second one was composed of coarseness and
cell diameters in both the tangential and the radial directions.
Microfibril angle was the trait having the largest influence on
the third one.

Selection of candidate genes: White spruce candidate gene
sequences were identified from .16,500 white spruce consen-
sus sequences that were assembled from 50,000 partially se-
quenced cDNA clones produced by the Arborea project
(Pavy et al. 2005a). A total of 747 candidate genes were iden-
tified for SNP discovery and classified on the basis of expres-
sion data or information available for each gene. The
expression data included an analysis of vascular tissues and
needles in P. glauca with a custom cDNA array based on
9503 gene clusters (Pavy et al. 2008a) and three such studies
of secondary xylem carried out in pine species (Plomion et al.
2000; Pavy et al. 2005b; Paiva 2006). The functional annota-
tions considered white spruce transcription factors, as well as
sequences known to be involved in cell wall and lignin synthe-
sis, as well as sequences reported to be potentially involved in
wood formation.

SNP discovery by resequencing genomic DNA: PCR primers
for amplification and resequencing were designed using
Primer3 software (Rozen and Skaletsky 2000). Whenever
possible, one of the primers was anchored outside of the cod-
ing regions to ensure specificity of amplification (Pavy et al.
2008b). Primer pairs were typically designed upon either one
or two regions per gene.

Genomic DNA was extracted from 100 mg of fresh foliage
of each of 25 individuals with the DNeasy Plant Mini Kit
(QIAGEN, Mississauga, ON, Canada). DNA concentrations
were assessed by GeneSpec spectrophotometer (MiraiBio,
Alameda, CA). For the detection of polymorphism, DNA
samples were pooled in equal amounts (4 ng of DNA per
individual) before polymerase chain reaction (PCR) amplifi-
cation following Pelgas et al. (2004). Genomic DNA was also
extracted from ground haploid megagametophyte tissue to
detect paralogs in SNP discovery (Pelgas et al. 2006; Pavy
et al. 2008b). PCR amplifications were performed in volumes
of 30 ml containing 10–20 ng template DNA, 20 mM Tris-HCL
(pH 8.4), 1.5–2.5 mM MgCl2, 220 mM each dNTP, 0.25 mM
each primer, and 0.04 unit Platinum Taq DNA polymerase
(Invitrogen, Carlsbad, CA). PCR reactions were performed
on a Peltier Thermal Cycler PTC200 (DNA Engine, DYAD;
MJ Research, Waltham, MA) with an initial denaturation of
4 min at 94�, followed by 12 cycles of touchdown PCR (a 30-sec
denaturation step at 94�, an annealing step with temperature
decreasing from 66� to 60�, and a 3-min extension step at 72�)
and by 35 cycles of a 30-sec denaturation step at 94�, then

a 30-sec annealing step at 58�, and a 3-min extension at 72�,
with a final extension of 10 min at 72�.

Single-locus products were sequenced for both DNA strands
using BigDye Terminator v3.0 cycle sequencing reaction kits
(Applied Biosystems, Foster City, CA) and an automated ABI
Prism 3700 Genetic Sequencer (Applied Biosystems). DNA
sequence strands were analyzed with SEQMAN software
(Swindell and Plasterer 1997). SNPs were detected from
the polymorphic positions indicated by double peaks or frame-
shifts in sequence chromatograms of the DNA pool (Pelgas
et al. 2004). For each SNP detected, haploid DNA sequences
from individual megagametophyte tissue were used to elimi-
nate any heterozygous nucleotide position due to paralogy
(Pelgas et al. 2006; Pavy et al. 2008b). A total of 809 of the
SNPs discovered using genomic sequences were used to con-
struct part of a 1536-SNP GoldenGate genotyping array (Illu-
mina, San Diego).
In silico SNP discovery in expressed sequence tags: In silico

SNPs were detected using expressed sequence tags (ESTs)
obtained from Sanger sequencing of 17 white spruce cDNA
libraries (Pavy et al. 2005a, 2006). Essentially, the search for
SNPs was made using �6500 contigs derived from at least two
sequenced clones. SNP prediction was made using a proprie-
tary method developed by Gydle (Quebec City, QC, Canada)
or PolyBayes version 3.0 (Marth et al. 1999), with a p-prior of
0.01 and a probability that a position represents one SNP
(P

SNP
) $ 0.99 (Pavy et al. 2006). A total of 727 SNPs among

the in silico SNPs identified were selected and added to the
809 already discovered to complete the panel of 1536 SNPs.
SNP genotyping: The minimum distance between any pair

of SNPs selected for genotyping was 200 bp, whether
considering genomic DNA or cDNA sequences. This distance
was based on the information on low LD in Norway spruce,
black spruce, and white spruce genes (Huertz et al. 2006;
Namroud et al. 2010). About 20% of the SNPs that had been
identified by resequencing were retained for genotyping.

Genotyping was conducted at the Genome Quebec In-
novation Centre (McGill University, Montreal), using the
highly multiplexed Illumina GoldenGate assay (Shen et al.
2005) with 250 ng of template DNA (at a rate of 50 ng/ml)
for each of the 492 trees. Positive and negative controls were
added to each 96-well sample plate. The intensity data for
each SNP were normalized and assigned a cluster position
(and resulting genotype) with the BeadStudio software (Illu-
mina), and a quality score for each genotype was generated. A
GenCall score cutoff of 0.25 was used to determine valid SNP
genotypes and each retained SNP was required to have
a minimum GenTrain score of 0.25 (Fan et al. 2003; Pavy
et al. 2008b). Gentrain scores measure the reliability of SNP
detection on the basis of the distribution of data points for
each genotypic class.

Of the 1536 SNPs arrayed, 1021 (66.5%) were found to be
polymorphic with a minimum GenTrain score of 0.25, which
is similar to the success rate observed with a previous array in
the same species (Pavy et al. 2008b). On the basis of positive
controls, the repeatability of the assay for these SNPs was
99.98%. By selecting 472 trees that could be genotyped effi-
ciently for at least 90% of their SNPs, the number of orthol-
ogous valid SNPs was reduced to 969. Moreover, rare SNPs as
well as SNPs showing abnormal distributions in this popula-
tion subset were excluded, such as those with very low (,1%)
heterozygosity. Hence, the final data set consisted of 472 trees
genotyped for 944 high-quality SNPs representing 549 differ-
ent genes. Three of these 472 individuals could not be used in
the association study because their wood traits could not be
assessed (File S2).
Linkage disequilibrium: Unphased linkage disequilibrium

between pairs of SNPs within each candidate gene was evaluated

TABLE 1

Eight SilviScan wood physical attributes measured for
earlywood (EW), latewood (LW), and total wood (TW)
as well as the percentage of earlywood in white spruce

Abbreviation Trait definition

DEN Density at 8% moisture content
MFA Microfibril angle
MOE Modulus of elasticity
CRS Tracheid coarseness estimate
CWT Tracheid cell wall thickness estimate
RCD Tracheid cell diameter in radial direction
TCD Tracheid cell diameter in tangential direction
ARW Average ring width
PCT Percentage of earlywood
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using the squared allelic correlation coefficient (r2). The de-
cay of LD with distance of base pairs between sites within the
same candidate gene was estimated with both a linear model
and a nonlinear regression, using the nls function in the nmle
package of the R software v2.12.2 (Hill and Weir 1988; R
Development Core Team 2010).
Population structure: Associations between markers and

traits are susceptible to errors and biases caused by covariance
between the marker and polygenic effects (Kennedy et al.
1992). Although population structure is rare in outbred forest
species (Neale and Savolainen 2004), it is considered the
most serious systematic bias producing false-positive associations
(Marchini et al. 2004). When population structure is present,
bias occurs because subgroups of relatives tend to share more
markers and gene alleles genome-wide (Breseghello and
Sorrells 2006) than a pair of individuals drawn at random
from the population.

White spruce has previously been shown to harbor little or
no population genetic structure for neutral markers in the
region sampled ( Jaramillo-Correa et al. 2001; Namroud
et al. 2008, 2010). The presence of population structure was
further checked for our data set using the model-based clus-
tering algorithm implemented in the software STRUCTURE,
version 2.2 (Pritchard et al. 2000, 2007). The entire popula-
tion of 469 trees was analyzed, assuming that the 944 SNP loci
were unlinked. Contrary to previous studies (see, for instance,
González-Martínez et al. 2007), the discovery population
was not genotyped using another class of neutral genetic
markers (e.g., microsatellites) to test for population structure,
as the large number of available SNPs was considered suffi-
cient. The correlated allele frequency model was used as it is
likely the most appropriate as white spruce populations are
almost always expected to be connected by gene flow. This
model implies that allele frequencies in each putative cluster
are likely to be similar (Falush et al. 2003). Preliminary tests
showed that STRUCTURE was detecting substructures par-
tially confounded with the half-sib structure. Furthermore,
as K values were increasing, log probability of data Pr(X jK)
(Equation 12 in Pritchard et al. 2000) never reached a max-
imum value, which is needed to determine the uppermost
level of structure. To avoid the detection of substructure con-
founded with half-sib structure, we randomly selected one in-
dividual in each of the 165 open-pollinated families making
up the discovery population and analyzed this subset with
STRUCTURE to determine the uppermost hierarchical level
of structure in our discovery population. Two other subsets
containing one tree per open-pollinated family were also com-
posed, using the remaining trees. Then, 20 replicate runs of
STRUCTURE analyses at the uppermost level of structure
found with the first subset were performed for each of the
three subsets, and the software CLUMPP ( Jakobsson and
Rosenberg 2007) was used to rank the clusters and estimate
Q coefficients’ averages over replicate runs.
Test statistics for association: Single-marker–based tests

were performed for each of the wood traits assessed for ear-
lywood, latewood, and total wood, as well as for the three
principal components retained. Moreover, two genetic mod-
els were tested for each trait, i.e., the additive (three genotype
classes) and dominant (two genotype classes) effects models.
A mixed linear model (MLM) was fit for each pair of pheno-
typic traits and SNP markers (Yu et al. 2006; Malosetti et al.
2007). This model accounts for relatedness among individuals
through a pairwise kinship matrix estimated from marker gen-
otypes. As kinship coefficients do not always reflect with accu-
racy the known relatedness among individuals, such as the
half-sib structure present in our discovery population, we first
built a matrix with known half-sib relationships and used it in
a first series of analyses (File S3). We also built a relatedness

matrix with Nason’s kinship coefficients (Loiselle et al. 1995)
to check whether the SNPs found to be significantly associated
with wood traits using the half-sib structure of relatedness
would still be significant when using Nason’s kinship coeffi-
cients (File S4). Estimates were obtained using the 944 SNPs
for the 469 trees with the software SPAGeDi, version 1.2
(Hardy and Vekemans 2002). As suggested by Yu et al. (2006),
negative kinship values were set to zero and a 469-square
matrix was fit using the SAS MIXED procedure (Littell et al.
2006; Sas Institute 2008) in the following “K ” (per notation in
Yu et al. 2006) MLM,

y5 Sa1Qn1 Zu1 e ; (1)

where y is a vector of preadjusted wood quality measurements,
a is a vector of fixed SNP effects, u is the vector of random
breeding values or “background” polygenic effects, e is the
vector of random residual error effects, and S, Q, and Z are
incidence matrices of 0’s and 1’s relating records (y) to fixed
(a and n) and random (u) effects. Expectation of the model is
E(u) ¼ E(e) ¼ 0 and thus E(y) ¼ Sa 1 Qn, where random
additive and residual variances are assumed to be
VarðuÞ 5 G 5 2Ks2

a and VarðeÞ 5 R 5 Is2
e , but are esti-

mated with REML and K and I equal to kinship and identity
coefficient matrices, respectively.

Failure to appropriately adjust for multiple testing may
produce excessive false positives or overlook true positive
signals in association studies when using large numbers of
SNP markers. To correct for multiple testing (944 analyses per
wood trait), the positive false discovery rate (FDR) method
(Storey and Tibshirani 2003) was used to identify signifi-
cant SNPs after correcting for multiple testing using the
QVALUE software, version 1.0 (Storey 2002; Storey et al.
2004). Normality of studentized residuals was checked using
the Kolmogorov D and the Shapiro–Wilk W statistics obtained
with the “UNIVARIATE” procedure in SAS (Sas Institute
2008). Phenotypic data were not transformed as they were
normally, or approximately normally, distributed.
Microarray transcript profiling: Given current limitations

and costs of high-throughput genotyping technologies, a can-
didate gene approach should represent a suitable strategy for
association studies with complex traits in species haboring
large genomes and little LD. One criterion to consider for
selecting genes is the preferential accumulation of transcripts
in tissues directly linked with the traits of interest but this had
not been directly tested in forest trees. This report aimed to
test whether the 549 candidate genes tested in the association
study were preferentially expressed in wood tissues and
whether the candidate genes harboring significant SNPs were
more likely to show a tissue-specific expression pattern than
genes not harboring significant SNPs. A transcript profiling
experiment compared secondary xylem (Xy), secondary
phloem (Ph), and needles (Ne) using a large-scale custom
microarray that included the 549 candidate genes.

Tissue samples were obtained from 3-year-old in vitro clon-
ally propagated white spruce seedlings of one genotype (see
Pavy et al. 2008a for details). All the tissues were frozen in
liquid nitrogen. Total RNA was isolated following the method
of Chang et al. (1993) with modifications described in Pavy
et al. (2008a). The custom microarray was composed of a total
of 32,640 oligonucleotides, 25,094 of which represented
unique P. glauca gene sequences. A description of the se-
quence data is available at http://www.arborea.ca. Microarray
hybridizations used five independent samples of each tissue
type; two samples labeled with different dyes were hybridized
to each slide (dye swaps) and image analyses proceeded fol-
lowing Pavy et al. (2008a). Data analysis was carried out using
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BIOCONDUCTOR (http://www.bioconductor.org) in the R

statistical environment and following the method described
in Pavy et al. (2008a). Briefly, data were normalized and the
fold changes in spot intensity were estimated by fitting a linear
model, using the limma package (release 2.0.7, http://www.
bioconductor.org/packages/bioc/1.8/vignettes/limma/inst/
doc/usersguide.pdf). Contrasts between the three types of
tissues were estimated for each of the 549 genes, and signifi-
cance of the differential expression was tested with a moder-
ated t-statistic with P-values adjusted for multiple testing with
the method of Benjamini and Hochberg (1995). The candi-
date genes were classified according to their expression pro-
files and placed into 1 of 10 tissue preference classes (see
Figure 1). A likelihood-ratio test (Sokal and Rohlf 1981)
allowed testing for the independence of the tissue preference
class distributions between the genes that carried SNPs that
were associated with each of the wood traits at a # 0.05 before
correction for multiple testing, as well as the genes that had
nonsignificant SNPs.

Transcript analysis of SNP genotypes: RNA transcript levels
were determined for genes underlying the SNPs significantly
associated with wood traits to test whether RNA transcript
accumulation varied between the different genotypic classes
of the SNPs. Because of the large number of determinations,
only genes with significant SNPs after correction for multiple
testing were targeted (see RESULTS). Transcript levels were
determined by RT–qPCR with gene-specific primers. The lat-
ter could not be designed for either of the Tubulin genes
because of the high level of sequence similarity among family
members. For each SNP genotypic class, 8–25 trees were in-

dividually sampled by removing three small plugs of �1 cm2

each of actively growing secondary xylem tissue at 1.3 m from
the ground; these represented the entire annual growth pro-
duced near the end of the earlywood phase. Tissue handling
and RNA extractions were performed as described for white
spruce (Bedon et al. 2007); complementary DNA synthesis was
prepared from 500 ng of total RNA (Boyle et al. 2009). PCR
mixtures were assembled using LightCycler 480 SYBR Green I
Master (Roche, Basel, Switzerland) with an epMotion 5075
pipetting robot (Eppendorf, Hamburg, Germany) and ampli-
fications used a LightCycler 480 (Roche) with conditions and
melting curve analyses as described (Boyle et al. 2009). The
number of RNA transcript molecules was determined using
the LRE methodology (Rutledge and Stewart 2008) adap-
ted for Excel (Boyle et al. 2009). Normalization was per-
formed using GeNorm (Vandesompele et al. 2002) and the
reference genes ef1a (BT102965), cdc2 (BT106071), and rpl3A
(BT115036). The measured number of transcript molecules
was transformed to a log scale, and differential expression
across three or two genotypic classes was tested by ANOVA
or t-tests, respectively.

RESULTS AND DISCUSSION

Linkage disequilibrium: The pattern of the squared
allelic correlation coefficient (r2) with base pair dis-
tance within candidate genes (Figure 2) illustrated the
rapid LD decay in our white spruce population, with r2

values dropping to ,0.25 within ,100 bp. These results
are congruent with those of Namroud et al. (2010)
from complete or nearly complete gene sequences in
the same species.
Population structure: A weak but nonsignificant pop-

ulation structure with the presence of two subpopula-
tions was detected using the model-based clustering
method, as the patterns obtained were as expected for
structured populations (Pritchard et al. 2007); i.e., the
log probability of Pr(X jK) values reached a maximum
for K ¼ 2 (Figures 3 and 4). The presence of a weak
population structure or even its absence in white spruce
at the regional level was expected on the basis of results
of studies using various classes of neutral genetic

Figure 1.—Distribution of genes into tissue-
preferential transcript accumulation classes.
(A–F) Each chart represents a different set of
gene sequences (Xy, xylem; Ph, phloem; Ne,
needles). (A) Whole-trancriptome microarray
(25,094 genes). (B) Genes containing a SNP
significantly associated with wood property
traits (13 genes). (C) Genes containing
a SNP submitted to association analysis (549
genes). (D–F) Genes containing a SNP signif-
icantly associated with wood traits at P # 0.05:
(D) MFA (60 genes), (E) tracheid cell diame-
ter in radial direction (RCD) (57 genes), and
(F) DEN (48 genes).

Figure 2.—Patterns of intralocus linkage disequilibrium
(LD) for white spruce estimated using the squared allelic cor-
relation coefficient between each pair of SNPs within candi-
date genes.
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markers (Alden and Loopstra 1987; Furnier and
Stine 1995; Jaramillo-Correa et al. 2001; Namroud

et al. 2008, 2010). Despite the nonsignificance of this
weak population structure, it was nevertheless consid-
ered in the mixed model analyses to minimize the pos-
sibility of any false positive association due to the weak
population structure signal.

Genetic association: Results of single-marker associa-
tions with each of the 25 wood traits as well as with each
of the significant principal components are presented
in File S5 and File S6. For each of the three principal
components, we found between 11 and 15 significant
associations (P # 0.01) with SNPs when using the addi-
tive effects model and between 10 and 14 SNPs for the
dominant effects model. However, after correction for
multiple testing with a significance level of Q # 0.10,
none of these associations were still significant. For the
individual wood traits, a total of 23,600 (944 SNPs · 25
traits) and 22,400 (896 SNPs · 25 traits) association tests
were performed for the additive and dominant effects
models, respectively. Globally, 6.4% and 5.8% of these
tests were significant at a level of P # 0.05, respectively,
and 405 (43%) SNPs and 425 (47%) SNPs were found
associated with at least one of the wood traits. These
proportions are of the same order of magnitude as
those found for cold hardiness-related traits in Douglas
fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco],
for which 7.8% of the association tests performed were
found to be significant at this nominal threshold level

(Eckert et al. 2009). They are also close to the 8.3%
of significant associations (106 of 1276 tests) found
by González-Martínez et al. (2007) for wood traits
in P. taeda.

The number of significant associations was slightly
reduced when using a nominal threshold of P # 0.01.
Hence, for each of the wood traits assessed, we found 8–
19 significant SNPs for earlywood, 11–18 SNPs for late-
wood, and 7–18 SNPs for total wood, depending on the
genetic effects model (Figure 5); this represents an
overall 1.5% of significant association tests and the
numbers of SNPs associated with at least one wood trait
were 136 (14%) and 148 (17%), for the additive and
dominant effects models, respectively. The phenotypic
variation explained by each of these significant SNPs
varied between 1.5% and 5.4%. The total variation in
wood traits that could be explained by considering all
these SNPs simultaneously if we were assuming an ad-
ditive effects model and the absence of interaction be-
tween significant SNPs could sum up to 60%. However,
the exact percentage could be obtained only when con-
sidering simultaneously all these SNPs in a MLM
analysis.

After correction for multiple testing, the number of
significant associations was reduced to 25, with 8, 4, and
3 significant associations for early-, late-, and total wood
traits, respectively, with an additive effects model, and
with 4, 4, and 2 associations, respectively, with a domi-
nant effects model (Table 2). Some SNPs were found to
be significantly associated with more than one trait
whereas others were positive with both the additive
and the dominant effects models. Thus, globally, 13
different SNPs (discovery rate of 1.4%) harbored by
as many genes (2.4% of the sampled gene set) were
found to be significantly associated with 10 different
characters. Among these 13 SNPs, 5 represented syn-
onymous substitutions, 3 were nonsynonymous, and
others were located in untranslated regions. Silent SNPs

Figure 3.—Plot of the mean of L(K) over 20 runs for each
of K clusters ranging from 1 to 7 as a function of the number
of clusters. A constant of 15,500 was removed on the y-axis.

Figure 4.—Genetic clustering of the 469 white spruce indi-
viduals of the discovery population using the program
STRUCTURE. Vertical bars represent individuals, and shaded
and solid areas represent proportional membership of each
individual in each of the two clusters. Individuals are ranked
by latitude and longitude.

Figure 5.—Number of significant (P # 0.01) SNP associa-
tions before correction for multiple testing for eight early-
(EW), late- (LW), and total wood (TW) traits (see Table 1)
in white spruce. Associations were tested using an additive
(ADD) or dominant (DOM) effects mixed linear model.
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should not be considered a priori as potential false pos-
itives because they could affect transcript levels and co-
don usage (e.g., Kimchi-Sarfati et al. 2007; Chamary
and Hurst 2009). While any of these SNPs could be
quantitative trait nucleotides (QTNs), they could also
be linked to adjacent causal but untested SNPs.

The number of significant SNPs is consistent with
previous reports of association studies in forest trees.
For example, González-Martínez et al. (2007)
reported 7 significant associations with wood traits in
P. taeda at a FDR of Q # 0.10. Recently, using the same
statistical threshold, Dillon et al. (2010) reported 10
SNPs significant with a variety of wood traits in P. radi-
ata. Thumma et al. (2005) reported 2 SNPs associated

with microfibril angle in E. nitens. For climate-related
traits such as cold hardiness and phenological charac-
ters, there seems to be a trend toward larger numbers
of significant associations. Besides Ingvarsson et al.
(2008) who found 2 SNPs associated with bud set in
Populus tremula L., Eckert et al. (2009) reported 30
significant associations related to adaptation in Pseudot-
suga menziesii var. menziesii, whereas Holliday et al.
(2010) detected 35 significant SNPs for bud set and
frost hardiness in P. sitchensis (Bong.) Carr.

The phenotypic variation in wood traits captured by
SNPs deemed significant by FDR in our study varied
between 2.6 and 5.4% (Table 2). Small SNP effects
are consistent with other association studies in
which between 1.5 and 6.5% of the total phenotypic
variation was accounted for by SNPs (Thumma et al.
2005; González-Martínez et al. 2007; Ingvarsson
et al. 2008; Dillon et al. 2010). These small SNP ef-
fects are in accordance with polygenic quantitative
models of wood traits (Zobel and Jett 1995; Brown

et al. 2003; Pot et al. 2006).
When analyzed simultaneously and without taking

marker interactions into consideration, the cumulative
effect of multiple significant SNPs for the same trait
could explain a higher proportion of the total pheno-
typic variation in some cases (e.g., 9.7%, 8.7%, and
11.1% for average ring width in latewood, cell wall
thickness in earlywood, and percentage of earlywood,
respectively, with the additive effects model; Table 2).
For some of the significant SNPs in the present discov-
ery population, one of the homozygous genotype classes
had very few observations (,1%) in both the additive
and the dominant effects models (Table 2). In these
cases, the corresponding genotypic effects could be bi-
ased and partly drive the significance of SNP loci under
the dominant effects model. However, when examining
phenotypic data, we observed that these individuals

TABLE 4

Transcript accumulation comparing genotypic classes for selected gene SNPs significantly associated with wood traits

Gene
Sequence ID

Functional
annotation Traita

No. of trees testedb RNA transcript moleculesc Significance (P)d

Homo1 Hetero Homo2 Homo1 Hetero Homo2 Additive Dominance

GQ0172_O22 b-Expansin PCT 11 16 16 539 686 750 0.245 0.384
GQ03010_F13 ACC oxidase PCT, ARW 25 12 87 122 0.030* NA
GQ03113_N22 MYB4 CWT, CRS 17 22 17 1488 1467 1476 0.158 0.684
GQ02908_P24 b-TIP RCD 10 8 8 2458 1718 2769 0.075 0.026*,e

GQ02829_F04 Glycoside
hydrolase
family 28

CWT 8 9 133 144 0.201 NA

GQ03806_H09 LACS9 ARW 8 14 744 1230 0.015* NA
aSee Table 1 for abbreviated trait names.
bTranscript levels were assessed in small plugs of differentiating xylem removed from the tree at 1.3 m from the ground.
cRNA transcripts are the average number of RNA molecules per 1 mg of total RNA, after normalization (see materials and

methods).
dStatistical significance was determined using a one-way analysis of variance. P, probability. The dominance model compares
homo1 and hetero to homo2. NA, not applicable. *, significant at P # 0.05.
eStatistically significant when testing for underdominance.

Figure 6.—Relationship between SNP genotypic classes
and transcript accumulation. (A) Estimated genotypic effects
of a significant SNP (PGWD1-1094) for earlywood average ring
width (and TW-ARW, see Table 2) in the additive effects
model. (B) Transcript levels of the corresponding gene de-
termined by qPCR.
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possessing rare homozygous genotypes did not neces-
sarily have the most extreme phenotypes. Thus, the
effects of these loci may in fact be real. To confirm this,
it would require (1) a larger discovery population to
capture a greater frequency of low-frequency genotypes
and/or (2) an analytical method that accounts for in-
frequent observations resulting in less bias.

Genes carrying significant SNPs belonged to 11
known gene families and 1 family of unknown function.
These gene families are listed in Table 2. The fact that
significant associations were found with both growth
(e.g., average ring width, percentage of earlywood)
and wood quality (e.g., tracheid coarseness, microfibril
angle) traits is encouraging, as we are usually interested
in selecting for both traits simultaneously. In this study,
we could not find any SNP significantly associated with
wood density after correction for multiple testing.
Wood density is determined by several wood character-
istics such as cell size and wall thickness, the ratio of
earlywood to latewood, and other factors (Zobel and
Van Buijtenen 1989). This is likely the main reason
why no significant associations were observed between
wood density and SNPs once a correction for multiple
testing was performed. This trend might also be specific
to the present study because significant associations with
wood density were reported for P. taeda (González-
Martínez et al. 2007).

Tissue profiling and genotypic transcript accumulation:
Transcript accumulation levels were determined by
using a large-scale custom oligonucleotide microarray
that was composed of 25,094 probes, each estimated to
represent a different white spruce gene (see materi-

als and methods). Total RNA hybridizations against
these probes were for comparisons between secondary
xylem, secondary phloem, and young needles (Figure
1). Xylem-preferential RNA accumulation compared
to that in needles or phloem was found for 10 of the
13 genes harboring SNPs significantly associated with
one or more of the wood traits, and the majority of
genes (7 of 13) were xylem preferential compared to
both needles and phloem (Table 3 and Figure 1B).
Transcripts of the expansin sequence (GQ0172_O22), a tu-
bulin (GQ03005_C12), and a sequence of unknown func-
tion (GQ03006_P17) were the most xylem-preferential
sequences. Two of the genes had low transcript levels
in all tissues, and only the receptor kinase-like tran-
scripts accumulated to lower levels in xylem compared
to either needles or phloem.

These transcript accumulation profiles were com-
pared to microarray data for the 549 genes tested for
association with wood traits and for the transcriptome
represented by the microarray (Figure 1). A total of
4133 (16% of the total) of the sequences on the micro-
array accumulated preferentially in xylem compared to
both phloem and needles, and 672 (3%) sequences
were xylem preferential in reference to phloem or
needles (Figure 1A). Of the 549 genes tested for asso-

ciation, 29% accumulated preferentially in xylem com-
pared to both phloem and needles (Figure 1C), as was
expected considering the criteria for selecting the
candidate genes. Many of these 549 genes were also
preferential to phloem (29%) and only 7% were pref-
erential to needles (compared to 20% in the whole
transcriptome). Considering the genes and SNPs puta-
tively associated with wood traits before correction for
multiple testing, the distributions of transcript profiles
varied slightly from trait to trait but they were not sig-
nificantly different from the overall set of 549 candidate
genes tested (not shown). For example, the proportion
of xylem-preferential transcripts varied from 36% for
cellulose MFA (Figure 1D) to 24% for tracheid cell di-
ameter (TCD) (Figure 1E), while density (DEN) was
slightly enriched for phloem preferential transcripts
(Figure 1F).
The association study reported here considered many

more candidate genes than previous investigations
related to conifer wood properties, which targeted
small sets of genes known to be expressed in secondary
xylem tissues (e.g., González-Martínez et al. 2007;
Dillon et al. 2010). Our analysis selected xylem-
expressed transcripts and included sequences that were
not preferentially expressed in xylem. For example, the
24 MYB transcription factor sequences and the 13 gly-
cosyl hydrolase protein sequences gave diverse expres-
sion profiles (not shown). The observation that most of
the SNPs significantly associated with wood property
traits were in genes with xylem-preferential transcript
accumulation indicates that expression data are rele-
vant for selecting candidate genes. Interestingly, a few
genes with low transcript levels in xylem were also asso-
ciated with phenotypic variation in wood traits, but one
of these genes was found to be strongly expressed in
differentiating xylem of mature trees (Table 4),
whereas tissue preferential patterns were determined
in whole xylem of young trees (Figure 1).
Transcript levels could be compared among the

different genotypic classes for six of the significantly
associated SNPs (after FDR correction for multiple
testing) by using RT–qPCR with gene-specific primers
as described in Boyle et al. (2009). The assays used
differentiating secondary xylem from the 30-year-old
trees of the association population. Transcript accumu-
lation varied significantly between genotypic classes of
the SNPs for the LACS9, b-TIP, and ACC oxidase genes
(Table 4), which represents 50% of the SNPs analyzed.
The MYB and the expansin transcripts did not differ
significantly between genotypes, and in determinations
of the glycoside hydrolase family 28 sequence tran-
scripts were too variable among trees to draw any con-
clusions. These differences in transcript accumulation
among genotypic classes are discussed below with their
putative function and relationship with variation in phe-
notypic trait. To our knowledge, only Thumma et al. (2009)
previously reported a link between SNPs, transcript levels,

Association Genetics of White Spruce Wood Traits 207



and phenotypic variation in a forest tree population.
These authors identified one SNP in a COBRA-like
gene of E. nitens (EniCOBL4A) that was associated with
allelic expression imbalance and with the amount of
cellulose deposited in the wood.

Potential role of genes containing significant associ-
ation SNPs: Long-chain acyl-CoA synthetase 9 (LACS9):
The LACS enzymes provide the acyl-CoA pools used in
the synthesis of phospholipids and triacylglycerols in
vegetative and seed tissues (Pongdontri and Hills

2001; Shockey et al. 2002). They play essential roles
in development via fatty acid metabolism, including
the provision of energy. The nine LACS characterized
in Arabidopsis were shown to activate 14–20 carbon
fatty acids (Shockey et al. 2002) and are expressed in
all tissues. Extended analyses of the LACS gene family
have begun to reveal the roles of individual members in
the peroxisome (Fulda et al. 1997) and chloroplast
(Schnurr et al. 2002). Interestingly, the LACS9 tran-
script levels were low in the young trees used for
the tissue profiling (not shown), but were among the
highest in the secondary xylem of the mature trees
(Table 4).

Individuals of only one of the two homozygous classes
were present in the discovery population and, on
average, they showed larger earlywood and total wood
average ring width than heterozygotes (Table 2 and
Figure 6a). The SNP (PGWD1-1094) was located in the
39-UTR, which could indicate a role in the regulation of
transcription, RNA stability, or post-transcriptional RNA
processing. The transcript levels differed significantly
between genotypes (P ¼ 0.02) (Table 4). The estimated
allelic effects of the SNP (PWD1-1094) on the wood trait
(Figure 6a) corresponded well with estimates of tran-
script levels (Figure 6b); i.e., heterozygotes had both
lower average width of the latewood ring (ARW) and
lower transcript levels than the homozygotes.

Glycoside hydrolase family 28 [polygalacturonase (pectinase)
family protein] (GQ02829_F04): The glycoside hydrolase pro-
tein family 28 (GH28) is a large family of plant proteins
that comprises enzymes with several known activities.
Pectin-modifying enzymes have well-established roles in
the primary cell wall, in particular during cellular
growth and in biotic interactions; however, data are
lacking about wood formation. Seven putative family
members were represented on the genotyping chip and
all but one of them accumulated transcripts preferen-
tially in phloem (four) or xylem (two). The SNP
(PGWD1-1396) is a synonymous substitution (TGC–
TGT) coding for a cysteine. It was represented by only
one class of homozygous individuals in the discovery
population. On average, the homozygotes had thinner
cell walls than the heterozygotes (1.77 mm vs. 1.86 mm);
the transcript levels did not differ between genotypes.

Glycoside hydrolase family 10: The glycoside hydrolase
protein family 10 (GH10), formerly known as cellulase
family F, comprises several enzymes with known activities.

They play important roles in primary cell wall metabo-
lism, particularly in the reassembly and degradation
process (Girke et al. 2004) and in secondary cell wall
metabolism (Ichinose et al. 2010). The Populus ge-
nome encodes seven GH10 xylanases, but only
PttXyn10A had detectable ESTs in the wood-forming
tissue (Geisler-Lee et al. 2006) and was highly upregu-
lated in different stages of wood formation (Aspeborg
et al. 2005; Takahashi-Schmidt 2008). Only one family
member was included in our genotyping chip. The SNP
(PGWD1-0107) consisted of a nonsynonymous substitu-
tion (CCA–GCA) coding for proline and alanine that
was found to be associated with latewood MFA in a dom-
inance effects model.

Pectinesterase: Pectin methylesterases (PME) are known
to catalyze the demethylesterification of cell wall poly-
galacturonans, one of the major polysaccharides in the
primary wall and middle lamella. In dicotyledonous
plants, these ubiquitous cell wall enzymes are involved in
important developmental processes including cellular
adhesion and stem elongation (Micheli 2001). It has
been suggested that the prevalence of neutral PMEs in
active cells would allow cell wall expansion (Guglielmino
et al. 1996). Pectinesterase transcripts were among the dif-
ferentially regulated andmost strongly expressed genes in
tension wood of Populus (Andersson-Gunneras et al.
2006) and in the juvenile cambial region of E. grandis
(Gallo De Carvalho et al. 2008). A pectin methyl ester-
ase fromwood-forming tissues of hybrid aspen(P. tremula x
tremuloides Michx.) was found to act as a negative regu-
lator of both symplastic and intrusive growth of develop-
ing wood cells (Siedlecka et al. 2008). Fourteen different
pectinesterase sequences were present on our genotyping
chip and all but 2 of them accumulated more transcripts
in phloem (7) or xylem (5). The SNP (PGWD1-1096) rep-
resents a nonsynonymous substitution (TGC–GGC) cod-
ing for cysteine and glycine that was associated with both
earlywood and total wood cell wall thickness.

MYB4 (R2R3-MYB domain DNA-binding protein): The
MYB4 gene has been linked to secondary cell wall for-
mation, including lignification in the secondary xylem
in both P. taeda and P. glauca. In P. glauca, transcripts
levels were highest in the secondary xylem of the main
stem and of large roots and were upregulated during
the formation of compression wood (Bedon et al.
2007). Closely related MYBs of P. taeda (Patzlaff
et al. 2003a,b) and of E. gunnii Hook f. (Goicoechea
et al. 2005) have been shown to activate the transcription
of genes encoding lignin synthesis enzymes and to regu-
late lignin accumulation and cell wall formation when
overexpressed in angiosperm model plants. Overexpres-
sion of the P. taeda MYB8 gene in transgenic spruce
resulted in ectopic secondary cell wall thickening (Bomal
et al. 2008). The SNP (PGWD1-1282) represents a synony-
mous substitution (GCA–GCG) coding for alanine. It was
associated with cell wall thickness and fiber coarseness,
both of which are related to wood density and radial
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and tangential cell diameter. Heterozygous and dominant
homozygous trees showed significantly higher fiber
coarseness for the whole wood ring (279 mg/m) and
for earlywood (269 mg/m) than the alternate homozy-
gous type (266 mg/m and 255 mg/m, respectively, Table
2). A similar trend was observed for cell wall thickness
(Table 2). The transcript levels did not differ signifi-
cantly (P ¼ 0.16) between genotypes, despite the large
number of individuals tested (Table 4).

Galactosyl-transferase XT2 (UDP-xylosyltransferase 2): The
hemicellulose xyloglucan (XyG) is believed to play
an important role in cell wall structure and function
(Eckardt 2008). A number of enzymes participate
in XyG biosynthesis, including b-(1/4)-glucan synthase,
a-fucosyltransferases, b-galactosyltransferases, and a-
xylosyltransferases (Girke et al. 2004). A lack of de-
tectable xyloglucan in the xxt1/xxt2 double mutant in
Arabidopsis caused a significant reduction in the stiff-
ness and strength parameters of the mutants (Cavalier
et al. 2008). The xyloglucan acts as a tether in the ex-
tracellular matrix and plays a key role in the loosening
and tightening of cellulose microfibrils (Hayashi and
Kaida 2011). The SNP (PGWD1-0511) represents a syn-
onymous substitution (TCA–TCG) coding for a serine.
It was associated with earlywood percentage.

Receptor-like kinase (ATP binding/kinase/protein serine/
threonine kinase) (GQ03211_O01): Receptor-like kinases
(RLKs) control a wide range of processes, including
development, disease resistance, hormone perception,
and self-incompatibility. The Arabidopsis genome con-
tains .600 RLK homologs, representing nearly 2.5% of
the annotated protein-coding genes (Shiu and Bleecker
2001). In Arabidopsis, the PXY receptor-like kinase
plays a role in the maintaining of cell polarity in the
meristem and is required for the differentiation of spe-
cialized and spatially separated xylem and phloem cells
(Fisher and Turner 2007). In poplar, transcripts of
three receptor-like kinases accumulate a different stage
of secondary xylem differentiation (Schrader et al.
2004). In P. glauca, transcript accumulation was clearly
preferential to phloem, suggesting that communication
between xylem and phloem may affect wood properties.
The SNP (PGWD1-1313) is a synonymous substitution
(ACA–ACG) coding for threonine in the exon. It was
associated with both the ARW and the proportion of
earlywood (PCT), two closely related traits.

ACC oxidase (1-aminocyclopropane-1-carboxylate oxidase):
This enzyme forms ethylene from its precursor, ACC. In
plants, ethylene has signaling functions such as stimu-
lation of fruit ripening and is required for CO2 activity.
The closest ACC oxidase homolog in Arabidopsis was
regulated during in vitro xylem vessel element differen-
tiation (Kubo et al. 2005). Endogenous ACC was shown
to accumulate in the vascular cambium specifically on
the lower side of branches and was linked to compres-
sion wood differentiation in P. contorta Dougl. ex Loud.
ssp. latifolia (Savidge et al. 1983). Evidence also suggested

that ethylene plays a role in the control of xylem differ-
entiation by inducing the activity of enzymes involved in
lignification (Miller et al. 1984). In P. glauca, ACC
oxidase transcripts were moderately preferential to sec-
ondary xylem (Table 3). ACC oxidase protein accumu-
lated significantly more in secondary xylem compared
to needles and in response to gravitational stress in P.
pinaster Ait. (Plomion et al. 2000). The SNP (PGWD1-
0560) represents a nonsynonymous substitution (GGG–
GAG) coding for glycine and glutamine. It was also asso-
ciated with both latewood average ring width and early-
wood percentage. The transcripts varied between the two
genotypic classes that could be compared (P ¼ 0.03)
(Table 4).
b-Expansin [AtEXPB3 (Arabidobsis thaliana Expansin B3)]:

Expansins are a large family of proteins that play major
roles in plant growth and development by acting on cell
walls. b-Expansins act through cell wall loosening in
a variety of developmental functions. They have been
mostly described in grasses; no studies on gene expres-
sion or function in secondary cell wall development or
wood formation have been reported. The SNP was lo-
cated in an intron (A*–C*) and was associated with the
PCT. The homozygous trees had significantly more ear-
lywood (84%) than the two other genotypes (81%).
Our data suggested that the transcripts may accumulate
to lower levels in the homozygous genotype with higher
PCT, but the difference was not statistically significant.
The b-expansin gene might be somehow related to the
differences in stiffness and cell wall thickness between
earlywood and latewood, but this remains untested.
Tubulins (TUA2 and TUB3): Several lines of evidence

suggest that the xylem predominant TUA and TUB
isoforms are specifically associated with cellulose syn-
thesis during secondary cell wall formation (Oakley

et al. 2007). Both of the P. glauca tubulins were ex-
pressed preferentially in xylem and shared sequenced
homologies with tubulins from P. taeda that are highly
abundant among ESTs from xylem cDNA libraries
(Yang et al. 2004) and SAGE sequencing data (Lorenz
and Dean 2002).
The P. glauca a-tubulin gene (TUA2) is highly similar

to sequences that have been linked to the formation of
cortical microtubules in P. taeda (González-Martínez

et al. 2007), developing xylem-preferential transcript ac-
cumulation in P. radiata (Cato et al. 2006), ESTs that are
unique to xylem librairies in Populus (Pilate et al. 2004),
and transcripts levels that correlated with auxin concen-
tration in developing secondary xylem in P. tremula x
tremuloides (Nilsson et al. 2008). A b-tubulin gene was
shown to be preferentially expressed in xylem in Euca-
lyptus (Paux et al. 2004). b-Tubulin (EgrTUB1) was dif-
ferentially regulated in Eucalyptus branches and was
reported to be likely involved in cell wall biosynthesis
(Qiu et al. 2008). The TUA2 SNP (PGWD1-0863) repre-
sents a synonymous substitution (GGA–GGC) coding for
glycine in a tubulin, whereas the TUB3 SNP (PGWD1-
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0354) is located in the 39-UTR (T–C). Both of the SNPs
were associated with latewood ARW; the SNP in TUB3
was also associated with earlywood percentage (PCT)
(Table 2).

b-TIP (b-TONOPLAST INTRINSIC PROTEIN): Mem-
brane intrinsic proteins form a family of 35 genes in the
Arabidopsis genome, and 13 of them encode tonoplast
intrinsic proteins (TIPs) that localize in the vacuolar
membrane (tonoplast) (Johanson et al. 2001). Most
TIPs are classified as probable or confirmed aquapor-
ins. In Arabidopsis, both the b-TIP (also known as
TIP3,2) and the highly similar a-TIP (TIP3,1) are
expressed preferentially in germinating seeds, while
other classes of TIPs are strongly expressed during seed
maturation and dehydration (Vander Willigen et al.
2006). In P. taeda, ESTs of a TIP and an aquaporin
were overrepresented in a xylem cDNA library made
from compression wood compared to normal wood
(Whetten et al. 2001). Compression wood produces
tracheids with altered cell shape and thicker and more
lignified secondary cell walls. We found that b-TIP
accumulated preferentially in xylem and phloem com-
pared to needles. The SNP (PGWD1-1070) was located
in an intron (T*–C*) and was associated with the tra-
cheid diameter in the latewood (dominance model).
The homozygote (homo2) had an average diameter
of 23.6 mm, whereas the other genotypic class (hetero-
zygotes and homo1) had a slightly lower average diame-
ter of 23 mm (Table 2). The transcript levels also differed
significantly between genotypic classes but did not appear
to be positively correlated with the wood phenotype. The
transition from earlywood to latewood is strongly influ-
enced by water availability, and osmotic stress-related tran-
scripts including aquaporins have been found to
accumulate in latewood (Egertsdotter et al. 2004).
The final latewood morphology appears to involve
b-TIP but its functional role remains to be tested.

Methodological and statistical challenges: Association
studies in conifer populations have many attractive
features because discovery populations with weak or
nonexistent population structure and high nucleotide
diversity can be assembled (Neale and Savolainen
2004); however, several challenges remain to be over-
come. This study shows that a larger number of less
frequent genotypes should be captured by increasing
the sample size to better estimate their effects. A larger
sample size may also offer the opportunity to include
experimental design features in the model (e.g., blocks)
so that estimates of genetic effects are adjusted accord-
ingly. Second, additional information on marker covari-
ance structure can be accommodated in the model only
if significant LD is present among markers and QTL. In
natural conifer populations, LD is expected to sink
to very low levels over distances that are spanned of
average-sized genes (e.g., r 2 # 0:2� 100 bp in our data
set), making the discovery of additional SNPs unlikely to
yield strong LD across candidate genes. More recently,

LD has been shown to also have substantial gene-to-gene
variation, in natural populations of spruces (Namroud
et al. 2010). As more SNPs are discovered, LD informa-
tion within genes may be used to infer haplotypes and
predict their effects, which has been found to yield
more accurate estimates of genetic effects (Calus
et al. 2008). Although LD falls to low levels in natural
populations of conifers, smaller populations contain
greater potential LD partly as a function of population
size (Neale and Savolainen 2004). Thus, if genomic
resources are fixed, working with smaller population
sizes, such as elite breeding material, would be another
way of utilizing LD information in an association anal-
ysis. In such situations, genomic selection (Wong and
Bernardo 2008; Grattapaglia and Resende 2011) or
multiple-gene selection could also become attractive.

Finally, there is a wealth of information on longitudi-
nal phenotypic data that at first appears underutilized
by taking overall means or by discretizing the data
into cross-sectional “age” traits. From one standpoint,
markers found to be significant over developmental ages,
year environments, and locations can be interpreted
as stable and thus possibly useful for MAS (González-
Martínez et al. 2007). However, if trait (co)variances
change over time, more complex, functional models
may better serve both researchers whose interests lie in
the prediction of genetic effects (e.g., breeders) and
those interested in elucidating gene functions (e.g.,
geneticists and molecular biologists). In this study, the
application of more complex functional models, which
require more parameters to be estimated, was limited by
the relatively small size of the data set. A forthcoming
study is planned in an expanded sampling of our discov-
ery population with individuals genotyped at more SNPs
per gene and more candidate genes, taking these con-
siderations into account.

Conclusion: Given the large number of SNPs that
explained significant amounts of phenotypic variation
before corrections for multiple testing, it stands to
reason that several of these SNPs could indeed not be
false positives and be declared significant if the size
of the discovery population was expanded. This is a line
of research that we are pursuing actively. This study
represents one of the first well-documented cases
showing significant differential transcript accumulation
among the genotypes of a SNP associated with a trait of
interest in a population of conifer trees. It also shows that
transcript accumulation profiles are appropriate for
selecting candidate genes and finding SNPs associated
with wood properties, because most of the significant
SNPs were found in genes that had higher transcripts
levels in secondary xylem. While the number of signifi-
cant associations and the proportion of variation
explained were small, they were in line with expectations
derived from statistical and quantitative genetics theory.
These results obtained using large-scale gene sampling
and high-throughput genotyping approaches combined
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with gene expression represent significant progress
toward the identification of genes that control wood
traits and the development of successful marker-aided
selection in conifer trees. This trend will continue given
the current rapid advances in high-throughput sequenc-
ing and genotyping.
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