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ABSTRACT
The Collaborative Cross (CC) is a renewable mouse resource that mimics the genetic diversity in humans.

The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share
similar genetic structures to those of F2 individuals. In contrast to F2 mice, genotypes of RIX can be inferred
from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice do not typically
share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical
modeling to avoid a large number of false positive findings. For complex traits, mapping multiple genes
simultaneously is arguably more powerful than mapping one gene at a time. In this article, we describe how
we have developed a Bayesian quantitative trait locus (QTL) mapping method that simultaneously deals
with the special genetic architecture of RIX and maps multiple genes. The performance of the proposed
method is evaluated by extensive simulations. In addition, for a given set of RI lines, there are numerous
ways to generate RIX samples. To provide a general guideline on future RIX studies, we compare several
RIX designs through simulations.

THIS study was motivated by the mouse Collaborative
Cross (CC) project. As its main thrust, the CC pro-

ject seeks to overcome several of the severe limitations of
human complex trait studies. One major limitation of
such studies is that only the simplest genetic models can
be resolved with confidence. Many other models are
plausible, but difficult or impossible to resolve. Because
it is closely related to humans, themouse serves as a great
model organism for studying human diseases. Most hu-
man genes have functional mouse counterparts, and
genomes of both organisms are organized similarly. Tra-
ditional RI lines are generated by crossing only two in-
bred parental strains, resulting in extensive blind spots
where a sizable proportion of the genome is identical by
decent (IBD) and a low percentage of genetic variation
(15%). In contrast, the CC recombinant inbred (RI)
lines are derived from a genetically diverse set of eight
founder inbred strains (Chesler et al. 2008; Iraqi et al.
2008). This selection of founder strains was predicted
to result in uniform genome-wide high levels of varia-
tion. Genetic variation is randomized in the CC lines
so that the causal relationships can be established.
Another major advantage of the CC mice is that they
are retrievable and extensible, which supports data

integration over space and time and at all levels—
from molecules and cells to physiological systems and
environments.
Recombinant inbred intercross (RIX) panels are

created by generating diallel F1 progeny from a set of
RI lines. Given a population of L RI lines, this approach
can potentially produce L(L – 1)/2 genetically distinct
RIX individuals. Subsets of RIX can be used to evaluate
biological predictions of the ways in which an individual
would respond to environmental perturbations and
provide statistical support for prediction accuracy. Be-
cause RI mice are homozygote at each locus, the geno-
types of the derivative RIX mice can be imputed in
advance from the genotypes of the parental RI lines.
RIX mice with identical genotypes can be regenerated
whenever needed. Therefore the CC mice provide us
with an ideal platform to generate testable hypotheses
that can be used for accurate probability-based whole-
organism biological predictions. Preliminary data from
the CC strains and their derivative RIX progenies are
now being generated. Developing appropriate analysis
tools for mapping CC data is critical for the success of
the CC project.
Though at the individual level, the genome of each

RIX mouse has similar genetic structures to those of F2
individuals, statistical analyses for F2 data cannot be
applied directly to RIX data. Backcross or F2 subjects
used in traditional quantitative trait locus (QTL) map-
ping have the same genetic relatedness to each other,
which may not be the case for RIX data. Some RIX mice
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may share common parental RI lines, making them
more related to each other than the RIX mice that do
not share parental RI lines. Past investigations (Tsaih
et al. 2005; Zou et al. 2005) have shown that careful
statistical analyses that correctly handle the unbalanced
relatedness in RIX are important to achieve valid results.

Over the last decade, mapping genes of human
diseases has been an important research area. The vast
majority of genes, however, have been limited to simple
Mendelian inheritance patterns and well-defined quan-
titative traits with relatively large and consistent effects.
Recent emphasis has shifted from mapping simple
Mendelian traits to complex traits with complex genetic
causes. Complex traits have proved far more resistant to
genetic analysis. Many available QTL mapping methods
map only one or a few QTL at a time and may not be
efficient for complex traits. Variable selection methods
are useful in selecting variables that are not necessarily
individually important but that are, in fact, jointly im-
portant. By treating multiple QTL mapping as a model/
variable selection problem (Broman and Speed 2002),
forward and stepwise selection procedures have been
proposed to search for multiple QTL. Although simple,
these methods have limitations, such as uncertainty
about the number of QTL and difficulty in assessing
the significance of associated tests due to their sequen-
tial model building nature. Bayesian QTL mapping
methods (Satagopan et al. 1996; Sillanpää and Arjas
1998; Stephens and Fisch 1998; Yi and Xu 2000, 2001;
Hoeschele 2007) have been developed, in particular,
to detect multiple QTL by treating the number of QTL
as a random variable and modeling it specifically using
reversible-jump Markov chain Monte Carlo (MCMC)
(Green 1995). Due to the variable dimensionality of
the parameter spaces associated with different models
(different numbers of QTL), one must take care of ac-
ceptance probabilities for such changes in dimension,
which in practice may not be handled correctly (Ven
2004). One leading approach to variable selection in
QTL analysis is the Bayesian analysis based on the com-
posite model space framework (Godsill 2001, 2003),
first introduced by Yi (2004) to the genetic mapping
community. Reversible-jump MCMC (Green 1995) and
stochastic search variable selection (SSVS) (George and
McCulloch 1993) are special cases of this analysis. An
alternative to variable selection with SSVS is shrinkage
methods (e.g., the lasso method of Tibshirani 1996),
which shrink the effects of unimportant variables near
zero. The Bayesian shrinkage methods of Xu (2003) and
Wang et al. (2005) place simple normal priors on QTL
effects. While they can be modified easily, the specific
priors used in Xu (2003) and Wang et al. (2005) induce
improper posteriors (Ter Braak et al. 2005).

In this article, for RIX data, we extend the fixed-effect
model of Xu (2003) to a mixed-effects model, where
the complex relationship structure among RIX samples
is specifically dealt with through random polygenic

effects. To avoid improper posteriors, we apply the prior
modification of ter Braak et al. (2005). To the best of
our knowledge, this is the first simultaneous multiple-
QTL mapping method specifically designed for RIX
data. This article is organized as follows. In statistical
method, we first introduce the RIX experiment, and
then we propose a mixed-effects model and describe
a Bayesian variable selection procedure. In simulation
study, extensive simulations are performed to evaluate
the proposed model and to compare several RIX de-
signs. Summary comments are given in the discussion.

STATISTICAL METHOD

In this section, after describing the RIX design, we
propose the multiple-QTL model and introduce the
Bayesian variable selection procedure.

RIX design: The RIX panel is created as F1 progenies
of RI intercross. For L RI lines, a total of L(L – 1) re-
ciprocal RIX and L(L – 1)/2 nonreciprocal RIX can be
generated (see Figure 1 in Zou et al. 2005). For simpli-
fication and without loss of generality, in the sequel, we
consider the nonreciprocal RIX. Let the parental RI
lines be RI1, RI2, . . . , RIL, respectively, and denote the
derived RIX from the RIi · RIj mating as RIXij, where
i, j ¼ 1, . . . , L with i , j or, alternatively, as RIXk, where
k ¼ 1, 2, . . . , L(L – 1)/2 for ease of notation. Let n (#L
(L – 1)/2) be the total number of RIX sampled and p be
the total number of genetic markers. Further, let the
phenotypes (the dependent variable) be yi (i ¼ 1, . . . ,
n) and the discrete marker genotypes be mij (i ¼ 1, . . . ,
n, j ¼ 1, . . . , p). We set mij to 21, 0, and 1, referring to
genotypes aa, Aa, and AA, respectively.

Model: It is often acknowledged that quantitative
traits are controlled by both major genes and polygenes,
that is, genes with intermediate and small effects, re-
spectively. The aggregating effect of polygenes may
greatly reduce our ability to map major genes if not
modeled carefully. Visscher and Haley (1996) mod-
eled polygenic effects for data derived from commonly
used experimental crosses. Methods using Wright’s re-
lationship matrix to accommodate different correlations
between related individuals have also been developed for
pedigree data and diallel data (Goldgar 1990; Amos
1994; Zhu and Weir 1996; Xu 1998).

RIX data can be viewed as the last generation of a
large pedigree that originated from a set of inbred
founder strains. Therefore, methods for analyzing pedi-
gree data can be directly applied. In our model, we as-
sume that major QTL and polygenes affect the trait of
interest independently, and the aggregating polygenic
effect is normally distributed. For simplicity, we assume
that all putative QTL are located on markers, a reason-
able assumption with dense maps. For sparse maps, we
can employ interval mapping ideas of Wang et al. (2005)
and Huang et al. (2010). Specifically, we fit the mixed-
effects model
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where m is the overall mean, aj and bj are the additive
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RIX has two and only two parents. In the model above,
we assume that the polygenic effect is additive, which
can be easily extended by adding a random dominance
polygenic term in model (1).

In the above model, the observed data are y ¼ {yi},
marker genotypes M ¼ {mij}, and parental RI informa-
tion (i.e., matrix A). The unobserved variables include
m;  s2

0;  and s
2
a ; the regression coefficients a ¼ {aj}, b ¼

{bj}; and the random effects a ¼ {ak}. Below we describe
the prior distributions of the unobserved variables.
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Here d (0 , d # 1
2) is used to ensure that the posterior

distribution is proper (ter Braak et al. 2005).

Let s2 ¼ s2
j and v2 ¼ v2j

onon
.

The specific priors above result in known marginal
conditional distributions for all variables; therefore
simple Gibbs sampling can be performed, which we
describe below.

MCMC algorithm for posterior computation: We first
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we perform the following Gibbs sampling steps. Super-
scripts (t) and (t 1 1) signify the MCMC iteration steps
and we set t ¼ 0 for all initial values.

Step 1. Updating m: m(t11) is drawn from the normal
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Step 6. Updating s2
a , the random effect variance is

sampled from the scale-inverted x2-distribution,PL
k 51a

2ðt11Þ
k   = x2L22d:

After this round of sampling, we complete one sweep
of the MCMC and are ready to continue our sampling
for the next round by repeating steps 1–6 with the new
parameter values. When the chain converges, the sam-
pled parameters approximately follow the joint poste-
rior distribution. For any parameter of interest, one can
easily obtain, for example, its posterior means and var-
iances from the joint posterior sample.

SIMULATION STUDY

In this section, we ran extensive simulations to evaluate
the performance of the proposed Bayesian method. Speci-
fically, we compared the proposed mixed-effects model
with the linear regression model, which ignores the poly-
genic effect. We also investigated several RIX designs
and compared their abilities in mapping major QTL.

Parental RI genotypes were simulated in R/qtl
(Broman et al. 2003), from which RIX genotypes and
phenotypes were generated accordingly. For all simu-
lations, we set the true population mean (m) and re-
sidual variance ðs2

0Þ to 5.0 and 10, respectively. A single
chromosome with total length 15 M was simulated, on
which 301 evenly spaced markers (resulting in 300
5-cM intervals) are located. The number of QTL sim-
ulated was 4 or 11, and their corresponding genetic
effects and locations are summarized in Tables 1 and
2. Three s2

a values, 0, 1, and 8, were simulated, repre-
senting the situations where no, low, and high poly-
genic effects exist, respectively.

From 100 RI parental lines, a total of 5000 unique
nonreciprocal RIX can be produced. For a realistic
sample size n that we set to 300 unless specified, we
considered the following five designs: (1) the complete-
pair design, selecting 25 RI lines randomly and gener-
ating all 300 possible nonreciprocal RIX; (2) the loop
design (a clockwise mating scheme described in Zou
et al. 2005), ordering the 100 RI lines randomly to form
a circle and then mating each RI line (clockwise) with
the next 3 RI lines after it (i.e., RI1 mated with RI2, RI3,
and RI4 and RI2 mated with RI3, RI4, and RI5, and so
on); (3) the 50 complete-independent design, ordering the
100 RI lines randomly and mating RI1 with RI2, RI3 with

RI4, RI5 with RI6, and so on. The maximal number of
RIX that can be generated from this design is L/2. To
achieve the sample size of 300, we may alternatively
employ (4) the replicated-complete-independent design, sam-
pling six offspring instead of one from each RIi · RIj
mating in design 3, or (5) the 300 complete-independent
design, generating 300 independent RIX samples from
600 RI lines as in design 3.

For each simulated datum, the MCMC sampler was
run for a total of 63,000 cycles. We set the initial values
of m, a, and b to 0. The initial values of s2

0;  s
2
a ;  s

2; and
v2 were all set to 1. We further set d to 0.001. The first
3000 cycles were discarded as burn-in, and the remain-
der of the chain was thinned by keeping 1 of every 50
samples, resulting in a total of 1200 samples for post-
MCMC analysis. All the analysis was done in MATLAB
and the MATLAB source code is available at http://
bios.unc.edu/�fzou/software/BayesianRIX.

We also analyzed each datum with the linear model

yi 5m1
Xp
j51

h
xij aj 1wij bj

i
1 ei ; (2)

the gold model for RIX data when the true polygenic
effect is zero. All the priors in this linear model were set
the same as their counterparts in model (1).

Case 1. Four QTL and s2
a 5 0: Under this setup, we

expect model (2) to perform better than the
mixed-effects model (1). The question, more specif-
ically, concerns how much better the linear model
(2) is. Figure 1 displays the posterior mean estimates
for one simulated datum. The two models perform
nearly the same, indicating very little power loss of
the proposed mixed-effects model.

Case 2. Four QTL and s2
a 5 8:When the polygenic effect

is not zero, Zou et al. (2005) and Tsaih et al. (2005)
have shown that linear models that ignore the unbal-
anced relatedness of RIX result in high false positive
rates. Figure 2 clearly reflects this. The linear model
produces large estimated additive effects for many null

TABLE 1

Locations and sizes of the four simulated QTL

QTL no. Position (cM) Additive effect Dominant effect

1 0 2 2
2 250 1 1
3 500 2 0
4 750 0 2

TABLE 2

Locations and sizes of the 11 simulated QTL

QTL no. Position (cM) Additive effect Dominant effect

1 0
ffiffiffiffiffi
10

p ffiffiffiffiffi
10

p
2 150

ffiffiffi
5

p ffiffiffi
5

p
3 300

ffiffiffiffiffiffiffi
2:5

p ffiffiffiffiffiffiffi
2:5

p
4 450

ffiffiffi
2

p ffiffiffi
2

p
5 600

ffiffiffiffiffiffiffiffiffi
1:25

p ffiffiffiffiffiffiffiffiffi
1:25

p
6 750

ffiffiffiffiffiffiffiffiffi
1:25

p ffiffiffiffiffiffiffiffiffi
1:25

p
7 900

ffiffiffiffiffiffiffiffiffiffiffiffi
0:625

p ffiffiffiffiffiffiffiffiffiffiffiffi
0:625

p
8 1050

ffiffiffiffiffiffiffiffiffiffiffiffi
0:625

p ffiffiffiffiffiffiffiffiffiffiffiffi
0:625

p
9 1200

ffiffiffiffiffiffiffiffiffi
0:25

p ffiffiffiffiffiffiffiffiffi
0:25

p
10 1350

ffiffiffiffiffiffiffiffiffi
0:25

p ffiffiffiffiffiffiffiffiffi
0:25

p
11 1500

ffiffiffiffiffiffiffiffiffi
0:25

p ffiffiffiffiffiffiffiffiffi
0:25

p
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markers. In contrast, the four simulated QTL are map-
ped successfully by the mixed-effects model and most
of the null markers have their posterior means close to
0. Table 3 shows that for the four simulated QTL, their
estimated genetic effects from the mixed-effects model
are close to those simulated. The second QTL located
at 250 cM is the weakest and its estimated genetic
effects depart most from its true genetic values.

In summary, the mixed-effects model performs sub-
stantially better than the linear model. Interestingly,
there is no significant difference between the two models
for detecting dominance effects. This may be attributed
to the fact that the simulated polygenic effect is additive,
which is less likely confounded with the dominance
QTL effects.

Case 3. Eleven QTL and s2
a 5 1: Under this setup, the

heritabilities of 11 QTL decrease from left to right.
Figure 3 summarizes the analysis results. The esti-
mated genetic effects of the top 6 QTL are signifi-
cantly different from 0, and the smallest QTL that the
proposed method identified explains �2% of the
phenotypic variation.

All the above results are based on data generated
from the loop design. Next, we compared the loop
design with the other four designs. For each design, we
simulated 100 data sets with the genetic configuration
from case 2 (i.e., four QTL and s2

a 5 8). The data from
the two complete-independent designs were analyzed
by the linear model, the correct model for the data. For
analysis of the data from the loop, the 300 replicated-
complete-independent, and the complete-pair designs,

Figure 1.—Bayesian QTL estimates from data simulated
under case 1 where no polygenic effect exists (i.e., s2

a 5 0).
The top two panels are from the linear model, and the bottom
two panels are from the proposed mixed-effects model. The
height of each vertical line refers the posterior mean estimate
of each marker.

Figure 2.—Bayesian QTL estimates from data simulated
under case 2 where polygenic effect exists ðs2

a 5 8Þ: The solid
lines are for the markers located at the simulated QTL and
the dashed lines are for the rest of the markers. See Figure 1
legend for details.

TABLE 3

Estimated QTL effects from data under case 2 with four QTL and s2
a 5 8

Additive effect Dominant effect

QTL Position (cM) True a aL aU True b bL bU

1 0 2 1.76 0.52 2.86 2 1.91 1.54 2.28
2 250 1 0.41 0 1.17 1 0.77 0.40 1.14
3 500 2 1.75 0.65 2.74 0 0 0 0
4 750 0 0 0 0 2 1.93 1.57 2.29

a, posterior mean of additive effect; aL and aU, the 5th and 95th percentiles of posterior samples for the additive effect. Similarly,
b, bL, and bU are defined for the dominant effect.
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we used the mixed-effects model. For the data generated
from the 300 replicated-complete-independent design,
we also averaged the phenotypes across the six offspring
from each RIi · RIj mating and analyzed the 50 in-
dependent averages by the linear model. Table 4 sum-
marizes the mean squared error (MSE) of the posterior
mean estimates of the additive QTL effects. As expected,
the data from the 300 complete-independent design
perform the best. The loop design is ranked second best
and has much higher efficiency than the rest of the
designs. Interestingly, though the sample size of the
complete-pair design is 300, its power for mapping
major QTL is only slightly higher than that of the 50
complete-independent design where the sample size is
50. This is largely due to the fact that we have a large
polygenic effect. In summary, for a fixed sample size, we
recommend sampling as many independent RIX as pos-
sible. If the number of independent RIX is too small,
the loop design should be our next choice. One advan-
tage of the loop design over the independent RIX de-
sign is that it allows estimation of the polygenic effect
but the independent RIX design does not.

DISCUSSION

Recombinant inbred intercrosses, produced by gener-
ating all or a subset of the potential F1 hybrids between
pairs of RI lines, increase the number of available geno-

types from L RI lines to L(L 2 1)/2 nonreciprocal RIX
and L(L 2 1) reciprocal RIX. Unlike the parental RI
lines whose genotypes are homozygous, the genetic struc-
ture of RIX resembles that of F2 animals, reducing the
phenotypic anomalies associated with inbred genomes.
One of the great achievements of using RIX animals for
QTL mapping is the ongoing CC project (Threadgill
et al. 2002). The CC project plans to generate and main-
tain �1000 CC RI lines for scientific research. With such
large numbers of RI lines available, our ability to map
complex traits can be greatly increased. Because RIX
genotypes can be directly inferred from the genotypes
of their parental RIs, the genotyping effort required for
the CC project is to genotype only the CC RI lines. Fur-
ther, due to the renewability of CC mice, new RIX mice
can be selectively produced for testing the accuracies of
estimated genetic architectures.

In all our simulations, the parameter d is set to 0.001 to
ensure a proper posterior distribution. We have also an-
alyzed the simulated data with d ¼ 0. The new analysis
results are shown in supporting information, File S1, Fig-
ure S1, and Figure S2. Though in theory, the posterior
distribution from the priors with d ¼ 0 is improper (ter
Braak et al. 2005), this adjustment makes very little dif-
ference in practice.

In this article, we have compared several RIX designs.
For a given sample size, the complete-independent de-
sign performs the best. But the complete-independent
design is limited by the number of available RI lines and
lacks ability in estimating polygenic effects. In contrast,
the loop design and the complete-pair design can
generate large numbers of RIX. Between the two, the
loop design performs better. We highly recommend the
use of the loop design when the number of RI lines is
limited. The loop design also provides estimation of
polygenic effects for the heritability calculation.

For simplicity, our model assumes no maternal or
paternal effects and we consider only nonreciprocal
RIX. One major advantage of RIX over RI or F2 pop-
ulations is that parent-of-origin effects can be tested
with reciprocal RIX. Now we briefly describe how to
extend the proposed model for parent-of-origin effects.

Figure 3.—Bayesian QTL estimates from data simulated
under case 3. (A) The additive effect; (B) the dominant effect.
See Figure 2 legend for details.

TABLE 4

Comparison of the five designs based on 100 simulations under case 2

Design Position (0 cM) Position (250 cM) Position (500 cM)

300 complete independent 0.17 0.57 0.19
Loop 1.30 0.89 1.46
Replicated complete independenta 3.36 0.94 3.33
Replicated complete independentb 3.45 0.95 3.34
Complete pair 3.50 0.98 3.38
50 complete independent 3.54 1.00 3.58

For each QTL, the mean squared error (MSE) of the posterior mean estimate of the additive effect is reported.
aIndividual phenotypes of RIX samples were analyzed via the proposed mixed-effects model (1).
bAverage phenotypes of replicated RIX samples were analyzed via the linear model (2).
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For the jth QTL with additive parent-of-origin effect, we
replace the term xijaj in (1) with xij(p)ajp 1 xij(m)ajm,
where xij(p) [and xij(m)] ¼ 0 or 1 depending on whether
RIXi gets an A allele from its father (and mother). Any
deviation of jajp – ajmj from 0 suggests a parent-of-origin
effect. Polygenic parent-of-origin effects can be similarly
modeled. Further, our model basically considers only
nucleotide effects, which can be extended as well for
modeling founder allelic effects. For example, for the
additive effects of the eight CC founder alleles, we can
replace the term xijaj 1 wijbj in (1) with xijbj, where bj ¼
(b1j, . . . , b8j)T and the kth element of xij is 2, 1, or
0 depending on whether RIXi inherits 2, 1, or 0 copies
of the kth founder allele (k ¼ 1, . . . , 8) at the jth locus.
Therefore, bkj represents the kth founder allelic effect.
Similarly, for a codominant QTL model, we set bj as
a vector of length 36 (corresponding to the 36 geno-
types formed by the eight CC founder alleles). We can
further treat the QTL effects as random as traditionally
done for pedigree data. For example, for an additive
model, we let bj � N ð0; s2

ajIÞ. This would potentially
increase the mapping power as the number of param-
eters is dramatically reduced.
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FIGURE S1.—Bayesian QTL estimates from data simulated under Case 1 where no polygenic effect exists (i.e., 2  = 0). The 

parameter  was set to 0. The top two panels are from the linear model, where the bottom two panels are from the proposed 

mixed model.  The height of each vertical line refers the posterior mean estimate of each marker. 
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FIGURE S2.—Bayesian QTL estimates from data simulated under Case 2 where polygenic effect exists ( 2  = 8). The 

parameter  = 0. See Figure 1 for the figure legends. 
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